|
--- |
|
license: cc-by-4.0 |
|
--- |
|
|
|
|
|
## ESPnet2 ENH model |
|
|
|
### `kohei0209/tfgridnet_urgent25` |
|
|
|
This model was trained by Kohei Saijo using the [urgent25](https://github.com/kohei0209/espnet/tree/urgent2025/egs2/urgent25/enh1) recipe based on [espnet](https://github.com/espnet/espnet/). |
|
|
|
Note that **the recipe has not merged to the ESPnet main branch yet and the code is in the [fork repository](https://github.com/kohei0209/espnet/tree/urgent2025/egs2/urgent25/enh1)**. |
|
|
|
This model is provided as a pre-trained baseline model for the [URGENT 2025 Challenge](https://urgent-challenge.github.io/urgent2025). |
|
|
|
### Demo: How to use in ESPnet2 |
|
|
|
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) |
|
if you haven't done that already. |
|
|
|
<!-- |
|
```bash |
|
cd espnet |
|
pip install -e . |
|
cd egs2/urgent25/enh1 |
|
./run.sh --skip_data_prep false --skip_train true --is_tse_task true --download_model kohei0209/tfgridnet_urgent25 |
|
``` |
|
|
|
To use the model in the Python interface, you could use the following code: |
|
> Please make sure you are using the latest ESPnet by installing from the source: |
|
> ``` |
|
> python -m pip install git+https://github.com/espnet/espnet |
|
> ``` |
|
--> |
|
|
|
```python |
|
import soundfile as sf |
|
from espnet2.bin.enh_inference import SeparateSpeech |
|
# For model downloading + loading |
|
model = SeparateSpeech.from_pretrained( |
|
model_tag="kohei0209/tfgridnet_urgent25", |
|
normalize_output_wav=True, |
|
device="cuda", |
|
) |
|
# For loading a downloaded model |
|
# model = SeparateSpeech( |
|
# train_config="exp/xxx/config.yaml", |
|
# model_file="exp/xx/valid.loss.best.pth", |
|
# normalize_output_wav=True, |
|
# device="cuda", |
|
# ) |
|
audio, fs = sf.read("/path/to/noisy/utt1.flac") |
|
enhanced = model(audio[None, :], fs=fs)[0] |
|
``` |
|
|
|
|
|
## ENH config |
|
|
|
<details><summary>expand</summary> |
|
|
|
``` |
|
config: conf/tuning/train_enh_tfgridnet_dm.yaml |
|
print_config: false |
|
log_level: INFO |
|
drop_last_iter: false |
|
dry_run: false |
|
iterator_type: chunk |
|
valid_iterator_type: null |
|
output_dir: exp/enh_train_enh_tfgridnet_dm_raw |
|
ngpu: 1 |
|
seed: 0 |
|
num_workers: 4 |
|
num_att_plot: 3 |
|
dist_backend: nccl |
|
dist_init_method: env:// |
|
dist_world_size: null |
|
dist_rank: null |
|
local_rank: 0 |
|
dist_master_addr: null |
|
dist_master_port: null |
|
dist_launcher: null |
|
multiprocessing_distributed: false |
|
unused_parameters: false |
|
sharded_ddp: false |
|
use_deepspeed: false |
|
deepspeed_config: null |
|
cudnn_enabled: true |
|
cudnn_benchmark: false |
|
cudnn_deterministic: true |
|
use_tf32: false |
|
collect_stats: false |
|
write_collected_feats: false |
|
max_epoch: 30 |
|
patience: 5 |
|
val_scheduler_criterion: |
|
- valid |
|
- loss |
|
early_stopping_criterion: |
|
- valid |
|
- loss |
|
- min |
|
best_model_criterion: |
|
- - valid |
|
- loss |
|
- min |
|
keep_nbest_models: 5 |
|
nbest_averaging_interval: 0 |
|
grad_clip: 1.0 |
|
grad_clip_type: 2.0 |
|
grad_noise: false |
|
accum_grad: 1 |
|
no_forward_run: false |
|
resume: true |
|
train_dtype: float32 |
|
use_amp: false |
|
log_interval: null |
|
use_matplotlib: true |
|
use_tensorboard: true |
|
create_graph_in_tensorboard: false |
