File size: 13,672 Bytes
8069744
f2eb7f2
8069744
 
 
 
 
 
 
 
 
 
 
 
aaccb5f
 
 
 
 
 
 
 
6252154
aaccb5f
 
f2eb7f2
 
 
 
 
 
 
aaccb5f
8069744
 
 
aaccb5f
 
 
 
8069744
 
 
aaccb5f
 
 
 
8069744
3d49cbd
 
 
 
 
 
aaccb5f
 
 
 
 
 
 
 
 
 
3d49cbd
8069744
 
 
 
 
 
 
aaccb5f
 
8069744
 
 
aaccb5f
8069744
 
 
 
 
aaccb5f
 
 
 
 
 
 
 
 
3d49cbd
8069744
 
 
 
 
 
 
 
 
3d49cbd
f2eb7f2
 
 
 
 
 
 
 
3d49cbd
 
 
f2eb7f2
 
 
 
 
 
 
 
 
 
 
9814043
3d49cbd
 
f2eb7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8069744
 
f2eb7f2
8069744
 
 
 
 
 
 
f2eb7f2
a7e3c07
8069744
 
f2eb7f2
8069744
 
 
a7e3c07
8069744
 
 
 
 
 
 
 
 
 
 
 
f2eb7f2
8069744
 
 
 
 
f2eb7f2
3d49cbd
f2eb7f2
3d49cbd
 
 
 
 
986454a
f2eb7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
986454a
74437d7
f2eb7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa56a4f
 
f2eb7f2
 
8069744
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import requests
from typing import Union, Optional, Dict

import torch
import numpy as np

from transformers.pipelines.audio_utils import ffmpeg_read
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
from transformers.utils import is_torchaudio_available
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from pyannote.audio import Pipeline
from pyannote.core.annotation import Annotation
from punctuators.models import PunctCapSegModelONNX
from diarizers import SegmentationModel


class Punctuator:

    ja_punctuations = ["!", "?", "、", "。"]

    def __init__(self, model: str = "1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase"):
        self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)

    def punctuate(self, text: str) -> str:
        if any(p in text for p in self.ja_punctuations):
            return text
        punctuated = "".join(self.punctuation_model.infer([text])[0])
        if 'unk' in punctuated.lower():
            return text
        return punctuated


class SpeakerDiarization:

    def __init__(self,
                 device: torch.device,
                 model_id: str = "pyannote/speaker-diarization-3.1",
                 model_id_diarizers: Optional[str] = None):
        self.device = device
        self.pipeline = Pipeline.from_pretrained(model_id)
        self.pipeline = self.pipeline.to(self.device)
        if model_id_diarizers:
            self.pipeline._segmentation.model = SegmentationModel().from_pretrained(
                model_id_diarizers
            ).to_pyannote_model().to(self.device)

    def __call__(self,
                 audio: Union[torch.Tensor, np.ndarray],
                 sampling_rate: int,
                 num_speakers: Optional[int] = None,
                 min_speakers: Optional[int] = None,
                 max_speakers: Optional[int] = None) -> Annotation:
        if sampling_rate is None:
            raise ValueError("sampling_rate must be provided")
        if type(audio) is np.ndarray:
            audio = torch.as_tensor(audio)
        audio = torch.as_tensor(audio, dtype=torch.float32)
        if len(audio.shape) == 1:
            audio = audio.unsqueeze(0)
        elif len(audio.shape) > 3:
            raise ValueError("audio shape must be (channel, time)")
        audio = {"waveform": audio.to(self.device), "sample_rate": sampling_rate}
        output = self.pipeline(audio, num_speakers=num_speakers, min_speakers=min_speakers, max_speakers=max_speakers)
        return output


class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):

    def __init__(self,
                 model: "PreTrainedModel",
                 model_pyannote: str = "pyannote/speaker-diarization-3.1",
                 model_diarizers: Optional[str] = "diarizers-community/speaker-segmentation-fine-tuned-callhome-jpn",
                 feature_extractor: Union["SequenceFeatureExtractor", str] = None,
                 tokenizer: Optional[PreTrainedTokenizer] = None,
                 device: Union[int, "torch.device"] = None,
                 device_pyannote: Union[int, "torch.device"] = None,
                 torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
                 **kwargs):
        self.type = "seq2seq_whisper"
        if device is None:
            device = "cpu"
        if device_pyannote is None:
            device_pyannote = device
        if type(device_pyannote) is str:
            device_pyannote = torch.device(device_pyannote)
        self.model_speaker_diarization = SpeakerDiarization(
            device=device_pyannote,
            model_id=model_pyannote,
            model_id_diarizers=model_diarizers
        )
        self.punctuator = None
        super().__init__(
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            device=device,
            torch_dtype=torch_dtype,
            **kwargs
        )

    def _sanitize_parameters(self,
                             chunk_length_s: Optional[int] = None,
                             stride_length_s: Optional[int] = None,
                             generate_kwargs: Optional[Dict] = None,
                             max_new_tokens: Optional[int] = None,
                             add_punctuation: bool = False,
                             return_unique_speaker: bool = True,
                             add_silence_end: Optional[float] = None,
                             add_silence_start: Optional[float] = None,
                             num_speakers: Optional[int] = None,
                             min_speakers: Optional[int] = None,
                             max_speakers: Optional[int] = None):
        preprocess_params = {
            "chunk_length_s": chunk_length_s,
            "stride_length_s": stride_length_s,
            "add_silence_end": add_silence_end,
            "add_silence_start": add_silence_start,
            "num_speakers": num_speakers,
            "min_speakers": min_speakers,
            "max_speakers": max_speakers,
        }
        postprocess_params = {"add_punctuation": add_punctuation, "return_timestamps": True, "return_language": False}
        forward_params = {} if generate_kwargs is None else generate_kwargs
        forward_params.update({"max_new_tokens": max_new_tokens, "return_timestamps": True, "language": "ja", "task": "transcribe"})
        return preprocess_params, forward_params, postprocess_params

