kyujinpy's picture
Upload README.md
d34e00a
|
raw
history blame
1.95 kB
metadata
language:
  - en
datasets:
  - garage-bAInd/Open-Platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0

PlatYi-34B-200k-Q-FastChat

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
PlatYi-34B-200k-Q-FastChat is an auto-regressive language model based on the Yi-34B transformer architecture.

Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]

Base Model
01-ai/Yi-34B-200K

Training Dataset
garage-bAInd/Open-Platypus.

Notice
While training, I used QLoRA.
lora_r values is 64.

Apply prompting
References by FastChat.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
PlatYi-34B-200k-Q-FastChat 67.85 64.93 84.46 77.13 48.38 80.74 51.48
PlatYi-34B-Llama-Q-FastChat 68.31 66.31 85.25 78.37 53.62 82.16 44.35
Yi-34B 69.42 64.59 85.69 76.35 56.23 83.03 50.64

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/PlatYi-34B-200k-Q-FastChat"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)