File size: 24,405 Bytes
b7d5f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import math
from typing import Optional, Union, Tuple, List
from dataclasses import dataclass

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
    Qwen2_5_VisionTransformerPretrainedModel,
    Qwen2_5_VLModel,
    Qwen2_5_VLForConditionalGeneration,
    Qwen2_5_VLCausalLMOutputWithPast,
)

from .configuration_v1 import V1Config


def init_identity(layer, scale: float = 1):
    if isinstance(layer, nn.Linear):
        with torch.no_grad():
            # Ensure weight matrix is square
            rows, cols = layer.weight.shape
            identity_matrix = (
                torch.eye(rows, cols) * scale
            )  # Creates an identity matrix
            layer.weight.copy_(
                identity_matrix
            )  # Copy identity matrix into layer weights
            if hasattr(layer, "bias"):
                layer.bias.fill_(0)  # Set bias to zero (or another value if needed)


@dataclass
class V1CausalLMOutputWithPast(Qwen2_5_VLCausalLMOutputWithPast):
    z_loss: torch.Tensor = None
    gen_loss: torch.Tensor = None
    copy_loss: torch.Tensor = None


class V1ForConditionalGeneration(Qwen2_5_VLForConditionalGeneration):
    config_class = V1Config

    def __init__(self, config):
        super().__init__(config)
        self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(
            config.vision_config
        )
        self.model = Qwen2_5_VLModel(config)
        self.copy_init_scale = 1 / math.sqrt(self.config.hidden_size)

        # self.tokenizer_vocab_size = (
        #     config.tokenizer_vocab_size
        # )  # Qwen2.5-VL: different from embedding_size==vocab_size. 151665 vs. 152064
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.rope_deltas = None  # cache rope_deltas here

        if self.config.do_copy:
            if self.config.tie_copy_heads:
                self._copy_head = nn.Linear(config.hidden_size, config.copy_hidden_size)
            else:
                self._copy_q_head = nn.Linear(
                    config.hidden_size, config.copy_hidden_size
                )
                self._copy_k_head = nn.Linear(
                    config.hidden_size, config.copy_hidden_size
                )
            if self.config.use_gate:
                self.gate = nn.Linear(config.hidden_size, 1, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @torch.no_grad()
    def after_loading(self):
        if self.config.do_copy:
            self.init_heads()
            if self.config.use_gate:
                self.lm_head.weight.data = self.lm_head.weight.data * 2
                self.gate.weight.data.fill_(0)

    @property
    def copy_q_head(self):
        return self._copy_head if self.config.tie_copy_heads else self._copy_q_head

    @property
    def copy_k_head(self):
        return self._copy_head if self.config.tie_copy_heads else self._copy_k_head

    def init_heads(self):
        if hasattr(self, "_copy_head"):
            init_identity(self._copy_head, self.copy_init_scale)
        if hasattr(self, "_copy_k_head"):
            init_identity(self._copy_k_head, self.copy_init_scale)
        if hasattr(self, "_copy_q_head"):
            init_identity(self._copy_q_head, self.copy_init_scale)

    def copy_representations(
        self,
        inputs_embeds: torch.FloatTensor,
        input_ids: torch.LongTensor,
        copy_values: Optional[torch.FloatTensor] = None,
    ):
        if copy_values is None:
            mask = input_ids == self.config.image_token_id
            copy_values, _ = self.extract_image_tokens(inputs_embeds, mask)  # initial
        assert copy_values is not None
        copy_values = copy_values.to(inputs_embeds.device)
        input_ids = input_ids.to(inputs_embeds.device)

        input_ids = input_ids.clone()
        input_ids = input_ids - self.config.copy_token_start
        copy_mask = input_ids >= 0
        input_ids[~copy_mask] = 0

        assert copy_values is not None
        extracted = copy_values.gather(
            1, input_ids[..., None].repeat(1, 1, copy_values.shape[-1])
        )
        copy_mask = copy_mask.to(extracted.dtype)[..., None]
        return copy_mask * extracted + (1 - copy_mask) * inputs_embeds

    def extract_image_tokens(self, features: torch.FloatTensor, mask: torch.Tensor):
        out_feat, out_mask = extract_image_tokens_right_pad(features, mask)
        return out_feat, out_mask

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        rope_deltas: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        second_per_grid_ts: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration

        >>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
        >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")