|
use_wandb: false |
|
wandb_project: null |
|
wandb_id: null |
|
wandb_entity: null |
|
wandb_name: null |
|
wandb_model_log_interval: -1 |
|
detect_anomaly: false |
|
use_adapter: false |
|
adapter: lora |
|
save_strategy: all |
|
adapter_conf: {} |
|
pretrain_path: null |
|
init_param: |
|
- exp/enh_train_enh_tfgridnet_raw_1stchallenge/21epoch.pth |
|
ignore_init_mismatch: false |
|
freeze_param: [] |
|
num_iters_per_epoch: 4000 |
|
batch_size: 2 |
|
valid_batch_size: 4 |
|
batch_bins: 1000000 |
|
valid_batch_bins: null |
|
category_sample_size: 10 |
|
train_shape_file: |
|
- exp/enh_stats_16k/train/speech_mix_shape |
|
- exp/enh_stats_16k/train/speech_ref1_shape |
|
valid_shape_file: |
|
- exp/enh_stats_16k/valid/speech_mix_shape |
|
- exp/enh_stats_16k/valid/speech_ref1_shape |
|
batch_type: folded |
|
valid_batch_type: null |
|
fold_length: |
|
- 80000 |
|
- 80000 |
|
sort_in_batch: descending |
|
shuffle_within_batch: false |
|
sort_batch: descending |
|
multiple_iterator: false |
|
chunk_length: 200 |
|
chunk_shift_ratio: 0.5 |
|
num_cache_chunks: 128 |
|
chunk_excluded_key_prefixes: [] |
|
chunk_default_fs: 50 |
|
chunk_max_abs_length: 144000 |
|
chunk_discard_short_samples: true |
|
train_data_path_and_name_and_type: |
|
- - dump/raw/speech_train_track1/wav.scp |
|
- speech_mix |
|
- sound |
|
- - dump/raw/speech_train_track1/spk1.scp |
|
- speech_ref1 |
|
- sound |
|
- - dump/raw/speech_train_track1/utt2category |
|
- category |
|
- text |
|
- - dump/raw/speech_train_track1/utt2fs |
|
- fs |
|
- text_int |
|
valid_data_path_and_name_and_type: |
|
- - dump/raw/validation/wav.scp |
|
- speech_mix |
|
- sound |
|
- - dump/raw/validation/spk1.scp |
|
- speech_ref1 |
|
- sound |
|
- - dump/raw/validation/utt2category |
|
- category |
|
- text |
|
- - dump/raw/validation/utt2fs |
|
- fs |
|
- text_int |
|
multi_task_dataset: false |
|
allow_variable_data_keys: false |
|
max_cache_size: 0.0 |
|
max_cache_fd: 32 |
|
allow_multi_rates: true |
|
valid_max_cache_size: null |
|
exclude_weight_decay: false |
|
exclude_weight_decay_conf: {} |
|
optim: adam |
|
optim_conf: |
|
lr: 0.0001 |
|
eps: 1.0e-08 |
|
weight_decay: 1.0e-05 |
|
scheduler: warmupsteplr |
|
scheduler_conf: |
|
step_size: 1 |
|
gamma: 0.98 |
|
warmup_steps: 4000 |
|
init: null |
|
model_conf: |
|
normalize_variance_per_ch: true |
|
categories: |
|
- 1ch_8000Hz |
|
- 1ch_16000Hz |
|
- 1ch_22050Hz |
|
- 1ch_24000Hz |
|
- 1ch_32000Hz |
|
- 1ch_44100Hz |
|
- 1ch_48000Hz |
|
- 1ch_8000Hz_reverb |
|
- 1ch_16000Hz_reverb |
|
- 1ch_22050Hz_reverb |
|
- 1ch_24000Hz_reverb |
|
- 1ch_32000Hz_reverb |
|
- 1ch_44100Hz_reverb |
|
- 1ch_48000Hz_reverb |
|
criterions: |
|
- name: mr_l1_tfd |
|
conf: |
|
window_sz: |
|
- 256 |
|
- 512 |
|
- 768 |
|
- 1024 |
|
hop_sz: null |
|
eps: 1.0e-08 |
|
time_domain_weight: 0.5 |
|
normalize_variance: true |
|
wrapper: fixed_order |
|
wrapper_conf: |
|
weight: 1.0 |
|
- name: si_snr |
|
conf: |
|
eps: 1.0e-07 |
|
wrapper: fixed_order |
|
wrapper_conf: |
|
weight: 0.0 |
|
speech_volume_normalize: null |
|
rir_scp: null |
|
rir_apply_prob: 1.0 |
|
noise_scp: null |
|
noise_apply_prob: 1.0 |
|
noise_db_range: '13_15' |
|
short_noise_thres: 0.5 |
|
use_reverberant_ref: false |
|
num_spk: 1 |
|
num_noise_type: 1 |
|
sample_rate: 8000 |
|
