File size: 10,013 Bytes
a58e3da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
---
license: cc-by-4.0
---
## ESPnet2 ENH model
### `kohei0209/tfgridnet_urgent25`
This model was trained by Kohei Saijo using the [urgent25](https://github.com/kohei0209/espnet/tree/urgent2025/egs2/urgent25/enh1) recipe based on [espnet](https://github.com/espnet/espnet/).
Note that **the recipe has not merged to the ESPnet main branch yet and the code is in the [fork repository](https://github.com/kohei0209/espnet/tree/urgent2025/egs2/urgent25/enh1)**.
This model is provided as a pre-trained baseline model for the [URGENT 2025 Challenge](https://urgent-challenge.github.io/urgent2025).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
<!--
```bash
cd espnet
pip install -e .
cd egs2/urgent25/enh1
./run.sh --skip_data_prep false --skip_train true --is_tse_task true --download_model kohei0209/tfgridnet_urgent25
```
To use the model in the Python interface, you could use the following code:
> Please make sure you are using the latest ESPnet by installing from the source:
> ```
> python -m pip install git+https://github.com/espnet/espnet
> ```
-->
```python
import soundfile as sf
from espnet2.bin.enh_inference import SeparateSpeech
# For model downloading + loading
model = SeparateSpeech.from_pretrained(
model_tag="kohei0209/tfgridnet_urgent25",
normalize_output_wav=True,
device="cuda",
)
# For loading a downloaded model
# model = SeparateSpeech(
# train_config="exp/xxx/config.yaml",
# model_file="exp/xx/valid.loss.best.pth",
# normalize_output_wav=True,
# device="cuda",
# )
audio, fs = sf.read("/path/to/noisy/utt1.flac")
enhanced = model(audio[None, :], fs=fs)[0]
```
## ENH config
<details><summary>expand</summary>
```
config: conf/tuning/train_enh_tfgridnet_dm.yaml
print_config: false
log_level: INFO
drop_last_iter: false
dry_run: false
iterator_type: chunk
valid_iterator_type: null
output_dir: exp/enh_train_enh_tfgridnet_dm_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
use_deepspeed: false
deepspeed_config: null
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
use_tf32: false
collect_stats: false
write_collected_feats: false
max_epoch: 30
patience: 5
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
use_adapter: false
adapter: lora
save_strategy: all
adapter_conf: {}
pretrain_path: null
init_param:
- exp/enh_train_enh_tfgridnet_raw_1stchallenge/21epoch.pth
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 4000
batch_size: 2
valid_batch_size: 4
batch_bins: 1000000
valid_batch_bins: null
category_sample_size: 10
train_shape_file:
- exp/enh_stats_16k/train/speech_mix_shape
- exp/enh_stats_16k/train/speech_ref1_shape
valid_shape_file:
- exp/enh_stats_16k/valid/speech_mix_shape
- exp/enh_stats_16k/valid/speech_ref1_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 200
chunk_shift_ratio: 0.5
num_cache_chunks: 128
chunk_excluded_key_prefixes: []
chunk_default_fs: 50
chunk_max_abs_length: 144000
chunk_discard_short_samples: true
train_data_path_and_name_and_type:
- - dump/raw/speech_train_track1/wav.scp
- speech_mix
- sound
- - dump/raw/speech_train_track1/spk1.scp
- speech_ref1
- sound
- - dump/raw/speech_train_track1/utt2category
- category
- text
- - dump/raw/speech_train_track1/utt2fs