        >>> messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": "What is shown in this image?"},
                ],
            },
        ]
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
        ```"""

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        input_ids = input_ids.clone()
        input_ids_with_ptrs = input_ids.clone()
        input_ids[input_ids >= self.config.copy_token_start] = (
            self.config.region_token_id
        )

        if inputs_embeds is None:
            inputs_embeds = self.model.embed_tokens(input_ids)
            if pixel_values is not None:
                pixel_values = pixel_values.type(self.visual.dtype)
                image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)

                mask = input_ids == self.config.image_token_id
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
                image_mask = mask_expanded.to(inputs_embeds.device)

                image_embeds = image_embeds.to(
                    inputs_embeds.device, inputs_embeds.dtype
                )
                inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

            if pixel_values_videos is not None:
                raise NotImplementedError("video inputs are not supported yet.")
                pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
                video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
                n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
                n_video_features = video_embeds.shape[0]
                if n_video_tokens != n_video_features:
                    raise ValueError(
                        f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
                    )

                mask = input_ids == self.config.video_token_id
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
                video_mask = mask_expanded.to(inputs_embeds.device)

                video_embeds = video_embeds.to(
                    inputs_embeds.device, inputs_embeds.dtype
                )
                inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

        if self.config.do_copy:
            copy_keys, copy_keys_mask = None, None
            copy_values, copy_values_mask = None, None

            has_cache = bool(past_key_values)
            if has_cache:
                copy_keys, copy_values = past_key_values[len(past_key_values) - 2]
                copy_keys_mask, copy_values_mask = past_key_values[
                    len(past_key_values) - 1
                ]
                # we add channel dim to the mask for consistency in tensor shape in cache
                copy_keys_mask = copy_keys_mask[..., 0]
                copy_values_mask = copy_values_mask[..., 0]

            inputs_embeds = self.copy_representations(
                inputs_embeds, input_ids_with_ptrs, copy_values
            )

        # if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
        if position_ids is None and (
            attention_mask is None or attention_mask.ndim == 2
        ):
            # calculate RoPE index once per generation in the pre-fill stage only
            if (
                (cache_position is not None and cache_position[0] == 0)
                or self.rope_deltas is None
                or (past_key_values is None or past_key_values.get_seq_length() == 0)
            ):
                position_ids, rope_deltas = self.get_rope_index(
                    input_ids,
                    image_grid_thw,
                    video_grid_thw,
                    second_per_grid_ts,
                    attention_mask,
                )
                self.rope_deltas = rope_deltas
            # then use the prev pre-calculated rope-deltas to get the correct position ids
            else:
                batch_size, seq_length, _ = inputs_embeds.shape
                delta = (
                    (cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
                    if cache_position is not None
                    else 0
                )
                position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                position_ids = position_ids.view(1, -1).expand(batch_size, -1)
                if cache_position is not None:  # otherwise `deltas` is an int `0`
                    delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
                position_ids = position_ids.add(delta)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)

        outputs = self.model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]

        gen_logits = self.lm_head(hidden_states)

        if self.config.do_copy:
            assert (
                self.config.copy_extraction_layer == -1
            ), f"copy_extraction_layer should be -1: {self.config.copy_extraction_layer}"
            copy_hidden_states = hidden_states
            copy_q_states = copy_hidden_states
            if self.config.normalize_copy_states:
                copy_q_states = F.normalize(copy_q_states, 2, -1)
            copy_q_states = self.copy_q_head(copy_q_states)

            present_key_values = outputs.past_key_values

            if not has_cache:
                mask = input_ids == self.config.image_token_id
                copy_k_states = (
                    inputs_embeds
                    if self.config.use_embeddings_as_keys
                    else copy_hidden_states
                )
                if self.config.normalize_copy_states:
                    copy_k_states = F.normalize(copy_k_states, 2, -1)
                copy_k_states, copy_k_mask = self.extract_image_tokens(
                    self.copy_k_head(copy_k_states), mask
                )
                copy_v_states, copy_v_mask = self.extract_image_tokens(
                    inputs_embeds.detach(), mask
                )

