File size: 16,133 Bytes
4d898ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
from math import inf
# from utils import *
import torch
import torch.nn as nn
import numpy as np
import torch.utils
import torch.utils.data
# from utils import MyDataset, custom_collate
from torch.nn.utils.rnn import pad_sequence,pad_packed_sequence,pack_padded_sequence
import wandb
import torch.nn.functional as F

import einops
from transformers import AutoModelForCausalLM, AutoTokenizer, GPT2TokenizerFast

np.random.seed(123)
torch.manual_seed(123)
torch.cuda.random.manual_seed(123)

import lightning as L
import utils
from torchmetrics.text.rouge import ROUGEScore
def top_p_sampling(logits, p=0.9, temperature=0.5):

    # Apply temperature scaling
    logits = logits / temperature

    # Sort logits and get cumulative probabilities
    sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

    # Create a mask for probabilities above the threshold
    sorted_indices_to_remove = cumulative_probs > p
    # Shift the indices to the right to keep also the smallest p
    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
    sorted_indices_to_remove[..., 0] = 0

    # Scatter sorted indices to original indices with mask
    indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
    logits[indices_to_remove] = float('-inf')  # Set unwanted logits to -inf

    # Sample from the remaining logits
    probs = F.softmax(logits, dim=-1)
    sampled_indices = torch.multinomial(probs, num_samples=1)
    sampled_indices = sampled_indices.squeeze(1)

    return sampled_indices

class PromptTuningModel(nn.Module):
    def __init__(self, num_prompts=6):
        super().__init__()
        self.num_prompts = num_prompts

        self.model = AutoModelForCausalLM.from_pretrained("gpt2", )
        # self.model.generation_config.cache_implementation = "static"
        # self.model.generation_config.max_new_tokens = 256
        self.model.requires_grad_(False)
        self.tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.tokenizer.add_special_tokens({'cls_token': '[START]'})

        self.eot = self.tokenizer("<|endoftext|>", return_tensors="pt").input_ids[0]
        self.pad = self.tokenizer("[PAD]", return_tensors="pt").input_ids[0]
        self.start = self.tokenizer("[START]", return_tensors="pt").input_ids[0]
        

        self.model.resize_token_embeddings(new_num_tokens = len(self.tokenizer),)

        tmp = self.tokenizer('summarise', return_tensors="pt").input_ids
        token_embedding = self.model.transformer.wte(tmp[0])
        self.token_embedding = token_embedding
        for _ in range(num_prompts//3-1):
            self.token_embedding = torch.cat([self.token_embedding, token_embedding])

        # print(self.token_embedding.shape)
        data = torch.zeros(num_prompts, 768) + self.token_embedding[:]
        self.learnable_prompt = nn.Parameter(data, requires_grad=True)

        # self.model.transformer.wte.weight[self.start].requires_grad = True

    # @torch.compile
    def forward(self, X, y):
        self.learnable_prompt = self.learnable_prompt.to(X.device)
        embeddings = self.model.transformer.wte(X, ) # b s d
  
        embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(X.shape[0], 1, 1), embeddings], dim=1)
        # mask = torch.cat([torch.ones([X.shape[0],self.num_prompts], dtype=torch.long).to(X), torch.where(X != self.pad.to(X.device), 1, 0)], dim=1)
        # print(mask.shape)
        # labels = torch.where(y == 50257, -100, y)
        # ignore  = torch.ones([X.shape[0], self.num_prompts], dtype=torch.long, device=X.device)*-100
        # labels = torch.cat([ignore, labels], dim=1)
        out = self.model(inputs_embeds = embeddings)
        # print("Out.loss:", out.loss)
        logits = out.logits[:,self.num_prompts:]
        return logits

    def generate_new(self, X):
        batch_size = X.shape[0]
        self.learnable_prompt = self.learnable_prompt.to(X.device)
        embeddings = self.model.transformer.wte(X)
        embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(batch_size, 1, 1), embeddings], dim=1)

        cnt = 0
        past_key_values = None
        generated_ids = torch.tensor([], dtype=torch.long, device=X.device).view(batch_size, 0) # Store all generated tokens

        while cnt < 196:

            out = self.model(inputs_embeds=embeddings, use_cache=True, past_key_values=past_key_values)
            past_key_values = out.past_key_values
            # print(cnt)
            if cnt == 0:
                logits = out.logits[:, self.num_prompts:]
            else:
                logits = out.logits

            logits[:, :, 50257:] = -1e4  # Apply after slicing for correct dimensions

            next_token_ids = top_p_sampling(logits[:, -1, :]) 
             # next_token_ids will have shape (batch_size,)
            print(next_token_ids.shape)
            exit()
            generated_ids = torch.cat([generated_ids, next_token_ids.unsqueeze(-1)], dim=-1)

            embeddings = self.model.transformer.wte(next_token_ids)  # Correctly obtains embeddings for current batch


            cnt += 1

            #Check if all sequences have reached the <end> token
            if torch.all((generated_ids == self.eot.item()).any(dim=-1)): # Check each sequence independently
                break
                
        return generated_ids
    def generate(self, X):
        # Only bs = 1
        self.learnable_prompt = self.learnable_prompt.to(X.device)
        embeddings = self.model.transformer.wte(X, ) # b s d
        embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(X.shape[0], 1, 1), embeddings], dim=1)

        cnt = 0
        past_key_values = None
        final_prediction = torch.tensor([], dtype=torch.long).to(X.device)
        while cnt < 196:
            out = self.model(inputs_embeds = embeddings, use_cache=True, past_key_values=past_key_values)
            # print(cnt, out.logits.shape)
            past_key_values = out.past_key_values
            if cnt == 0:
                logits = out.logits[:,self.num_prompts:]
                logits[:,:, 50257:] = -1e4

                output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]

                # print(output.shape)
                
                final_prediction = torch.cat([final_prediction, output], dim=1)
                # print(output.shape)
                embeddings = self.model.transformer.wte(output)
                # print(embeddings.shape)
                

            else:
                # print(logits.shape)
                logits = out.logits
                logits[:, :, 50257:] = -1e4

                output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]
                # print(output)
                final_prediction = torch.cat([final_prediction, output], dim=1)
                # print(final_prediction.shape, 'final')
                embeddings = self.model.transformer.wte(output)

                

            cnt += 1
            # print(output.shape, self.eot.shape)
            if  torch.all((final_prediction == self.eot.item()).any(dim=-1)):
                break

        return final_prediction

            


class LMModel(nn.Module):
    def __init__(self, num_prompts=6):
        super().__init__()
        self.num_prompts = num_prompts

        self.model = AutoModelForCausalLM.from_pretrained("gpt2", )
        # self.model.generation_config.cache_implementation = "static"
        # self.model.generation_config.max_new_tokens = 256
        self.model.requires_grad_(False)
        self.tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.tokenizer.add_special_tokens({'cls_token': '[START]'})

        self.eot = self.tokenizer("<|endoftext|>", return_tensors="pt").input_ids[0]
        self.pad = self.tokenizer("[PAD]", return_tensors="pt").input_ids[0]
        self.start = self.tokenizer("[START]", return_tensors="pt").input_ids[0]
        

        self.model.resize_token_embeddings(new_num_tokens = len(self.tokenizer),)
        

        self.model.lm_head.requires_grad_(True)

    # @torch.compile
    def forward(self, X, y):
        embeddings = self.model.transformer.wte(X, ) # b s d
        logits = self.model(inputs_embeds = embeddings).logits
        return logits

    def generate(self, X):
        # Only bs = 1
        # self.learnable_prompt = self.learnable_prompt.to(X.device)
        embeddings = self.model.transformer.wte(X, ) # b s d
        # embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(X.shape[0], 1, 1), embeddings], dim=1)

        cnt = 0
        past_key_values = None
        final_prediction = torch.tensor([], dtype=torch.long).to(X.device)
        while cnt < 196:
            out = self.model(inputs_embeds = embeddings, use_cache=True, past_key_values=past_key_values)
            # print(cnt, out.logits.shape)
            past_key_values = out.past_key_values
            if cnt == 0:
                logits = out.logits[:,self.num_prompts:]
                logits[:,:, 50257:] = -1e4

                output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]

                # print(output.shape)
                
                final_prediction = torch.cat([final_prediction, output], dim=1)
                # print(output.shape)
                embeddings = self.model.transformer.wte(output)
                # print(embeddings.shape)
                

            else:
                # print(logits.shape)
                logits = out.logits
                logits[:, :, 50257:] = -1e4

                output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]
                # print(output)
                final_prediction = torch.cat([final_prediction, output], dim=1)
                # print(final_prediction.shape, 'final')
                embeddings = self.model.transformer.wte(output)

                

            cnt += 1
            # print(output.shape, self.eot.shape)
            if  torch.all((final_prediction == self.eot.item()).any(dim=-1)):
                break

        return final_prediction

def zero_after_x(arr, x):
    """
    Zeros out all elements in each row of a 2D tensor after the first occurrence of x.

    Args:
        tensor: The input 2D tensor.
        x: The value after which to zero out elements.

    Returns:
        A new tensor with elements zeroed out after x.
    """

    mask = (arr == x).cumsum(dim=1) > 0  # Create a cumulative mask
    result = torch.where(mask, x, arr) #zero out where mask is True

    return result

class LitModelPromptTuning(L.LightningModule):
    def __init__(self, model, temperature, epoch, lr=1e-4, **kwargs):
        super().__init__()
        self.model = model
        self.lr = lr
        self.model.temperature = temperature
        self.epoch = epoch
        self.temperature = temperature

        for key, value in kwargs.items():
            setattr(self, key, value)

        tokenize_to_strings = lambda  text: self.model.tokenizer.convert_ids_to_tokens(self.model.tokenizer(text)["input_ids"])
        self.rouge = ROUGEScore(tokenizer=tokenize_to_strings)

        self.save_hyperparameters(ignore=['model'])

        
    def training_step(self, batch, batch_idx):
        X, y = batch
        # for i,j in zip(X[1], y[1]):
        #     print(i.item(),j.item())
        
        logits = self.model(X, y)

        logits[:,:, 50257:] = -1e4
        # print(X.shape, y.shape, logits.shape)
        loss = F.cross_entropy(logits[:,:-1,:].reshape(-1, logits.shape[-1]), target=y[:,:-1].reshape(-1), ignore_index=50257)
        # print(loss)
        # prob = logits.softmax(dim=-1)[0,-300:]
        # target = y[0, -300:]
        # print('logits',logits[0,-300:][torch.arange(target.numel()), target])
        # print(prob[torch.arange(target.numel()), target])
        # print(prob.argmax(dim=-1), target, X[0, -300:])
        # print(self.model.tokenizer.decode(prob.argmax(dim=-1)), 'gap', self.model.tokenizer.decode(target))
        # print(self.model.tokenizer.decode(X[0,-300:]))
        # x = F.cross_entropy(logits[0,:-1,:].reshape(-1, logits.shape[-1]), target=y[0,:-1].reshape(-1), ignore_index=50257, reduction='none')
        # print(x[-20:])
        # print(self.model.pad)

        # print(X[0, -300:].shape, target.shape, prob.argmax(dim=-1).shape)
        # for i,j,k in zip(X[0, -300:], target, prob.argmax(dim=-1)):
        #     print(self.model.tokenizer.decode(i),'\tx ',self.model.tokenizer.decode(j),'\tx ',self.model.tokenizer.decode(k))


        # exit()

        self.log('Training loss', loss, on_step=True, on_epoch=True,logger=True, sync_dist=True)
        return loss


    def validation_step(self, batch, batch_idx):
        X, y = batch

        logits = self.model(X, y)
        logits[:,:, 50257:] = -1e4
        # print(X.shape, y.shape, logits.shape)
        loss = F.cross_entropy(logits[:,:-1,:].reshape(-1, logits.shape[-1]), target=y[:,:-1].reshape(-1), ignore_index=50257)
        
        self.log('Validation loss', loss, on_step=True, on_epoch=True, logger=True, sync_dist=True)
        return loss 

    def on_test_epoch_start(self, ):
        self.all_text = []
        self.predicted_text = []

    def test_step(self, batch, batch_idx):
        if batch_idx == 0:
            return
        X, y = batch
        # print(self.model.tokenizer.batch_decode(X))
        # print(X.shape)
        # with torch.no_grad()
        out = self.model.generate(X)
        # out = zero_after_x(out, self.model.eot.to(X.device))
        # print(out.shape, y.shape)
        # print(out, y)
        pred = self.model.tokenizer.batch_decode(out, skip_special_tokens=False)
        gt = self.model.tokenizer.batch_decode(y, skip_special_tokens=False)
       
        
        print(pred)
        print('GAP')
        print(gt)
        final_score = 0

        for p,g in zip(pred, gt):
            score = self.rouge(p, g, )
            print(score)
        # exit()
        

            self.log_dict(score, on_step=True, on_epoch=True, logger=True, sync_dist=True)
        


    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr)
        return optimizer
    
from lightning.pytorch.loggers import WandbLogger
if __name__ == '__main__':
    train = False

    torch.set_float32_matmul_precision('medium')
    dl_train, dl_val, dl_test = utils.import_data(bs=24, fraction=1)
    # gpt_model = PromptTuningModel(num_prompts=24)
    if train:
        gpt_model = LMModel(num_prompts=12)
        gpt_model = torch.compile(gpt_model)
    else:
        gpt_model = torch.load('./model1.bin')
    
    
    model = LitModelPromptTuning(
        model=gpt_model, 
        lr=1e-4,
        temperature=0.9,
        epoch = 5,

        type_model = 'lm_head'
        )
    print('Training')
    
    logger = WandbLogger(project='Anlp-3')
    trainer = L.Trainer(
        accelerator='gpu',
        # limit_train_batches=1,
        # strategy='auto',
        # strategy=pl.strategies.DDPStrategy(find_unused_parameters=True),
        devices=1,
        default_root_dir=f'./logs/', # Tensorflow can be used to viz 
        num_nodes=1,
        num_sanity_val_steps=1, # runs a validation step before stating training
        precision='bf16-mixed', # we use half precision to reduce  memory usage
        max_epochs=5,
        check_val_every_n_epoch=1, # run validation every epoch
        log_every_n_steps=20,
        logger=logger,
        # detect_anomaly=True,
    )

    if train:
        trainer.fit(model, train_dataloaders=dl_train, val_dataloaders=dl_val)
        trainer.test(model, dataloaders=dl_test)
        torch.save(model.model, './model1.bin')
    else:
        trainer.test(model, dataloaders=dl_test)