force_single_channel: false |
|
channel_reordering: false |
|
categories: [] |
|
speech_segment: null |
|
avoid_allzero_segment: true |
|
flexible_numspk: false |
|
dynamic_mixing: false |
|
utt2spk: null |
|
dynamic_mixing_gain_db: 0.0 |
|
encoder: stft |
|
encoder_conf: |
|
n_fft: 256 |
|
hop_length: 128 |
|
use_builtin_complex: true |
|
default_fs: 8000 |
|
separator: tfgridnetv3 |
|
separator_conf: |
|
n_srcs: 1 |
|
n_imics: 1 |
|
n_layers: 6 |
|
lstm_hidden_units: 200 |
|
attn_n_head: 4 |
|
attn_qk_output_channel: 2 |
|
emb_dim: 48 |
|
emb_ks: 4 |
|
emb_hs: 1 |
|
activation: prelu |
|
eps: 1.0e-05 |
|
decoder: stft |
|
decoder_conf: |
|
n_fft: 256 |
|
hop_length: 128 |
|
default_fs: 8000 |
|
mask_module: multi_mask |
|
mask_module_conf: {} |
|
preprocessor: enh |
|
preprocessor_conf: |
|
speech_volume_normalize: 0.5_1.0 |
|
rir_scp: dump/raw/rir_train.scp |
|
rir_apply_prob: 0.5 |
|
noise_scp: dump/raw/noise_train.scp |
|
noise_apply_prob: 1.0 |
|
noise_db_range: '-5_15' |
|
force_single_channel: true |
|
channel_reordering: true |
|
categories: |
|
- 1ch_8000Hz |
|
- 1ch_16000Hz |
|
- 1ch_22050Hz |
|
- 1ch_24000Hz |
|
- 1ch_32000Hz |
|
- 1ch_44100Hz |
|
- 1ch_48000Hz |
|
- 1ch_8000Hz_reverb |
|
- 1ch_16000Hz_reverb |
|
- 1ch_22050Hz_reverb |
|
- 1ch_24000Hz_reverb |
|
- 1ch_32000Hz_reverb |
|
- 1ch_44100Hz_reverb |
|
- 1ch_48000Hz_reverb |
|
data_aug_effects: |
|
- - 1.0 |
|
- bandwidth_limitation |
|
- res_type: random |
|
- - 1.0 |
|
- clipping |
|
- min_quantile: 0.1 |
|
max_quantile: 0.9 |
|
- - 1.0 |
|
- - - 0.5 |
|
- codec |
|
- format: mp3 |
|
encoder: null |
|
qscale: |
|
- 1 |
|
- 10 |
|
- - 0.5 |
|
- codec |
|
- format: ogg |
|
encoder: |
|
- vorbis |
|
- opus |
|
qscale: |
|
- -1 |
|
- 10 |
|
- - 1.0 |
|
- packet_loss |
|
- packet_duration_ms: 20 |
|
packet_loss_rate: |
|
- 0.05 |
|
- 0.25 |
|
max_continuous_packet_loss: 10 |
|
data_aug_num: |
|
- 1 |
|
- 3 |
|
data_aug_prob: 0.75 |
|
diffusion_model: null |
|
diffusion_model_conf: {} |
|
required: |
|
- output_dir |
|
version: '202409' |
|
distributed: false |
|
|
|
``` |
|
|
|
</details> |
|
|
|
|
|
### Citing ESPnet |
|
|
|
```BibTex |
|
@inproceedings{watanabe2018espnet, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
title={{ESPnet}: End-to-End Speech Processing Toolkit}, |
|
year={2018}, |
|
booktitle={Proceedings of Interspeech}, |
|
pages={2207--2211}, |
|
doi={10.21437/Interspeech.2018-1456}, |
|
url={http://dx.doi.org/10.21437/Interspeech.2018-1456} |
|
} |
|
@inproceedings{ESPnet-SE, |
|
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and |
|
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe}, |
|
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, |
|
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021}, |
|
pages = {785--792}, |
|
publisher = {{IEEE}}, |
|
year = {2021}, |
|
url = {https://doi.org/10.1109/SLT48900.2021.9383615}, |
|
doi = {10.1109/SLT48900.2021.9383615}, |
|
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200}, |
|
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |
|
|
|
or arXiv: |
|
|
|
```bibtex |
|
@misc{watanabe2018espnet, |
|
title={ESPnet: End-to-End Speech Processing Toolkit}, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
year={2018}, |
|
eprint={1804.00015}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |