File size: 4,801 Bytes
abf6bf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from torch import nn
import torch.nn.functional as F

from vocalsplit.lib import spec_utils


class Conv2DBNActiv(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
        super(Conv2DBNActiv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                nin, nout,
                kernel_size=ksize,
                stride=stride,
                padding=pad,
                dilation=dilation,
                bias=False
            ),
            nn.BatchNorm2d(nout),
            activ()
        )

    def __call__(self, x):
        return self.conv(x)


# class SeperableConv2DBNActiv(nn.Module):

#     def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
#         super(SeperableConv2DBNActiv, self).__init__()
#         self.conv = nn.Sequential(
#             nn.Conv2d(
#                 nin, nin,
#                 kernel_size=ksize,
#                 stride=stride,
#                 padding=pad,
#                 dilation=dilation,
#                 groups=nin,
#                 bias=False
#             ),
#             nn.Conv2d(
#                 nin, nout,
#                 kernel_size=1,
#                 bias=False
#             ),
#             nn.BatchNorm2d(nout),
#             activ()
#         )

#     def __call__(self, x):
#         return self.conv(x)


class Encoder(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
        super(Encoder, self).__init__()
        self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
        self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)

    def __call__(self, x):
        h = self.conv1(x)
        h = self.conv2(h)

        return h


class Decoder(nn.Module):

    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
        super(Decoder, self).__init__()
        self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
        # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
        self.dropout = nn.Dropout2d(0.1) if dropout else None

    def __call__(self, x, skip=None):
        x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)

        if skip is not None:
            skip = spec_utils.crop_center(skip, x)
            x = torch.cat([x, skip], dim=1)

        h = self.conv1(x)
        # h = self.conv2(h)

        if self.dropout is not None:
            h = self.dropout(h)

        return h


class ASPPModule(nn.Module):

    def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
        super(ASPPModule, self).__init__()
        self.conv1 = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, None)),
            Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
        )
        self.conv2 = Conv2DBNActiv(
            nin, nout, 1, 1, 0, activ=activ
        )
        self.conv3 = Conv2DBNActiv(
            nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
        )
        self.conv4 = Conv2DBNActiv(
            nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
        )
        self.conv5 = Conv2DBNActiv(
            nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
        )
        self.bottleneck = Conv2DBNActiv(
            nout * 5, nout, 1, 1, 0, activ=activ
        )
        self.dropout = nn.Dropout2d(0.1) if dropout else None

    def forward(self, x):
        _, _, h, w = x.size()
        feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
        feat2 = self.conv2(x)
        feat3 = self.conv3(x)
        feat4 = self.conv4(x)
        feat5 = self.conv5(x)
        out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
        out = self.bottleneck(out)

        if self.dropout is not None:
            out = self.dropout(out)

        return out


class LSTMModule(nn.Module):

    def __init__(self, nin_conv, nin_lstm, nout_lstm):
        super(LSTMModule, self).__init__()
        self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
        self.lstm = nn.LSTM(
            input_size=nin_lstm,
            hidden_size=nout_lstm // 2,
            bidirectional=True
        )
        self.dense = nn.Sequential(
            nn.Linear(nout_lstm, nin_lstm),
            nn.BatchNorm1d(nin_lstm),
            nn.ReLU()
        )

    def forward(self, x):
        N, _, nbins, nframes = x.size()
        h = self.conv(x)[:, 0]  # N, nbins, nframes
        h = h.permute(2, 0, 1)  # nframes, N, nbins
        h, _ = self.lstm(h)
        h = self.dense(h.reshape(-1, h.size()[-1]))  # nframes * N, nbins
        h = h.reshape(nframes, N, 1, nbins)
        h = h.permute(1, 2, 3, 0)

        return h