File size: 2,128 Bytes
86a8034 0e6584b 86a8034 0e6584b 86a8034 0e6584b 86a8034 0e6584b 86a8034 0e6584b 86a8034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- openslr
metrics:
- wer
model-index:
- name: wav2vec2-telugu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: openslr
type: openslr
config: SLR66
split: train
args: SLR66
metrics:
- name: Wer
type: wer
value: 0.2884547694473777
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-telugu
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the openslr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2982
- Wer: 0.2885
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.6905 | 3.84 | 400 | 0.7109 | 0.7800 |
| 0.4532 | 7.69 | 800 | 0.2972 | 0.3977 |
| 0.1957 | 11.54 | 1200 | 0.2907 | 0.3522 |
| 0.1284 | 15.38 | 1600 | 0.3117 | 0.3317 |
| 0.0979 | 19.23 | 2000 | 0.3000 | 0.3353 |
| 0.0749 | 23.08 | 2400 | 0.2823 | 0.3045 |
| 0.0584 | 26.92 | 2800 | 0.2982 | 0.2885 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.2
|