File size: 13,097 Bytes
cf413c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f94a29
 
 
cf413c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f94a29
cf413c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f94a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf413c2
 
 
 
 
 
 
 
 
 
 
 
 
 
3f94a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import math

import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import Tensor, nn
from transformers import PretrainedConfig
from transformers.file_utils import ModelOutput
from transformers.models.bert import BertModel, BertPreTrainedModel
from transformers.models.xlm_roberta import XLMRobertaModel, XLMRobertaPreTrainedModel

from .configuration import KPRConfigForBert, KPRConfigForXLMRoberta


class EntityEmbeddings(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.config = config

        if config.entity_vocab_size is not None:
            self.embeddings = nn.Embedding(config.entity_vocab_size, config.entity_embedding_size, padding_idx=0)
            self.embeddings.weight.requires_grad = False

        # The 0-th position corresponds to the [CLS] token which does not correspond to any entity
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)

        self.dense = nn.Linear(config.entity_embedding_size, config.hidden_size, bias=False)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, entity_ids: Tensor | None, entity_embeds: Tensor | None, entity_position_ids: Tensor) -> Tensor:
        if entity_embeds is not None:
            entity_embeddings = entity_embeds
        elif entity_ids is not None:
            if self.config.entity_vocab_size is None:
                raise ValueError("Entity embeddings are not constructed because entity_vocab_size is None.")
            entity_embeddings = self.embeddings(entity_ids)
        else:
            raise ValueError("Either entity_ids or entity_embeds need to be provided.")

        entity_embeddings = self.dense(entity_embeddings)

        if self.config.use_entity_position_embeddings:
            entity_position_embeddings = self.position_embeddings(
                entity_position_ids
            )  # batch, entities, positions, hidden
            entity_position_embeddings = torch.sum(entity_position_embeddings, dim=2)
            entity_position_embeddings = entity_position_embeddings / entity_position_ids.ne(0).sum(dim=2).clamp(
                min=1
            ).unsqueeze(-1)
            entity_embeddings = entity_embeddings + entity_position_embeddings

        entity_embeddings = self.LayerNorm(entity_embeddings)
        entity_embeddings = self.dropout(entity_embeddings)

        return entity_embeddings


class EntityFusionMultiHeadAttention(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.config = config

        self.num_attention_heads = config.num_entity_fusion_attention_heads
        self.attention_head_size = int(config.hidden_size / self.num_attention_heads)

        self.query = nn.Linear(config.hidden_size, config.hidden_size)
        self.key = nn.Linear(config.hidden_size, config.hidden_size)
        self.value = nn.Linear(config.hidden_size, config.hidden_size)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, key_padding_mask: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor]:
        query_layer = self.transpose_for_scores(self.query(query))
        key_layer = self.transpose_for_scores(self.key(key))
        value_layer = self.transpose_for_scores(self.value(value))

        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        dtype = attention_scores.dtype
        key_padding_mask_scores = key_padding_mask[:, None, None, :]
        key_padding_mask_scores = key_padding_mask_scores.to(dtype=dtype)
        key_padding_mask_scores = key_padding_mask_scores * torch.finfo(dtype).min
        attention_scores = attention_scores + key_padding_mask_scores
        orig_attention_scores = attention_scores.clone()

        if self.config.entity_fusion_activation == "sigmoid":
            # https://arxiv.org/abs/2409.04431
            entity_fusion_sigmoid_bias = key_padding_mask.eq(0).sum(dim=-1, keepdim=True)[:, :, None, None]
            entity_fusion_sigmoid_bias = entity_fusion_sigmoid_bias.to(dtype)
            entity_fusion_sigmoid_bias = -torch.log(entity_fusion_sigmoid_bias)

            attention_scores = attention_scores + entity_fusion_sigmoid_bias
            normalized_attention_scores = torch.sigmoid(attention_scores)
        else:
            normalized_attention_scores = nn.functional.softmax(attention_scores, dim=-1)

        context_layer = torch.matmul(normalized_attention_scores, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.config.hidden_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        return (context_layer, orig_attention_scores)


class EntityFusionLayer(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.config = config

        self.entity_embeddings = EntityEmbeddings(config)
        self.entity_fusion_layer = EntityFusionMultiHeadAttention(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.noop_embeddings = nn.Parameter(torch.zeros(1, 1, config.hidden_size))

    def forward(
        self,
        entity_ids: Tensor | None,
        entity_embeds: Tensor | None,
        entity_position_ids: Tensor,
        cls_embeddings: Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        entity_embeddings = self.entity_embeddings(entity_ids, entity_embeds, entity_position_ids)

        batch_size = entity_ids.size(0)
        kv_embeddings = entity_embeddings
        key_padding_mask = entity_ids.eq(0)
        cls_embeddings = cls_embeddings.unsqueeze(1)

        noop_embeddings = self.noop_embeddings.expand(batch_size, 1, -1)

        kv_embeddings = torch.cat([noop_embeddings, kv_embeddings], dim=1)
        noop_padding_mask = torch.zeros(batch_size, 1, device=entity_ids.device, dtype=torch.bool)
        key_padding_mask = torch.cat([noop_padding_mask, key_padding_mask], dim=1)