    def preprocess(self,
                   inputs,
                   chunk_length_s: Optional[int] = None,
                   stride_length_s: Optional[int] = None,
                   add_silence_end: Optional[float] = None,
                   add_silence_start: Optional[float] = None,
                   num_speakers: Optional[int] = None,
                   min_speakers: Optional[int] = None,
                   max_speakers: Optional[int] = None):

        def _pad_audio_array(_audio):
            if add_silence_start:
                _audio = np.concatenate([np.zeros(int(self.feature_extractor.sampling_rate * add_silence_start)), _audio])
            if add_silence_end:
                _audio = np.concatenate([_audio, np.zeros(int(self.feature_extractor.sampling_rate * add_silence_end))])
            return _audio

        # load file
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()
        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
        if isinstance(inputs, dict):
            # Accepting `"array"` which is the key defined in `datasets` for better integration
            if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
                raise ValueError(
                    "When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
                    '"array" key containing the numpy array representing the audio and a "sampling_rate" key, '
                    "containing the sampling_rate associated with that array"
                )
            in_sampling_rate = inputs.pop("sampling_rate")
            inputs = inputs.pop("array", inputs.pop("raw", None))
            if in_sampling_rate != self.feature_extractor.sampling_rate:
                if is_torchaudio_available():
                    from torchaudio import functional as F
                else:
                    raise ImportError(
                        "torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
                        "The torchaudio package can be installed through: `pip install torchaudio`."
                    )
                inputs = F.resample(
                    torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
                ).numpy()

        # validate audio array
        if not isinstance(inputs, np.ndarray):
            raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")

        # diarization
        sd = self.model_speaker_diarization(
            inputs,
            num_speakers=num_speakers,
            min_speakers=min_speakers,
            max_speakers=max_speakers,
            sampling_rate=self.feature_extractor.sampling_rate
        )

        # loop over audio chunks and speakers
        labels = list(sd.labels())
        for n, s in enumerate(labels):
            timelines = list(sd.label_timeline(s))
            for m, i in enumerate(timelines):
                start = int(i.start * self.feature_extractor.sampling_rate)
                end = int(i.end * self.feature_extractor.sampling_rate)
                audio_array = _pad_audio_array(inputs[start: end])

                if chunk_length_s is not None:
                    stride_length_s = chunk_length_s / 6 if stride_length_s is None else stride_length_s
                    stride_length_s = [stride_length_s, stride_length_s] if isinstance(stride_length_s, (int, float)) else stride_length_s
                    align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
                    chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
                    stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
                    stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
                    if chunk_len < stride_left + stride_right:
                        raise ValueError("Chunk length must be superior to stride length")
                    for item in chunk_iter(
                            audio_array, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
                    ):
                        item["speaker_id"] = s
                        item["speaker_span"] = [i.start, i.end]
                        item["is_last"] = m == len(timelines) - 1 and n == len(labels) - 1 and item["is_last"]
                        yield item
                else:
                    if audio_array.shape[0] > self.feature_extractor.n_samples:
                        processed = self.feature_extractor(
                            audio_array,
                            sampling_rate=self.feature_extractor.sampling_rate,
                            truncation=False,
                            padding="longest",
                            return_tensors="pt",
                        )
                    else:
                        processed = self.feature_extractor(
                            audio_array,
                            sampling_rate=self.feature_extractor.sampling_rate,
                            return_tensors="pt"
                        )
                    if self.torch_dtype is not None:
                        processed = processed.to(dtype=self.torch_dtype)
                    processed["speaker_id"] = s
                    processed["speaker_span"] = [i.start, i.end]
                    processed["is_last"] = m == len(timelines) - 1 and n == len(labels) - 1
                    yield processed

    def _forward(self, model_inputs, **generate_kwargs):
        generate_kwargs["attention_mask"] = model_inputs.pop("attention_mask", None)
        generate_kwargs["input_features"] = model_inputs.pop("input_features")
        tokens = self.model.generate(**generate_kwargs)
        return {"tokens": tokens, **model_inputs}

    def postprocess(self, model_outputs, **postprocess_parameters):
        if postprocess_parameters["add_punctuation"] and self.punctuator is None:
            self.punctuator = Punctuator()
        outputs = {"chunks": []}
        for o in model_outputs:
            text, chunks = self.tokenizer._decode_asr(
                [o],
                return_language=postprocess_parameters["return_language"],
                return_timestamps=postprocess_parameters["return_timestamps"],
                time_precision=self.feature_extractor.chunk_length / self.model.config.max_source_positions,
            )
            start, end = o["speaker_span"]
            new_chunk = []
            for c in chunks["chunks"]:
                c["timestamp"] = [round(c["timestamp"][0] + start, 2), round(c["timestamp"][0] + end, 2)]
                c["speaker_id"] = o["speaker_id"]
                new_chunk.append(c)
            outputs["chunks"] += new_chunk
        outputs["speaker_ids"] = sorted(set([o["speaker_id"] for o in outputs["chunks"]]))
        for s in outputs["speaker_ids"]:
            outputs[f"chunks/{s}"] = sorted([o for o in outputs["chunks"] if o["speaker_id"] == s], key=lambda x: x["timestamp"][0])
            outputs[f"text/{s}"] = "".join([i["text"] for i in outputs[f"chunks/{s}"]])
            if postprocess_parameters["add_punctuation"]:
                outputs[f"text/{s}"] = self.punctuator.punctuate(outputs[f"text/{s}"])
        return outputs