                # we add channel dim to the mask for consistency in tensor shape in cache
                copy_memories = [
                    (copy_k_states.detach(), copy_v_states.detach()),
                    (copy_k_mask[..., None], copy_v_mask[..., None]),
                ]

                if use_cache:
                    # only update at the first iteration
                    start = len(present_key_values)
                    for i, mem in enumerate(copy_memories):
                        present_key_values.update(*mem, start + i)
            else:
                copy_k_states = copy_keys
                copy_k_mask = copy_keys_mask

            assert copy_k_states is not None
            assert copy_k_mask is not None
            assert (
                copy_k_states.shape[1] > 0
            ), f"zero image tokens on batch elements: {copy_k_mask.sum(dim=1)}"

            copy_logits = (copy_q_states @ copy_k_states.transpose(-1, -2)).to(
                gen_logits.device
            ) * self.copy_init_scale

            if hasattr(self, "gate"):
                gate = torch.sigmoid(self.gate(hidden_states))
                gen_logits = gen_logits * (1 - gate)
                copy_logits = copy_logits * gate

            copy_logits = copy_logits.masked_fill(
                ~copy_k_mask[:, None, :].to(copy_logits.device),
                torch.finfo(copy_logits.dtype).min,
            )
            logits = torch.cat(
                [gen_logits[..., : self.config.copy_token_start], copy_logits], dim=-1
            )
        else:
            logits = gen_logits
            loss = None
            z_loss = None
            gen_loss = None
            if labels is not None:
                gen_logits = gen_logits.float()
                shift_gen_logits = gen_logits[:, :-1, :].contiguous().float()
                shift_labels = labels[:, 1:].contiguous()
                gen_loss_fct = CrossEntropyLoss(reduction="none")
                gen_logits_flat = shift_gen_logits.view(-1, shift_gen_logits.shape[-1])
                gen_labels_flat = shift_labels.view(-1)

                gen_loss_all = gen_loss_fct(gen_logits_flat, gen_labels_flat)
                gen_loss = gen_loss_all.mean()

                loss = gen_loss

                if self.config.z_loss_weight > 0:
                    valid_mask = shift_labels >= 0
                    # top-k approx z_loss for better memory usage
                    top_logits, _ = torch.topk(
                        shift_gen_logits, k=self.config.z_loss_top_k, dim=-1
                    )
                    lse = torch.logsumexp(top_logits, dim=-1)
                    z_loss = lse[valid_mask].pow(2).mean() * self.config.z_loss_weight

                    # z_loss = (
                    #     torch.logsumexp(shift_logits, dim=-1).pow(2)[valid_mask].mean()
                    #     * self.config.z_loss_weight
                    # )
                    loss = loss + z_loss
                    z_loss = z_loss.detach()

            return V1CausalLMOutputWithPast(
                loss=loss,
                z_loss=z_loss,
                gen_loss=gen_loss,
                copy_loss=None,
                logits=logits,
                # copy_logits=copy_logits,
                # gen_logits=gen_logits,
                past_key_values=outputs.past_key_values,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
                rope_deltas=self.rope_deltas,
            )

        loss = None
        z_loss = None
        gen_loss = None
        copy_loss = None
        if labels is not None:
            if self.config.separate_copy_loss:
                # Shift labels and logits for next-token prediction
                shift_gen_logits = gen_logits[:, :-1, :].contiguous().float()
                shift_copy_logits = copy_logits[:, :-1, :].contiguous().float()
                shift_labels = labels[:, 1:].contiguous()
                shift_logits = shift_copy_logits

                # Build masks
                gen_mask = shift_labels < self.config.copy_token_start
                copy_mask = shift_labels >= self.config.copy_token_start

                # Generation loss
                if gen_mask.any():
                    gen_loss_fct = CrossEntropyLoss(reduction="none")

                    G = shift_gen_logits.shape[-1]
                    gen_logits_flat = shift_gen_logits.view(-1, G)
                    gen_labels_flat = shift_labels.view(-1)
                    gen_mask_flat = gen_mask.view(-1)
                    # mask logits
                    gen_logits_flat_masked = gen_logits_flat[gen_mask_flat]
                    gen_labels_flat_masked = gen_labels_flat[gen_mask_flat]

                    gen_loss_all = gen_loss_fct(
                        gen_logits_flat_masked, gen_labels_flat_masked
                    )
                    gen_loss = gen_loss_all.mean()

