File size: 16,133 Bytes
4d898ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
from math import inf
# from utils import *
import torch
import torch.nn as nn
import numpy as np
import torch.utils
import torch.utils.data
# from utils import MyDataset, custom_collate
from torch.nn.utils.rnn import pad_sequence,pad_packed_sequence,pack_padded_sequence
import wandb
import torch.nn.functional as F
import einops
from transformers import AutoModelForCausalLM, AutoTokenizer, GPT2TokenizerFast
np.random.seed(123)
torch.manual_seed(123)
torch.cuda.random.manual_seed(123)
import lightning as L
import utils
from torchmetrics.text.rouge import ROUGEScore
def top_p_sampling(logits, p=0.9, temperature=0.5):
# Apply temperature scaling
logits = logits / temperature
# Sort logits and get cumulative probabilities
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Create a mask for probabilities above the threshold
sorted_indices_to_remove = cumulative_probs > p
# Shift the indices to the right to keep also the smallest p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Scatter sorted indices to original indices with mask
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = float('-inf') # Set unwanted logits to -inf
# Sample from the remaining logits
probs = F.softmax(logits, dim=-1)
sampled_indices = torch.multinomial(probs, num_samples=1)
sampled_indices = sampled_indices.squeeze(1)
return sampled_indices
class PromptTuningModel(nn.Module):
def __init__(self, num_prompts=6):
super().__init__()
self.num_prompts = num_prompts
self.model = AutoModelForCausalLM.from_pretrained("gpt2", )
# self.model.generation_config.cache_implementation = "static"
# self.model.generation_config.max_new_tokens = 256
self.model.requires_grad_(False)
self.tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.tokenizer.add_special_tokens({'cls_token': '[START]'})
self.eot = self.tokenizer("<|endoftext|>", return_tensors="pt").input_ids[0]
self.pad = self.tokenizer("[PAD]", return_tensors="pt").input_ids[0]
self.start = self.tokenizer("[START]", return_tensors="pt").input_ids[0]
self.model.resize_token_embeddings(new_num_tokens = len(self.tokenizer),)
tmp = self.tokenizer('summarise', return_tensors="pt").input_ids
token_embedding = self.model.transformer.wte(tmp[0])
self.token_embedding = token_embedding
for _ in range(num_prompts//3-1):
self.token_embedding = torch.cat([self.token_embedding, token_embedding])
# print(self.token_embedding.shape)
data = torch.zeros(num_prompts, 768) + self.token_embedding[:]
self.learnable_prompt = nn.Parameter(data, requires_grad=True)
# self.model.transformer.wte.weight[self.start].requires_grad = True
# @torch.compile
def forward(self, X, y):
self.learnable_prompt = self.learnable_prompt.to(X.device)
embeddings = self.model.transformer.wte(X, ) # b s d
embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(X.shape[0], 1, 1), embeddings], dim=1)
# mask = torch.cat([torch.ones([X.shape[0],self.num_prompts], dtype=torch.long).to(X), torch.where(X != self.pad.to(X.device), 1, 0)], dim=1)
# print(mask.shape)
# labels = torch.where(y == 50257, -100, y)
# ignore = torch.ones([X.shape[0], self.num_prompts], dtype=torch.long, device=X.device)*-100
# labels = torch.cat([ignore, labels], dim=1)
out = self.model(inputs_embeds = embeddings)
# print("Out.loss:", out.loss)
logits = out.logits[:,self.num_prompts:]
return logits
def generate_new(self, X):
batch_size = X.shape[0]
self.learnable_prompt = self.learnable_prompt.to(X.device)
embeddings = self.model.transformer.wte(X)
embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(batch_size, 1, 1), embeddings], dim=1)
cnt = 0
past_key_values = None
generated_ids = torch.tensor([], dtype=torch.long, device=X.device).view(batch_size, 0) # Store all generated tokens
while cnt < 196:
out = self.model(inputs_embeds=embeddings, use_cache=True, past_key_values=past_key_values)
past_key_values = out.past_key_values
# print(cnt)
if cnt == 0:
logits = out.logits[:, self.num_prompts:]
else:
logits = out.logits
logits[:, :, 50257:] = -1e4 # Apply after slicing for correct dimensions
next_token_ids = top_p_sampling(logits[:, -1, :])
# next_token_ids will have shape (batch_size,)
print(next_token_ids.shape)
