Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
datasets:
|
5 |
+
- kyujinpy/KOpen-platypus
|
6 |
+
library_name: transformers
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
license: cc-by-nc-sa-4.0
|
9 |
---
|
10 |
+
|
11 |
+
# **Kosy🍵llama**
|
12 |
+
![img](./Koisy_llama.JPG)
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
**Model Developers** Kyujin Han (kyujinpy)
|
17 |
+
|
18 |
+
**Model Description**
|
19 |
+
[NEFTune](https://github.com/neelsjain/NEFTune) method를 활용하여 훈련한 Ko-platypus2 new version!
|
20 |
+
(Noisy + KO + llama = Kosy🍵llama)
|
21 |
+
|
22 |
+
**Repo Link**
|
23 |
+
Github **KoNEFTune**(not public; wait!): [Kosy🍵llama](https://github.com/Marker-Inc-Korea/KoNEFTune)
|
24 |
+
If you visit our github, you can easily apply **Random_noisy_embedding_fine-tuning**!!
|
25 |
+
|
26 |
+
**Base Model**
|
27 |
+
[hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
|
28 |
+
|
29 |
+
**Training Dataset**
|
30 |
+
Version of combined dataset: [kyujinpy/KOpen-platypus](https://huggingface.co/datasets/kyujinpy/KOpen-platypus)
|
31 |
+
I use A100 GPU 40GB and COLAB, when trianing.
|
32 |
+
|
33 |
+
# **Model comparisons**
|
34 |
+
[KO-LLM leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)
|
35 |
+
# **NEFT comparisons**
|
36 |
+
![img](./comparison.png)
|
37 |
+
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
|
38 |
+
| --- | --- | --- | --- | --- | --- | --- |
|
39 |
+
| [Ko-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 |
|
40 |
+
| *NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 |
|
41 |
+
| *NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 |
|
42 |
+
| ***NEFT(🍵kosy)+MLP-v3** | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 |
|
43 |
+
| NEFT(🍵kosy)+Attention | 44.92 |42.92 | 54.48 | 42.99 | 43.00 | 41.20 |
|
44 |
+
| NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 |
|
45 |
+
> *Different Hyperparameters such that learning_rate, batch_size, epoch, etc...
|
46 |
+
|
47 |
+
# Implementation Code
|
48 |
+
```python
|
49 |
+
### KO-Platypus
|
50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
+
import torch
|
52 |
+
|
53 |
+
repo = "kyujinpy/Koisy-Platypus2-13B"
|
54 |
+
OpenOrca = AutoModelForCausalLM.from_pretrained(
|
55 |
+
repo,
|
56 |
+
return_dict=True,
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
device_map='auto'
|
59 |
+
)
|
60 |
+
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
|
61 |
+
```
|
62 |
+
|
63 |
+
---
|