                # Copy loss (adjust label indices to match copy_logits range)
                if copy_mask.any():
                    copy_loss_fct = CrossEntropyLoss(reduction="none")
                    C = shift_copy_logits.shape[-1]
                    copy_logits_flat = shift_copy_logits.view(-1, C)
                    copy_labels_flat = (
                        shift_labels.view(-1) - self.config.copy_token_start
                    )
                    copy_mask_flat = copy_mask.view(-1)
                    copy_logits_flat_masked = copy_logits_flat[copy_mask_flat]
                    copy_labels_flat_masked = copy_labels_flat[copy_mask_flat]
                    copy_loss_all = copy_loss_fct(
                        copy_logits_flat_masked, copy_labels_flat_masked
                    )
                    copy_loss = copy_loss_all.mean()
            else:
                # Upcast to float if we need to compute the loss to avoid potential precision issues
                logits = logits.float()
                # Shift so that tokens < n predict n
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
                # Flatten the tokens
                loss_fct = CrossEntropyLoss(label_smoothing=self.config.label_smoothing)
                total_vocab_size = logits.shape[-1]  # gen + copy
                shift_logits = shift_logits.view(-1, total_vocab_size)
                shift_labels = shift_labels.view(-1)
                # Enable model parallelism
                shift_labels = shift_labels.to(shift_logits.device)
                gen_loss = loss_fct(shift_logits, shift_labels)

            loss = 0.0
            if gen_loss is not None:
                loss += gen_loss
            if copy_loss is not None:
                loss += copy_loss

            if self.config.z_loss_weight > 0:
                valid_mask = shift_labels >= 0
                # top-k approx z_loss for better memory usage
                top_logits, _ = torch.topk(
                    shift_logits, k=self.config.z_loss_top_k, dim=-1
                )
                lse = torch.logsumexp(top_logits, dim=-1)
                z_loss = lse[valid_mask].pow(2).mean() * self.config.z_loss_weight

                # z_loss = (
                #     torch.logsumexp(shift_logits, dim=-1).pow(2)[valid_mask].mean()
                #     * self.config.z_loss_weight
                # )
                loss = loss + z_loss
                z_loss = z_loss.detach()

            if gen_loss is not None:
                gen_loss = gen_loss.detach()
            if copy_loss is not None:
                copy_loss = copy_loss.detach()

        if self.config.use_cfg:
            # expand as max_size for logit processors
            extended_vocab_size = self.config.vocab_size + self.config.copy_token_num
            B, L, V = logits.shape
            pads = torch.full(
                (B, L, extended_vocab_size - V),
                torch.finfo(gen_logits.dtype).min,
                device=logits.device,
            ).to(logits.dtype)
            logits = torch.cat([logits, pads], dim=-1)
            # logits = logits.clamp_min(-1e4)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        logits = logits.float()
        return V1CausalLMOutputWithPast(
            loss=loss,
            z_loss=z_loss,
            gen_loss=gen_loss,
            copy_loss=copy_loss,
            logits=logits,
            # copy_logits=copy_logits,
            # gen_logits=gen_logits,
            past_key_values=present_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=self.rope_deltas,
        )


def extract_image_tokens_right_pad(features: torch.FloatTensor, mask: torch.Tensor):
    X, M = features, mask.long()  # bool is not supported for sort in CUDA
    B, L, _ = X.shape
    device = X.device
    M = M.to(device)

    # Compute number of valid elements per batch
    valid_counts = M.sum(dim=1)  # Shape: [B]
    # Replace `.item()` with `max()` and `clamp_min()` for Torch Dynamo compatibility
    R = valid_counts.max().clamp_min(1)  # Ensures at least 1 for tensor compatibility
    # Create index tensors for selection
    sorted_indices = M.argsort(dim=1, descending=True)  # Move True values to front
    batch_indices = torch.arange(B, device=device).unsqueeze(1).expand(B, L)

    # Gather sorted X based on mask sorting
    X_sorted = X[batch_indices, sorted_indices]  # Shape: [B, L, C]
    X_selected = X_sorted[:, :R, :]  # Select the top valid elements per batch

    # Create new mask M2 using `torch.arange`
    M2 = torch.arange(L, device=device).expand(B, L) < valid_counts.unsqueeze(1)
    M2 = M2[:, :R]  # Trim to selected size

    # Set out-of-bound values to zero
    X_selected = torch.where(M2.unsqueeze(-1), X_selected, torch.zeros_like(X_selected))

    return X_selected, M2


__all__ = ["V1ForConditionalGeneration"]