exit()
generated_ids = torch.cat([generated_ids, next_token_ids.unsqueeze(-1)], dim=-1)
embeddings = self.model.transformer.wte(next_token_ids) # Correctly obtains embeddings for current batch
cnt += 1
#Check if all sequences have reached the <end> token
if torch.all((generated_ids == self.eot.item()).any(dim=-1)): # Check each sequence independently
break
return generated_ids
def generate(self, X):
# Only bs = 1
self.learnable_prompt = self.learnable_prompt.to(X.device)
embeddings = self.model.transformer.wte(X, ) # b s d
embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(X.shape[0], 1, 1), embeddings], dim=1)
cnt = 0
past_key_values = None
final_prediction = torch.tensor([], dtype=torch.long).to(X.device)
while cnt < 196:
out = self.model(inputs_embeds = embeddings, use_cache=True, past_key_values=past_key_values)
# print(cnt, out.logits.shape)
past_key_values = out.past_key_values
if cnt == 0:
logits = out.logits[:,self.num_prompts:]
logits[:,:, 50257:] = -1e4
output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]
# print(output.shape)
final_prediction = torch.cat([final_prediction, output], dim=1)
# print(output.shape)
embeddings = self.model.transformer.wte(output)
# print(embeddings.shape)
else:
# print(logits.shape)
logits = out.logits
logits[:, :, 50257:] = -1e4
output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]
# print(output)
final_prediction = torch.cat([final_prediction, output], dim=1)
# print(final_prediction.shape, 'final')
embeddings = self.model.transformer.wte(output)
cnt += 1
# print(output.shape, self.eot.shape)
if torch.all((final_prediction == self.eot.item()).any(dim=-1)):
break
return final_prediction
class LMModel(nn.Module):
def __init__(self, num_prompts=6):
super().__init__()
self.num_prompts = num_prompts
self.model = AutoModelForCausalLM.from_pretrained("gpt2", )
# self.model.generation_config.cache_implementation = "static"
# self.model.generation_config.max_new_tokens = 256
self.model.requires_grad_(False)
self.tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.tokenizer.add_special_tokens({'cls_token': '[START]'})
self.eot = self.tokenizer("<|endoftext|>", return_tensors="pt").input_ids[0]
self.pad = self.tokenizer("[PAD]", return_tensors="pt").input_ids[0]
self.start = self.tokenizer("[START]", return_tensors="pt").input_ids[0]
self.model.resize_token_embeddings(new_num_tokens = len(self.tokenizer),)
self.model.lm_head.requires_grad_(True)
# @torch.compile
def forward(self, X, y):
embeddings = self.model.transformer.wte(X, ) # b s d
logits = self.model(inputs_embeds = embeddings).logits
return logits
def generate(self, X):
# Only bs = 1
# self.learnable_prompt = self.learnable_prompt.to(X.device)
embeddings = self.model.transformer.wte(X, ) # b s d
# embeddings = torch.cat([self.learnable_prompt[None, :, :].repeat(X.shape[0], 1, 1), embeddings], dim=1)
cnt = 0
past_key_values = None
final_prediction = torch.tensor([], dtype=torch.long).to(X.device)
while cnt < 196:
out = self.model(inputs_embeds = embeddings, use_cache=True, past_key_values=past_key_values)
# print(cnt, out.logits.shape)
past_key_values = out.past_key_values
if cnt == 0:
logits = out.logits[:,self.num_prompts:]
logits[:,:, 50257:] = -1e4
output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]
# print(output.shape)
final_prediction = torch.cat([final_prediction, output], dim=1)
# print(output.shape)
embeddings = self.model.transformer.wte(output)
# print(embeddings.shape)
else:
# print(logits.shape)
logits = out.logits
logits[:, :, 50257:] = -1e4
output = top_p_sampling(logits[:,-1,:], temperature=self.temperature)[:,None]
# print(output)
final_prediction = torch.cat([final_prediction, output], dim=1)
# print(final_prediction.shape, 'final')
embeddings = self.model.transformer.wte(output)
cnt += 1
# print(output.shape, self.eot.shape)
if torch.all((final_prediction == self.eot.item()).any(dim=-1)):
break
return final_prediction
def zero_after_x(arr, x):
"""
Zeros out all elements in each row of a 2D tensor after the first occurrence of x.
Args:
tensor: The input 2D tensor.
x: The value after which to zero out elements.
Returns:
A new tensor with elements zeroed out after x.