        entity_embeddings, attention_scores = self.entity_fusion_layer(
            cls_embeddings, kv_embeddings, kv_embeddings, key_padding_mask=key_padding_mask
        )
        entity_embeddings = self.dropout(entity_embeddings)
        output_embeddings = entity_embeddings + cls_embeddings
        output_embeddings = self.LayerNorm(output_embeddings)

        output_embeddings = output_embeddings.squeeze(1)

        return output_embeddings, attention_scores


class KPRMixin:
    def _forward(
        self, **inputs: Tensor | bool | None | dict[str, Tensor | bool | None]
    ) -> tuple[Tensor] | tuple[Tensor, Tensor] | ModelOutput:
        return_dict = inputs.pop("return_dict", True)

        if self.training:
            query_embeddings = self.encode(**inputs["queries"])
            passage_embeddings = self.encode(**inputs["passages"])

            query_embeddings = self._dist_gather_tensor(query_embeddings)
            passage_embeddings = self._dist_gather_tensor(passage_embeddings)

            scores = self._compute_similarity(query_embeddings, passage_embeddings)
            scores = scores / self.config.similarity_temperature
            scores = scores.view(query_embeddings.size(0), -1)

            ce_target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
            ce_target = ce_target * (passage_embeddings.size(0) // query_embeddings.size(0))
            loss = torch.nn.CrossEntropyLoss(reduction="mean")(scores, ce_target)

            if return_dict:
                return ModelOutput(loss=loss, scores=scores)
            else:
                return (loss, scores)

        else:
            sentence_embeddings = self.encode(**inputs).unsqueeze(1)
            if return_dict:
                return ModelOutput(sentence_embeddings=sentence_embeddings)
            else:
                return (sentence_embeddings,)

    def encode(self, **inputs: Tensor | bool | None) -> Tensor:
        entity_ids = inputs.pop("entity_ids", None)
        entity_position_ids = inputs.pop("entity_position_ids", None)
        entity_embeds = inputs.pop("entity_embeds", None)

        outputs = getattr(self, self.base_model_prefix)(**inputs)
        output_embeddings = outputs.last_hidden_state[:, 0]

        if self.config.entity_fusion_method != "none":
            output_embeddings, _ = self.entity_fusion_layer(
                entity_ids=entity_ids,
                entity_embeds=entity_embeds,
                entity_position_ids=entity_position_ids,
                cls_embeddings=output_embeddings,
            )
        if self.config.similarity_function == "cosine":
            output_embeddings = F.normalize(output_embeddings, p=2, dim=-1)

        return output_embeddings

    def _dist_gather_tensor(self, t: torch.Tensor) -> torch.Tensor:
        t = t.contiguous()
        tensor_list = [torch.empty_like(t) for _ in range(dist.get_world_size())]
        dist.all_gather(tensor_list, t)

        tensor_list[dist.get_rank()] = t
        gathered_tensor = torch.cat(tensor_list, dim=0)

        return gathered_tensor

    def _compute_similarity(self, query_embeddings: Tensor, passage_embeddings: Tensor) -> Tensor:
        return torch.matmul(query_embeddings, passage_embeddings.transpose(-2, -1))


class KPRModelForBert(BertPreTrainedModel, KPRMixin):
    config_class = KPRConfigForBert

    def __init__(self, config: KPRConfigForBert):
        BertPreTrainedModel.__init__(self, config)

        self.bert = BertModel(config)
        if self.config.entity_fusion_method != "none":
            self.entity_fusion_layer = EntityFusionLayer(config)

        self.post_init()

    def forward(
        self,
        input_ids: torch.Tensor | None = None,
        attention_mask: torch.Tensor | None = None,
        token_type_ids: torch.Tensor | None = None,
        position_ids: torch.Tensor | None = None,
        head_mask: torch.Tensor | None = None,
        inputs_embeds: torch.Tensor | None = None,
        entity_ids: torch.Tensor | None = None,
        entity_position_ids: torch.Tensor | None = None,
        entity_embeds: torch.Tensor | None = None,
        output_attentions: bool | None = None,
        output_hidden_states: bool | None = None,
        return_dict: bool | None = None,
        **kwargs
    ):
        return self._forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            entity_ids=entity_ids,
            entity_position_ids=entity_position_ids,
            entity_embeds=entity_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs
        )


class KPRModelForXLMRoberta(XLMRobertaPreTrainedModel, KPRMixin):
    config_class = KPRConfigForXLMRoberta

    def __init__(self, config: KPRConfigForXLMRoberta):
        XLMRobertaPreTrainedModel.__init__(self, config)

        self.roberta = XLMRobertaModel(config)
        if self.config.entity_fusion_method != "none":
            self.entity_fusion_layer = EntityFusionLayer(config)

        self.post_init()

    def forward(
        self,
        input_ids: torch.Tensor | None = None,
        attention_mask: torch.Tensor | None = None,
        token_type_ids: torch.Tensor | None = None,
        position_ids: torch.Tensor | None = None,
        head_mask: torch.Tensor | None = None,
        inputs_embeds: torch.Tensor | None = None,
        entity_ids: torch.Tensor | None = None,
        entity_position_ids: torch.Tensor | None = None,
        entity_embeds: torch.Tensor | None = None,
        output_attentions: bool | None = None,
        output_hidden_states: bool | None = None,
        return_dict: bool | None = None,
        **kwargs
    ):
        return self._forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            entity_ids=entity_ids,
            entity_position_ids=entity_position_ids,
            entity_embeds=entity_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs
        )