Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Eval Results
Inference Endpoints
File size: 766 Bytes
87ac8c4
e1c7798
299760a
e1c7798
 
 
 
 
c814d59
e1c7798
 
 
 
 
a345421
e1c7798
c814d59
e1c7798
 
 
ada231b
 
e1c7798
 
 
 
 
 
ada231b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from time import time
from pprint import pprint
import torch
from transformers import pipeline
from datasets import load_dataset

# config
generate_kwargs = {"language": "japanese", "task": "transcribe"}
model_id = "kotoba-tech/kotoba-whisper-v1.0"

# load model
pipe = pipeline(
    "automatic-speech-recognition",
    model=model_id,
    torch_dtype=torch.float32
)

test_audio = [
    "kotoba-whisper-eval/audio/manzai1.wav",
    "kotoba-whisper-eval/audio/manzai2.wav",
    "kotoba-whisper-eval/audio/manzai3.wav",
    "kotoba-whisper-eval/audio/long_interview_1.wav",
]
elapsed = {}
for x in test_audio:
    start = time()
    transcription = pipe(x, generate_kwargs=generate_kwargs)
    elapsed[x] = time() - start
    pprint(transcription)
    pprint(elapsed)