- fs
- text_int
valid_data_path_and_name_and_type:
- - dump/raw/validation/wav.scp
- speech_mix
- sound
- - dump/raw/validation/spk1.scp
- speech_ref1
- sound
- - dump/raw/validation/utt2category
- category
- text
- - dump/raw/validation/utt2fs
- fs
- text_int
multi_task_dataset: false
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: true
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.0001
eps: 1.0e-08
weight_decay: 1.0e-05
scheduler: warmupsteplr
scheduler_conf:
step_size: 1
gamma: 0.98
warmup_steps: 4000
init: null
model_conf:
normalize_variance_per_ch: true
categories:
- 1ch_8000Hz
- 1ch_16000Hz
- 1ch_22050Hz
- 1ch_24000Hz
- 1ch_32000Hz
- 1ch_44100Hz
- 1ch_48000Hz
- 1ch_8000Hz_reverb
- 1ch_16000Hz_reverb
- 1ch_22050Hz_reverb
- 1ch_24000Hz_reverb
- 1ch_32000Hz_reverb
- 1ch_44100Hz_reverb
- 1ch_48000Hz_reverb
criterions:
- name: mr_l1_tfd
conf:
window_sz:
- 256
- 512
- 768
- 1024
hop_sz: null
eps: 1.0e-08
time_domain_weight: 0.5
normalize_variance: true
wrapper: fixed_order
wrapper_conf:
weight: 1.0
- name: si_snr
conf:
eps: 1.0e-07
wrapper: fixed_order
wrapper_conf:
weight: 0.0
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
use_reverberant_ref: false
num_spk: 1
num_noise_type: 1
sample_rate: 8000
force_single_channel: false
channel_reordering: false
categories: []
speech_segment: null
avoid_allzero_segment: true
flexible_numspk: false
dynamic_mixing: false
utt2spk: null
dynamic_mixing_gain_db: 0.0
encoder: stft
encoder_conf:
n_fft: 256
hop_length: 128
use_builtin_complex: true
default_fs: 8000
separator: tfgridnetv3
separator_conf:
n_srcs: 1
n_imics: 1
n_layers: 6
lstm_hidden_units: 200
attn_n_head: 4
attn_qk_output_channel: 2
emb_dim: 48
emb_ks: 4
emb_hs: 1
activation: prelu
eps: 1.0e-05
decoder: stft
decoder_conf:
n_fft: 256
hop_length: 128
default_fs: 8000
mask_module: multi_mask
mask_module_conf: {}
preprocessor: enh
preprocessor_conf:
speech_volume_normalize: 0.5_1.0
rir_scp: dump/raw/rir_train.scp
rir_apply_prob: 0.5
noise_scp: dump/raw/noise_train.scp
noise_apply_prob: 1.0
noise_db_range: '-5_15'
force_single_channel: true
channel_reordering: true
categories:
- 1ch_8000Hz
- 1ch_16000Hz
- 1ch_22050Hz
- 1ch_24000Hz
- 1ch_32000Hz
- 1ch_44100Hz
- 1ch_48000Hz
- 1ch_8000Hz_reverb
- 1ch_16000Hz_reverb
- 1ch_22050Hz_reverb
- 1ch_24000Hz_reverb
- 1ch_32000Hz_reverb
- 1ch_44100Hz_reverb
- 1ch_48000Hz_reverb
data_aug_effects:
- - 1.0
- bandwidth_limitation
- res_type: random
- - 1.0
- clipping
- min_quantile: 0.1
max_quantile: 0.9
- - 1.0
- - - 0.5
- codec
- format: mp3
encoder: null
qscale:
- 1
- 10
- - 0.5
- codec
- format: ogg
encoder:
- vorbis
- opus
qscale:
- -1
- 10
- - 1.0
- packet_loss
- packet_duration_ms: 20
packet_loss_rate:
- 0.05
- 0.25
max_continuous_packet_loss: 10
data_aug_num:
- 1
- 3
data_aug_prob: 0.75
diffusion_model: null
diffusion_model_conf: {}
required:
- output_dir
version: '202409'
distributed: false
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{ESPnet-SE,
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
pages = {785--792},
publisher = {{IEEE}},
year = {2021},
url = {https://doi.org/10.1109/SLT48900.2021.9383615},
doi = {10.1109/SLT48900.2021.9383615},
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |