krishnapal2308's picture
krishnapal2308/mistral-instruct-7b-finetuned-sroie
c1ccae4 verified
|
raw
history blame
2.06 kB
---
base_model: mistralai/Mistral-7B-Instruct-v0.1
datasets:
- generator
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: mistral-instruct-7b-finetuned-sroie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/krishnapal-exl/huggingface/runs/cu7whasc)
# mistral-instruct-7b-finetuned-sroie
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7668
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 120
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4458 | 0.4848 | 20 | 1.3313 |
| 1.1796 | 0.9697 | 40 | 1.1143 |
| 1.0555 | 1.4545 | 60 | 0.9733 |
| 0.9514 | 1.9394 | 80 | 0.8829 |
| 0.8599 | 2.4242 | 100 | 0.8150 |
| 0.857 | 2.9091 | 120 | 0.7668 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1