File size: 9,630 Bytes
af89e10
fb82732
 
 
 
 
 
94a263a
 
af89e10
fb82732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d0854
fb82732
 
 
 
 
 
af89e10
 
fb82732
45d0854
fb82732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc4d91
fb82732
94a263a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af89e10
94a263a
fbc4d91
 
 
 
 
 
 
 
4629fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a263a
fbc4d91
45d0854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286d8f1
 
 
 
 
 
 
45d0854
 
 
 
286d8f1
45d0854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb82732
af89e10
 
 
 
 
 
 
 
 
 
45d0854
af89e10
 
 
 
 
4dac7bb
 
af89e10
 
4dac7bb
 
af89e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286d8f1
fb82732
af89e10
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import json
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
from transformers.models.clip.modeling_clip import _get_vector_norm
import torch
import numpy as np
import platform
import sys
import os

processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text="two cats on a pink blanket", images=image, return_tensors="pt", padding="max_length", truncation=True)
np_inputs = {k: v.numpy() for k, v in inputs.data.items()}

class VisionModel(torch.nn.Module):
    def __init__(self, model):
        super(VisionModel, self).__init__()
        self.model = model

    def forward(self, x):
        model = self.model
        vision_outputs = model.vision_model.forward(x)
        pooled_output = vision_outputs.pooler_output
        image_features = self.model.visual_projection(pooled_output)
        image_features = image_features / _get_vector_norm(image_features)
        return image_features

    def eval(self):
        self.model.eval()
        self.model.vision_model.eval()
        self.model.visual_projection.eval()
        return super().eval()

class TextModel(torch.nn.Module):
    def __init__(self, model):
        super(TextModel, self).__init__()
        self.model = model

    def forward(self, input_ids, attention_mask):
        model = self.model
        text_outputs = model.text_model.forward(input_ids, attention_mask)
        pooled_output = text_outputs.pooler_output
        text_features = self.model.text_projection(pooled_output)
        text_features = text_features / _get_vector_norm(text_features)
        return text_features

    def eval(self):
        self.model.eval()
        self.model.text_model.eval()
        self.model.text_projection.eval()
        return super().eval()

torch.set_grad_enabled(False)
ptmodel = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")

with torch.no_grad():
    vision = VisionModel(ptmodel)
    vision.eval()
    traced_vision_model = torch.jit.trace(vision, inputs.data['pixel_values'])

    text = TextModel(ptmodel)
    text.eval()
    traced_text_model = torch.jit.trace(text, (inputs.data['input_ids'], inputs.data['attention_mask']))

def convert_coreml():
    import coremltools as ct
    coreml_model = ct.convert(traced_vision_model, inputs=[ct.TensorType(shape=inputs.data['pixel_values'].shape)])
    coreml_model.save('vision.mlpackage')

    coreml_model = ct.convert(traced_text_model, inputs=[ct.TensorType(shape=inputs.data['input_ids'].shape), ct.TensorType(shape=inputs.data['attention_mask'].shape)])
    coreml_model.save('text.mlpackage')

# convert_coreml()

def infer_coreml():
    import coremltools as ct
    coreml_vision_model = ct.models.MLModel('vision.mlpackage')
    coreml_text_model = ct.models.MLModel('text.mlpackage')

    vision_predictions = coreml_vision_model.predict({'x': np_inputs['pixel_values']})
    text_predictions = coreml_text_model.predict({'input_ids_1': np_inputs['input_ids'].astype(np.float32), 'attention_mask_1': np_inputs['attention_mask'].astype(np.float32)})

    image_embeds = vision_predictions['var_877']
    text_embeds = text_predictions['var_1050']

    # Compute logits
    logits_per_text = text_embeds @ image_embeds.T


    print("similarity:", logits_per_text.item())

def convert_onnx():
    torch.onnx.export(traced_vision_model, inputs.data['pixel_values'], "vision.onnx")
    torch.onnx.export(traced_text_model, (inputs.data['input_ids'], inputs.data['input_ids']), "text.onnx")

# convert_onnx()

def infer_onnx():
    import onnxruntime as ort

    providers: list[str] = []
    if sys.platform == "darwin":
        providers.append("CoreMLExecutionProvider")

    if ("linux" in sys.platform or "win" in sys.platform) and (
        platform.machine() == "x86_64" or platform.machine() == "AMD64"
    ):
        providers.append(("CUDAExecutionProvider", {"device_id": 0}))

    providers.append("CPUExecutionProvider")

    vision_session = ort.InferenceSession("vision.onnx", providers=providers)
    text_session = ort.InferenceSession("text.onnx", providers=providers)

    vision_inputs = {vision_session.get_inputs()[0].name: np_inputs['pixel_values']}
    text_inputs = {
        text_session.get_inputs()[0].name: np_inputs['input_ids'],
        text_session.get_inputs()[1].name: np_inputs['attention_mask']
    }

    vision_predictions = vision_session.run(None, vision_inputs)
    text_predictions = text_session.run(None, text_inputs)

    image_embeds = vision_predictions[0]
    text_embeds = text_predictions[0]

    logits_per_text = text_embeds @ image_embeds.T

    print("similarity:", logits_per_text.item())

# infer_onnx()

def convert_openvino():
    import openvino as ov
    ov_vision_model = ov.convert_model(traced_vision_model, example_input=inputs.data['pixel_values'])
    ov.save_model(ov_vision_model, "openvino/vision.xml")

    ov_text_model = ov.convert_model(traced_text_model, example_input=(inputs.data['input_ids'], inputs.data['attention_mask']))
    ov.save_model(ov_text_model, "openvino/text.xml")

# convert_openvino()

def infer_openvino():
    import openvino as ov
    ov_vision_model = ov.Core().read_model("openvino/vision.xml")
    ov_text_model = ov.Core().read_model("openvino/text.xml")

    compiled_vision_model = ov.Core().compile_model(ov_vision_model, "CPU")
    compiled_text_model = ov.Core().compile_model(ov_text_model, "CPU")

    vision_predictions = compiled_vision_model(inputs.data['pixel_values'])
    text_predictions = compiled_text_model((inputs.data['input_ids'], inputs.data['attention_mask']))

    image_embeds = vision_predictions[0]
    text_embeds = text_predictions[0]

    logits_per_text = text_embeds @ image_embeds.T

    print("similarity:", logits_per_text.item())

# infer_openvino()

def export_openvino_int8():
    import openvino as ov
    import text_calibration
    import image_calibration
    import nncf

    ov_vision_model = ov.Core().read_model("openvino/vision.xml")
    ov_text_model = ov.Core().read_model("openvino/text.xml")

    vision_calibration_dataset = image_calibration.get_image_calibration_data()
    text_calibration_dataset = text_calibration.get_text_calibration_data()

    vision_dataset = nncf.Dataset(vision_calibration_dataset)
    text_dataset = nncf.Dataset(text_calibration_dataset)

    quantized_vision_model = nncf.quantize(ov_vision_model, vision_dataset, preset=nncf.QuantizationPreset.MIXED, model_type=nncf.ModelType.TRANSFORMER,
        # advanced_parameters=nncf.AdvancedQuantizationParameters(disable_bias_correction=True)
    )

    quantized_text_model = nncf.quantize(ov_text_model, text_dataset, preset=nncf.QuantizationPreset.MIXED, model_type=nncf.ModelType.TRANSFORMER,
        # advanced_parameters=nncf.AdvancedQuantizationParameters(disable_bias_correction=True)
    )

    ov.save_model(quantized_vision_model, "openvino/vision_int8.xml")
    ov.save_model(quantized_text_model, "openvino/text_int8.xml")

export_openvino_int8()

def infer_openvino_int8():
    import openvino as ov
    ov_vision_model = ov.Core().read_model("openvino/vision_int8.xml")
    ov_text_model = ov.Core().read_model("openvino/text_int8.xml")

    compiled_vision_model = ov.Core().compile_model(ov_vision_model, "CPU")
    compiled_text_model = ov.Core().compile_model(ov_text_model, "CPU")

    vision_predictions = compiled_vision_model(inputs.data['pixel_values'])
    text_predictions = compiled_text_model((inputs.data['input_ids'], inputs.data['attention_mask']))

    image_embeds = vision_predictions[0]
    text_embeds = text_predictions[0]

    logits_per_text = text_embeds @ image_embeds.T

    print("similarity:", logits_per_text.item())

infer_openvino_int8()

def export_ncnn():
    traced_vision_model.save(f"vision.pt")
    input_shape_str = json.dumps(list(inputs.data['pixel_values'].shape)).replace(" ", "")
    os.system(f"pnnx vision.pt 'inputshape={input_shape_str}'")

    traced_text_model.save(f"text.pt")
    input_shape_str = json.dumps(list(inputs.data['input_ids'].shape)).replace(" ", "")
    input_shape2_str = json.dumps(list(inputs.data['attention_mask'].shape)).replace(" ", "")
    os.system(f"pnnx text.pt 'inputshape={input_shape_str}i64,{input_shape2_str}i64'")

# export_ncnn()

def infer_ncnn():
    import ncnn
    
    vision_extractor = ncnn.Net()
    vision_extractor.load_param("vision.ncnn.param")
    vision_extractor.load_model("vision.ncnn.bin")

    text_extractor = ncnn.Net()
    text_extractor.load_param("text.ncnn.param")
    text_extractor.load_model("text.ncnn.bin")

    vision_mat = ncnn.Mat(inputs.data['pixel_values'].numpy())
    text_input_ids_mat = ncnn.Mat(inputs.data['input_ids'].numpy())
    text_attention_mask_mat = ncnn.Mat(inputs.data['attention_mask'].numpy())

    vision_extractor.input(vision_extractor.input_names()[0], vision_mat)
    text_extractor.input(text_extractor.input_names()[0], text_input_ids_mat)
    text_extractor.input(text_extractor.input_names()[1], text_attention_mask_mat)

    image_embeds = vision_extractor.extract("out0")
    text_embeds = text_extractor.extract("out0")

    logits_per_text = text_embeds @ image_embeds.T

    print("similarity:", logits_per_text[0])

# infer_ncnn()

def infer_torch():
    outputs = ptmodel(**inputs)
    logits_per_image = outputs.logits_per_image # this is the image-text similarity score
    probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
    print(probs)