Text-to-Image
Diffusers
stable-diffusion
File size: 22,238 Bytes
634f932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# -*- coding: utf-8 -*-
import numpy as np
import cv2
import torch

from functools import partial
import random
from scipy import ndimage
import scipy
import scipy.stats as ss
from scipy.interpolate import interp2d
from scipy.linalg import orth
import albumentations

import ldm.modules.image_degradation.utils_image as util

"""
# --------------------------------------------
# Super-Resolution
# --------------------------------------------
#
# Kai Zhang (cskaizhang@gmail.com)
# https://github.com/cszn
# From 2019/03--2021/08
# --------------------------------------------
"""


def modcrop_np(img, sf):
    '''
    Args:
        img: numpy image, WxH or WxHxC
        sf: scale factor
    Return:
        cropped image
    '''
    w, h = img.shape[:2]
    im = np.copy(img)
    return im[:w - w % sf, :h - h % sf, ...]


"""
# --------------------------------------------
# anisotropic Gaussian kernels
# --------------------------------------------
"""


def analytic_kernel(k):
    """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
    k_size = k.shape[0]
    # Calculate the big kernels size
    big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
    # Loop over the small kernel to fill the big one
    for r in range(k_size):
        for c in range(k_size):
            big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
    # Crop the edges of the big kernel to ignore very small values and increase run time of SR
    crop = k_size // 2
    cropped_big_k = big_k[crop:-crop, crop:-crop]
    # Normalize to 1
    return cropped_big_k / cropped_big_k.sum()


def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
    """ generate an anisotropic Gaussian kernel
    Args:
        ksize : e.g., 15, kernel size
        theta : [0,  pi], rotation angle range
        l1    : [0.1,50], scaling of eigenvalues
        l2    : [0.1,l1], scaling of eigenvalues
        If l1 = l2, will get an isotropic Gaussian kernel.
    Returns:
        k     : kernel
    """

    v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
    V = np.array([[v[0], v[1]], [v[1], -v[0]]])
    D = np.array([[l1, 0], [0, l2]])
    Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
    k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)

    return k


def gm_blur_kernel(mean, cov, size=15):
    center = size / 2.0 + 0.5
    k = np.zeros([size, size])
    for y in range(size):
        for x in range(size):
            cy = y - center + 1
            cx = x - center + 1
            k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)

    k = k / np.sum(k)
    return k


def shift_pixel(x, sf, upper_left=True):
    """shift pixel for super-resolution with different scale factors
    Args:
        x: WxHxC or WxH
        sf: scale factor
        upper_left: shift direction
    """
    h, w = x.shape[:2]
    shift = (sf - 1) * 0.5
    xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
    if upper_left:
        x1 = xv + shift
        y1 = yv + shift
    else:
        x1 = xv - shift
        y1 = yv - shift

    x1 = np.clip(x1, 0, w - 1)
    y1 = np.clip(y1, 0, h - 1)

    if x.ndim == 2:
        x = interp2d(xv, yv, x)(x1, y1)
    if x.ndim == 3:
        for i in range(x.shape[-1]):
            x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)

    return x


def blur(x, k):
    '''
    x: image, NxcxHxW
    k: kernel, Nx1xhxw
    '''
    n, c = x.shape[:2]
    p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
    x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
    k = k.repeat(1, c, 1, 1)
    k = k.view(-1, 1, k.shape[2], k.shape[3])
    x = x.view(1, -1, x.shape[2], x.shape[3])
    x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
    x = x.view(n, c, x.shape[2], x.shape[3])

    return x


def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
    """"
    # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
    # Kai Zhang
    # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
    # max_var = 2.5 * sf
    """
    # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
    lambda_1 = min_var + np.random.rand() * (max_var - min_var)
    lambda_2 = min_var + np.random.rand() * (max_var - min_var)
    theta = np.random.rand() * np.pi  # random theta
    noise = -noise_level + np.random.rand(*k_size) * noise_level * 2

    # Set COV matrix using Lambdas and Theta
    LAMBDA = np.diag([lambda_1, lambda_2])
    Q = np.array([[np.cos(theta), -np.sin(theta)],
                  [np.sin(theta), np.cos(theta)]])
    SIGMA = Q @ LAMBDA @ Q.T
    INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]

    # Set expectation position (shifting kernel for aligned image)
    MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
    MU = MU[None, None, :, None]

    # Create meshgrid for Gaussian
    [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
    Z = np.stack([X, Y], 2)[:, :, :, None]

    # Calcualte Gaussian for every pixel of the kernel
    ZZ = Z - MU
    ZZ_t = ZZ.transpose(0, 1, 3, 2)
    raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)

    # shift the kernel so it will be centered
    # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)

    # Normalize the kernel and return
    # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
    kernel = raw_kernel / np.sum(raw_kernel)
    return kernel


def fspecial_gaussian(hsize, sigma):
    hsize = [hsize, hsize]
    siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
    std = sigma
    [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
    arg = -(x * x + y * y) / (2 * std * std)
    h = np.exp(arg)
    h[h < scipy.finfo(float).eps * h.max()] = 0
    sumh = h.sum()
    if sumh != 0:
        h = h / sumh
    return h


def fspecial_laplacian(alpha):
    alpha = max([0, min([alpha, 1])])
    h1 = alpha / (alpha + 1)
    h2 = (1 - alpha) / (alpha + 1)
    h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
    h = np.array(h)
    return h


def fspecial(filter_type, *args, **kwargs):
    '''
    python code from:
    https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
    '''
    if filter_type == 'gaussian':
        return fspecial_gaussian(*args, **kwargs)
    if filter_type == 'laplacian':
        return fspecial_laplacian(*args, **kwargs)


"""
# --------------------------------------------
# degradation models
# --------------------------------------------
"""


def bicubic_degradation(x, sf=3):
    '''
    Args:
        x: HxWxC image, [0, 1]
        sf: down-scale factor
    Return:
        bicubicly downsampled LR image
    '''
    x = util.imresize_np(x, scale=1 / sf)
    return x


def srmd_degradation(x, k, sf=3):
    ''' blur + bicubic downsampling
    Args:
        x: HxWxC image, [0, 1]
        k: hxw, double
        sf: down-scale factor
    Return:
        downsampled LR image
    Reference:
        @inproceedings{zhang2018learning,
          title={Learning a single convolutional super-resolution network for multiple degradations},
          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
          pages={3262--3271},
          year={2018}
        }
    '''
    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
    x = bicubic_degradation(x, sf=sf)
    return x


def dpsr_degradation(x, k, sf=3):
    ''' bicubic downsampling + blur
    Args:
        x: HxWxC image, [0, 1]
        k: hxw, double
        sf: down-scale factor
    Return:
        downsampled LR image
    Reference:
        @inproceedings{zhang2019deep,
          title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
          pages={1671--1681},
          year={2019}
        }
    '''
    x = bicubic_degradation(x, sf=sf)
    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
    return x


def classical_degradation(x, k, sf=3):
    ''' blur + downsampling
    Args:
        x: HxWxC image, [0, 1]/[0, 255]
        k: hxw, double
        sf: down-scale factor
    Return:
        downsampled LR image
    '''
    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
    # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
    st = 0
    return x[st::sf, st::sf, ...]


def add_sharpening(img, weight=0.5, radius=50, threshold=10):
    """USM sharpening. borrowed from real-ESRGAN
    Input image: I; Blurry image: B.
    1. K = I + weight * (I - B)
    2. Mask = 1 if abs(I - B) > threshold, else: 0
    3. Blur mask:
    4. Out = Mask * K + (1 - Mask) * I
    Args:
        img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
        weight (float): Sharp weight. Default: 1.
        radius (float): Kernel size of Gaussian blur. Default: 50.
        threshold (int):
    """
    if radius % 2 == 0:
        radius += 1
    blur = cv2.GaussianBlur(img, (radius, radius), 0)
    residual = img - blur
    mask = np.abs(residual) * 255 > threshold
    mask = mask.astype('float32')
    soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)

    K = img + weight * residual
    K = np.clip(K, 0, 1)
    return soft_mask * K + (1 - soft_mask) * img


def add_blur(img, sf=4):
    wd2 = 4.0 + sf
    wd = 2.0 + 0.2 * sf

    wd2 = wd2/4
    wd = wd/4

    if random.random() < 0.5:
        l1 = wd2 * random.random()
        l2 = wd2 * random.random()
        k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
    else:
        k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
    img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')

    return img


def add_resize(img, sf=4):
    rnum = np.random.rand()
    if rnum > 0.8:  # up
        sf1 = random.uniform(1, 2)
    elif rnum < 0.7:  # down
        sf1 = random.uniform(0.5 / sf, 1)
    else:
        sf1 = 1.0
    img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
    img = np.clip(img, 0.0, 1.0)

    return img


# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
#     noise_level = random.randint(noise_level1, noise_level2)
#     rnum = np.random.rand()
#     if rnum > 0.6:  # add color Gaussian noise
#         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
#     elif rnum < 0.4:  # add grayscale Gaussian noise
#         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
#     else:  # add  noise
#         L = noise_level2 / 255.
#         D = np.diag(np.random.rand(3))
#         U = orth(np.random.rand(3, 3))
#         conv = np.dot(np.dot(np.transpose(U), D), U)
#         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
#     img = np.clip(img, 0.0, 1.0)
#     return img

def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
    noise_level = random.randint(noise_level1, noise_level2)
    rnum = np.random.rand()
    if rnum > 0.6:  # add color Gaussian noise
        img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
    elif rnum < 0.4:  # add grayscale Gaussian noise
        img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
    else:  # add  noise
        L = noise_level2 / 255.
        D = np.diag(np.random.rand(3))
        U = orth(np.random.rand(3, 3))
        conv = np.dot(np.dot(np.transpose(U), D), U)
        img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
    img = np.clip(img, 0.0, 1.0)
    return img


def add_speckle_noise(img, noise_level1=2, noise_level2=25):
    noise_level = random.randint(noise_level1, noise_level2)
    img = np.clip(img, 0.0, 1.0)
    rnum = random.random()
    if rnum > 0.6:
        img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
    elif rnum < 0.4:
        img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
    else:
        L = noise_level2 / 255.
        D = np.diag(np.random.rand(3))
        U = orth(np.random.rand(3, 3))
        conv = np.dot(np.dot(np.transpose(U), D), U)
        img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
    img = np.clip(img, 0.0, 1.0)
    return img


def add_Poisson_noise(img):
    img = np.clip((img * 255.0).round(), 0, 255) / 255.
    vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
    if random.random() < 0.5:
        img = np.random.poisson(img * vals).astype(np.float32) / vals
    else:
        img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
        img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
        noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
        img += noise_gray[:, :, np.newaxis]
    img = np.clip(img, 0.0, 1.0)
    return img


def add_JPEG_noise(img):
    quality_factor = random.randint(80, 95)
    img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
    result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
    img = cv2.imdecode(encimg, 1)
    img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
    return img


def random_crop(lq, hq, sf=4, lq_patchsize=64):
    h, w = lq.shape[:2]
    rnd_h = random.randint(0, h - lq_patchsize)
    rnd_w = random.randint(0, w - lq_patchsize)
    lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]

    rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
    hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
    return lq, hq


def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
    """
    This is the degradation model of BSRGAN from the paper
    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
    ----------
    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
    sf: scale factor
    isp_model: camera ISP model
    Returns
    -------
    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
    """
    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
    sf_ori = sf

    h1, w1 = img.shape[:2]
    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
    h, w = img.shape[:2]

    if h < lq_patchsize * sf or w < lq_patchsize * sf:
        raise ValueError(f'img size ({h1}X{w1}) is too small!')