"""
mask = (arr == x).cumsum(dim=1) > 0 # Create a cumulative mask
result = torch.where(mask, x, arr) #zero out where mask is True
return result
class LitModelPromptTuning(L.LightningModule):
def __init__(self, model, temperature, epoch, lr=1e-4, **kwargs):
super().__init__()
self.model = model
self.lr = lr
self.model.temperature = temperature
self.epoch = epoch
self.temperature = temperature
for key, value in kwargs.items():
setattr(self, key, value)
tokenize_to_strings = lambda text: self.model.tokenizer.convert_ids_to_tokens(self.model.tokenizer(text)["input_ids"])
self.rouge = ROUGEScore(tokenizer=tokenize_to_strings)
self.save_hyperparameters(ignore=['model'])
def training_step(self, batch, batch_idx):
X, y = batch
# for i,j in zip(X[1], y[1]):
# print(i.item(),j.item())
logits = self.model(X, y)
logits[:,:, 50257:] = -1e4
# print(X.shape, y.shape, logits.shape)
loss = F.cross_entropy(logits[:,:-1,:].reshape(-1, logits.shape[-1]), target=y[:,:-1].reshape(-1), ignore_index=50257)
# print(loss)
# prob = logits.softmax(dim=-1)[0,-300:]
# target = y[0, -300:]
# print('logits',logits[0,-300:][torch.arange(target.numel()), target])
# print(prob[torch.arange(target.numel()), target])
# print(prob.argmax(dim=-1), target, X[0, -300:])
# print(self.model.tokenizer.decode(prob.argmax(dim=-1)), 'gap', self.model.tokenizer.decode(target))
# print(self.model.tokenizer.decode(X[0,-300:]))
# x = F.cross_entropy(logits[0,:-1,:].reshape(-1, logits.shape[-1]), target=y[0,:-1].reshape(-1), ignore_index=50257, reduction='none')
# print(x[-20:])
# print(self.model.pad)
# print(X[0, -300:].shape, target.shape, prob.argmax(dim=-1).shape)
# for i,j,k in zip(X[0, -300:], target, prob.argmax(dim=-1)):
# print(self.model.tokenizer.decode(i),'\tx ',self.model.tokenizer.decode(j),'\tx ',self.model.tokenizer.decode(k))
# exit()
self.log('Training loss', loss, on_step=True, on_epoch=True,logger=True, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
X, y = batch
logits = self.model(X, y)
logits[:,:, 50257:] = -1e4
# print(X.shape, y.shape, logits.shape)
loss = F.cross_entropy(logits[:,:-1,:].reshape(-1, logits.shape[-1]), target=y[:,:-1].reshape(-1), ignore_index=50257)
self.log('Validation loss', loss, on_step=True, on_epoch=True, logger=True, sync_dist=True)
return loss
def on_test_epoch_start(self, ):
self.all_text = []
self.predicted_text = []
def test_step(self, batch, batch_idx):
if batch_idx == 0:
return
X, y = batch
# print(self.model.tokenizer.batch_decode(X))
# print(X.shape)
# with torch.no_grad()
out = self.model.generate(X)
# out = zero_after_x(out, self.model.eot.to(X.device))
# print(out.shape, y.shape)
# print(out, y)
pred = self.model.tokenizer.batch_decode(out, skip_special_tokens=False)
gt = self.model.tokenizer.batch_decode(y, skip_special_tokens=False)
print(pred)
print('GAP')
print(gt)
final_score = 0
for p,g in zip(pred, gt):
score = self.rouge(p, g, )
print(score)
# exit()
self.log_dict(score, on_step=True, on_epoch=True, logger=True, sync_dist=True)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr)
return optimizer
from lightning.pytorch.loggers import WandbLogger
if __name__ == '__main__':
train = False
torch.set_float32_matmul_precision('medium')
dl_train, dl_val, dl_test = utils.import_data(bs=24, fraction=1)
# gpt_model = PromptTuningModel(num_prompts=24)
if train:
gpt_model = LMModel(num_prompts=12)
gpt_model = torch.compile(gpt_model)
else:
gpt_model = torch.load('./model1.bin')
model = LitModelPromptTuning(
model=gpt_model,
lr=1e-4,
temperature=0.9,
epoch = 5,
type_model = 'lm_head'
)
print('Training')
logger = WandbLogger(project='Anlp-3')
trainer = L.Trainer(
accelerator='gpu',
# limit_train_batches=1,
# strategy='auto',
# strategy=pl.strategies.DDPStrategy(find_unused_parameters=True),
devices=1,
default_root_dir=f'./logs/', # Tensorflow can be used to viz
num_nodes=1,
num_sanity_val_steps=1, # runs a validation step before stating training
precision='bf16-mixed', # we use half precision to reduce memory usage
max_epochs=5,
check_val_every_n_epoch=1, # run validation every epoch
log_every_n_steps=20,
logger=logger,
# detect_anomaly=True,
)
if train:
trainer.fit(model, train_dataloaders=dl_train, val_dataloaders=dl_val)
trainer.test(model, dataloaders=dl_test)
torch.save(model.model, './model1.bin')
else:
trainer.test(model, dataloaders=dl_test) |