File size: 2,022 Bytes
af22f69
 
 
 
 
 
 
b36e602
 
 
af22f69
b159f20
af22f69
 
 
 
 
 
b159f20
af22f69
 
 
8b1d086
 
 
 
 
af22f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b1d086
 
 
af22f69
 
 
b36e602
af22f69
 
 
b36e602
 
8b1d086
 
 
 
 
af22f69
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: VerificadoProfesional/SaBERT-Spanish-Sentiment-Analysis
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my-model-Sabert-Sentimento
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my-model-Sabert-Sentimento

This model is a fine-tuned version of [VerificadoProfesional/SaBERT-Spanish-Sentiment-Analysis](https://huggingface.co/VerificadoProfesional/SaBERT-Spanish-Sentiment-Analysis) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3596
- Accuracy: 0.9161
- F1: 0.9167
- Precision: 0.9193
- Recall: 0.9161

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2944        | 1.0   | 46   | 0.2173          | 0.9226   | 0.9204 | 0.9184    | 0.9226 |
| 0.1038        | 2.0   | 92   | 0.2623          | 0.9355   | 0.9331 | 0.9309    | 0.9355 |
| 0.0589        | 3.0   | 138  | 0.4238          | 0.9161   | 0.9196 | 0.9301    | 0.9161 |
| 0.0354        | 4.0   | 184  | 0.3488          | 0.9161   | 0.9167 | 0.9193    | 0.9161 |
| 0.0225        | 5.0   | 230  | 0.3596          | 0.9161   | 0.9167 | 0.9193    | 0.9161 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1