    hq = img.copy()

    if sf == 4 and random.random() < scale2_prob:  # downsample1
        if np.random.rand() < 0.5:
            img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
                             interpolation=random.choice([1, 2, 3]))
        else:
            img = util.imresize_np(img, 1 / 2, True)
        img = np.clip(img, 0.0, 1.0)
        sf = 2

    shuffle_order = random.sample(range(7), 7)
    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
    if idx1 > idx2:  # keep downsample3 last
        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]

    for i in shuffle_order:

        if i == 0:
            img = add_blur(img, sf=sf)

        elif i == 1:
            img = add_blur(img, sf=sf)

        elif i == 2:
            a, b = img.shape[1], img.shape[0]
            # downsample2
            if random.random() < 0.75:
                sf1 = random.uniform(1, 2 * sf)
                img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
                                 interpolation=random.choice([1, 2, 3]))
            else:
                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
                k_shifted = shift_pixel(k, sf)
                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
                img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
                img = img[0::sf, 0::sf, ...]  # nearest downsampling
            img = np.clip(img, 0.0, 1.0)

        elif i == 3:
            # downsample3
            img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
            img = np.clip(img, 0.0, 1.0)

        elif i == 4:
            # add Gaussian noise
            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)

        elif i == 5:
            # add JPEG noise
            if random.random() < jpeg_prob:
                img = add_JPEG_noise(img)

        elif i == 6:
            # add processed camera sensor noise
            if random.random() < isp_prob and isp_model is not None:
                with torch.no_grad():
                    img, hq = isp_model.forward(img.copy(), hq)

    # add final JPEG compression noise
    img = add_JPEG_noise(img)

    # random crop
    img, hq = random_crop(img, hq, sf_ori, lq_patchsize)

    return img, hq


# todo no isp_model?
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
    """
    This is the degradation model of BSRGAN from the paper
    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
    ----------
    sf: scale factor
    isp_model: camera ISP model
    Returns
    -------
    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
    """
    image = util.uint2single(image)
    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
    sf_ori = sf

    h1, w1 = image.shape[:2]
    image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
    h, w = image.shape[:2]

    hq = image.copy()

    if sf == 4 and random.random() < scale2_prob:  # downsample1
        if np.random.rand() < 0.5:
            image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
                               interpolation=random.choice([1, 2, 3]))
        else:
            image = util.imresize_np(image, 1 / 2, True)
        image = np.clip(image, 0.0, 1.0)
        sf = 2

    shuffle_order = random.sample(range(7), 7)
    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
    if idx1 > idx2:  # keep downsample3 last
        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]

    for i in shuffle_order:

        if i == 0:
            image = add_blur(image, sf=sf)

        # elif i == 1:
        #     image = add_blur(image, sf=sf)

        if i == 0:
            pass

        elif i == 2:
            a, b = image.shape[1], image.shape[0]
            # downsample2
            if random.random() < 0.8:
                sf1 = random.uniform(1, 2 * sf)
                image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
                                   interpolation=random.choice([1, 2, 3]))
            else:
                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
                k_shifted = shift_pixel(k, sf)
                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
                image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
                image = image[0::sf, 0::sf, ...]  # nearest downsampling

            image = np.clip(image, 0.0, 1.0)

        elif i == 3:
            # downsample3
            image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
            image = np.clip(image, 0.0, 1.0)

        elif i == 4:
            # add Gaussian noise
            image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)

        elif i == 5:
            # add JPEG noise
            if random.random() < jpeg_prob:
                image = add_JPEG_noise(image)
        #
        # elif i == 6:
        #     # add processed camera sensor noise
        #     if random.random() < isp_prob and isp_model is not None:
        #         with torch.no_grad():
        #             img, hq = isp_model.forward(img.copy(), hq)

    # add final JPEG compression noise
    image = add_JPEG_noise(image)
    image = util.single2uint(image)
    example = {"image": image}
    return example




if __name__ == '__main__':
    print("hey")
    img = util.imread_uint('utils/test.png', 3)
    img = img[:448, :448]
    h = img.shape[0] // 4
    print("resizing to", h)
    sf = 4
    deg_fn = partial(degradation_bsrgan_variant, sf=sf)
    for i in range(20):
        print(i)
        img_hq = img
        img_lq = deg_fn(img)["image"]
        img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
        print(img_lq)
        img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
        print(img_lq.shape)
        print("bicubic", img_lq_bicubic.shape)
        print(img_hq.shape)
        lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
                                interpolation=0)
        lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
                                        (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
                                        interpolation=0)
        img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
        util.imsave(img_concat, str(i) + '.png')