File size: 5,627 Bytes
de1fce3 aeabcc1 de1fce3 aeabcc1 0b66eb4 de1fce3 aeabcc1 de1fce3 e7ff04a aeabcc1 de1fce3 e7ff04a de1fce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: cc-by-4.0
language: te
widget:
- source_sentence: "ఒక మహిళ ఉల్లిపాయను కత్తిస్తోంది"
sentences:
- "ఒక స్త్రీ ఉల్లిపాయలు కోస్తోంది"
- "ఒక స్త్రీ బంగాళాదుంపను తొక్కడం"
- "ఒక పిల్లి ఇంటి చుట్టూ నడుస్తోంది"
example_title: "Example 1"
- source_sentence: "పిల్లల బృందం జంపింగ్ పోటీని నిర్వహిస్తోంది"
sentences:
- "పిల్లల గుంపు సరదాగా గడుపుతోంది"
- "పిల్లలు పార్కులో ఆడుకోవడానికి ఇష్టపడతారు"
- "ముగ్గురు అబ్బాయిలు నడుస్తున్నారు"
example_title: "Example 2"
- source_sentence: "మీ రెండు ప్రశ్నలకు అవుననే సమాధానం వస్తుంది"
sentences:
- "రెండు ప్రశ్నలకు అవుననే సమాధానం వస్తోంది"
- "మేము మీ అన్ని ప్రశ్నలకు సమాధానమిచ్చాము"
- "నేను ఈ ప్రశ్నకు సమాధానం ఇస్తాను"
example_title: "Example 3"
---
# TeluguSBERT
This is a TeluguBERT model (l3cube-pune/telugu-bert) trained on the NLI dataset. <br>
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here <a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> indic-sentence-bert-nli </a> <br>
A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/telugu-sentence-similarity-sbert <br>
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434)
```
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
```
```
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
```
Other Monolingual Indic sentence BERT models are listed below: <br>
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-bert-nli'> Marathi </a> <br>
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-bert-nli'> Hindi </a> <br>
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-bert-nli'> Kannada </a> <br>
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-bert-nli'> Telugu </a> <br>
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-bert-nli'> Malayalam </a> <br>
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-bert-nli'> Tamil </a> <br>
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-bert-nli'> Gujarati </a> <br>
<a href='https://huggingface.co/l3cube-pune/odia-sentence-bert-nli'> Oriya </a> <br>
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-bert-nli'> Bengali </a> <br>
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-bert-nli'> Punjabi </a> <br>
<a href='https://arxiv.org/abs/2211.11187'> monolingual paper </a> <br>
<a href='https://arxiv.org/abs/2304.11434'> multilingual paper </a>
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
|