File size: 4,966 Bytes
ebaf2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""Character tokenizer for Hugging Face.

"""

from typing import List, Optional, Dict, Sequence, Tuple

from transformers import PreTrainedTokenizer


class CaduceusTokenizer(PreTrainedTokenizer):
    model_input_names = ["input_ids"]

    def __init__(self,
                 model_max_length: int,
                 characters: Sequence[str] = ("A", "C", "G", "T", "N"),
                 complement_map=None,
                 bos_token="[BOS]",
                 eos_token="[SEP]",
                 sep_token="[SEP]",
                 cls_token="[CLS]",
                 pad_token="[PAD]",
                 mask_token="[MASK]",
                 unk_token="[UNK]",
                 **kwargs):
        """Character tokenizer for Hugging Face transformers.

        Adapted from https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-hf/blob/main/tokenization_hyena.py
        Args:
            model_max_length (int): Model maximum sequence length.
            characters (Sequence[str]): List of desired characters. Any character which
                is not included in this list will be replaced by a special token called
                [UNK] with id=6. Following is a list of the special tokens with
                their corresponding ids:
                    "[CLS]": 0
                    "[SEP]": 1
                    "[BOS]": 2
                    "[MASK]": 3
                    "[PAD]": 4
                    "[RESERVED]": 5
                    "[UNK]": 6
                an id (starting at 7) will be assigned to each character.
            complement_map (Optional[Dict[str, str]]): Dictionary with string complements for each character.
        """
        if complement_map is None:
            complement_map = {"A": "T", "C": "G", "G": "C", "T": "A", "N": "N"}
        self.characters = characters
        self.model_max_length = model_max_length

        self._vocab_str_to_int = {
            "[CLS]": 0,
            "[SEP]": 1,
            "[BOS]": 2,
            "[MASK]": 3,
            "[PAD]": 4,
            "[RESERVED]": 5,
            "[UNK]": 6,
            **{ch: i + 7 for i, ch in enumerate(self.characters)},
        }
        self._vocab_int_to_str = {v: k for k, v in self._vocab_str_to_int.items()}
        add_prefix_space = kwargs.pop("add_prefix_space", False)
        padding_side = kwargs.pop("padding_side", "left")

        self._complement_map = {}
        for k, v in self._vocab_str_to_int.items():
            complement_id = self._vocab_str_to_int[complement_map[k]] if k in complement_map.keys() else v
            self._complement_map[self._vocab_str_to_int[k]] = complement_id

        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            unk_token=unk_token,
            add_prefix_space=add_prefix_space,
            model_max_length=model_max_length,
            padding_side=padding_side,
            **kwargs,
        )

    @property
    def vocab_size(self) -> int:
        return len(self._vocab_str_to_int)

    @property
    def complement_map(self) -> Dict[int, int]:
        return self._complement_map

    def _tokenize(self, text: str, **kwargs) -> List[str]:
        return list(text.upper())  # Convert all base pairs to uppercase

    def _convert_token_to_id(self, token: str) -> int:
        return self._vocab_str_to_int.get(token, self._vocab_str_to_int["[UNK]"])

    def _convert_id_to_token(self, index: int) -> str:
        return self._vocab_int_to_str[index]

    def convert_tokens_to_string(self, tokens):
        return "".join(tokens)  # Note: this operation has lost info about which base pairs were originally lowercase

    def get_special_tokens_mask(
        self,
        token_ids_0: List[int],
        token_ids_1: Optional[List[int]] = None,
        already_has_special_tokens: bool = False,
    ) -> List[int]:
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0,
                token_ids_1=token_ids_1,
                already_has_special_tokens=True,
            )

        result = ([0] * len(token_ids_0)) + [1]
        if token_ids_1 is not None:
            result += ([0] * len(token_ids_1)) + [1]
        return result

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        sep = [self.sep_token_id]
        # cls = [self.cls_token_id]
        result = token_ids_0 + sep
        if token_ids_1 is not None:
            result += token_ids_1 + sep
        return result

    def get_vocab(self) -> Dict[str, int]:
        return self._vocab_str_to_int

    # Fixed vocabulary with no vocab file
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple:
        return ()