File size: 24,405 Bytes
b7d5f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import math
from typing import Optional, Union, Tuple, List
from dataclasses import dataclass
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VisionTransformerPretrainedModel,
Qwen2_5_VLModel,
Qwen2_5_VLForConditionalGeneration,
Qwen2_5_VLCausalLMOutputWithPast,
)
from .configuration_v1 import V1Config
def init_identity(layer, scale: float = 1):
if isinstance(layer, nn.Linear):
with torch.no_grad():
# Ensure weight matrix is square
rows, cols = layer.weight.shape
identity_matrix = (
torch.eye(rows, cols) * scale
) # Creates an identity matrix
layer.weight.copy_(
identity_matrix
) # Copy identity matrix into layer weights
if hasattr(layer, "bias"):
layer.bias.fill_(0) # Set bias to zero (or another value if needed)
@dataclass
class V1CausalLMOutputWithPast(Qwen2_5_VLCausalLMOutputWithPast):
z_loss: torch.Tensor = None
gen_loss: torch.Tensor = None
copy_loss: torch.Tensor = None
class V1ForConditionalGeneration(Qwen2_5_VLForConditionalGeneration):
config_class = V1Config
def __init__(self, config):
super().__init__(config)
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(
config.vision_config
)
self.model = Qwen2_5_VLModel(config)
self.copy_init_scale = 1 / math.sqrt(self.config.hidden_size)
# self.tokenizer_vocab_size = (
# config.tokenizer_vocab_size
# ) # Qwen2.5-VL: different from embedding_size==vocab_size. 151665 vs. 152064
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_deltas = None # cache rope_deltas here
if self.config.do_copy:
if self.config.tie_copy_heads:
self._copy_head = nn.Linear(config.hidden_size, config.copy_hidden_size)
else:
self._copy_q_head = nn.Linear(
config.hidden_size, config.copy_hidden_size
)
self._copy_k_head = nn.Linear(
config.hidden_size, config.copy_hidden_size
)
if self.config.use_gate:
self.gate = nn.Linear(config.hidden_size, 1, bias=False)
# Initialize weights and apply final processing
self.post_init()
@torch.no_grad()
def after_loading(self):
if self.config.do_copy:
self.init_heads()
if self.config.use_gate:
self.lm_head.weight.data = self.lm_head.weight.data * 2
self.gate.weight.data.fill_(0)
@property
def copy_q_head(self):
return self._copy_head if self.config.tie_copy_heads else self._copy_q_head
@property
def copy_k_head(self):
return self._copy_head if self.config.tie_copy_heads else self._copy_k_head
def init_heads(self):
if hasattr(self, "_copy_head"):
init_identity(self._copy_head, self.copy_init_scale)
if hasattr(self, "_copy_k_head"):
init_identity(self._copy_k_head, self.copy_init_scale)
if hasattr(self, "_copy_q_head"):
init_identity(self._copy_q_head, self.copy_init_scale)
def copy_representations(
self,
inputs_embeds: torch.FloatTensor,
input_ids: torch.LongTensor,
copy_values: Optional[torch.FloatTensor] = None,
):
if copy_values is None:
mask = input_ids == self.config.image_token_id
copy_values, _ = self.extract_image_tokens(inputs_embeds, mask) # initial
assert copy_values is not None
copy_values = copy_values.to(inputs_embeds.device)
input_ids = input_ids.to(inputs_embeds.device)
input_ids = input_ids.clone()
input_ids = input_ids - self.config.copy_token_start
copy_mask = input_ids >= 0
input_ids[~copy_mask] = 0
assert copy_values is not None
extracted = copy_values.gather(
1, input_ids[..., None].repeat(1, 1, copy_values.shape[-1])
)
copy_mask = copy_mask.to(extracted.dtype)[..., None]
return copy_mask * extracted + (1 - copy_mask) * inputs_embeds
def extract_image_tokens(self, features: torch.FloatTensor, mask: torch.Tensor):
out_feat, out_mask = extract_image_tokens_right_pad(features, mask)
return out_feat, out_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
input_ids = input_ids.clone()
input_ids_with_ptrs = input_ids.clone()
input_ids[input_ids >= self.config.copy_token_start] = (
self.config.region_token_id
)
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
mask = input_ids == self.config.image_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
image_mask = mask_expanded.to(inputs_embeds.device)
image_embeds = image_embeds.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
raise NotImplementedError("video inputs are not supported yet.")
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
mask = input_ids == self.config.video_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
video_mask = mask_expanded.to(inputs_embeds.device)
video_embeds = video_embeds.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
if self.config.do_copy:
copy_keys, copy_keys_mask = None, None
copy_values, copy_values_mask = None, None
has_cache = bool(past_key_values)
if has_cache:
copy_keys, copy_values = past_key_values[len(past_key_values) - 2]
copy_keys_mask, copy_values_mask = past_key_values[
len(past_key_values) - 1
]
# we add channel dim to the mask for consistency in tensor shape in cache
copy_keys_mask = copy_keys_mask[..., 0]
copy_values_mask = copy_values_mask[..., 0]
inputs_embeds = self.copy_representations(
inputs_embeds, input_ids_with_ptrs, copy_values
)
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if position_ids is None and (
attention_mask is None or attention_mask.ndim == 2
):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = self.get_rope_index(
input_ids,
image_grid_thw,
video_grid_thw,
second_per_grid_ts,
attention_mask,
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
gen_logits = self.lm_head(hidden_states)
if self.config.do_copy:
assert (
self.config.copy_extraction_layer == -1
), f"copy_extraction_layer should be -1: {self.config.copy_extraction_layer}"
copy_hidden_states = hidden_states
copy_q_states = copy_hidden_states
if self.config.normalize_copy_states:
copy_q_states = F.normalize(copy_q_states, 2, -1)
copy_q_states = self.copy_q_head(copy_q_states)
present_key_values = outputs.past_key_values
if not has_cache:
mask = input_ids == self.config.image_token_id
copy_k_states = (
inputs_embeds
if self.config.use_embeddings_as_keys
else copy_hidden_states
)
if self.config.normalize_copy_states:
copy_k_states = F.normalize(copy_k_states, 2, -1)
copy_k_states, copy_k_mask = self.extract_image_tokens(
self.copy_k_head(copy_k_states), mask
)
copy_v_states, copy_v_mask = self.extract_image_tokens(
inputs_embeds.detach(), mask
)
# we add channel dim to the mask for consistency in tensor shape in cache
copy_memories = [
(copy_k_states.detach(), copy_v_states.detach()),
(copy_k_mask[..., None], copy_v_mask[..., None]),
]
if use_cache:
# only update at the first iteration
start = len(present_key_values)
for i, mem in enumerate(copy_memories):
present_key_values.update(*mem, start + i)
else:
copy_k_states = copy_keys
copy_k_mask = copy_keys_mask
assert copy_k_states is not None
assert copy_k_mask is not None
assert (
copy_k_states.shape[1] > 0
), f"zero image tokens on batch elements: {copy_k_mask.sum(dim=1)}"
copy_logits = (copy_q_states @ copy_k_states.transpose(-1, -2)).to(
gen_logits.device
) * self.copy_init_scale
if hasattr(self, "gate"):
gate = torch.sigmoid(self.gate(hidden_states))
gen_logits = gen_logits * (1 - gate)
copy_logits = copy_logits * gate
copy_logits = copy_logits.masked_fill(
~copy_k_mask[:, None, :].to(copy_logits.device),
torch.finfo(copy_logits.dtype).min,
)
logits = torch.cat(
[gen_logits[..., : self.config.copy_token_start], copy_logits], dim=-1
)
else:
logits = gen_logits
loss = None
z_loss = None
gen_loss = None
if labels is not None:
gen_logits = gen_logits.float()
shift_gen_logits = gen_logits[:, :-1, :].contiguous().float()
shift_labels = labels[:, 1:].contiguous()
gen_loss_fct = CrossEntropyLoss(reduction="none")
gen_logits_flat = shift_gen_logits.view(-1, shift_gen_logits.shape[-1])
gen_labels_flat = shift_labels.view(-1)
gen_loss_all = gen_loss_fct(gen_logits_flat, gen_labels_flat)
gen_loss = gen_loss_all.mean()
loss = gen_loss
if self.config.z_loss_weight > 0:
valid_mask = shift_labels >= 0
# top-k approx z_loss for better memory usage
top_logits, _ = torch.topk(
shift_gen_logits, k=self.config.z_loss_top_k, dim=-1
)
lse = torch.logsumexp(top_logits, dim=-1)
z_loss = lse[valid_mask].pow(2).mean() * self.config.z_loss_weight
# z_loss = (
# torch.logsumexp(shift_logits, dim=-1).pow(2)[valid_mask].mean()
# * self.config.z_loss_weight
# )
loss = loss + z_loss
z_loss = z_loss.detach()
return V1CausalLMOutputWithPast(
loss=loss,
z_loss=z_loss,
gen_loss=gen_loss,
copy_loss=None,
logits=logits,
# copy_logits=copy_logits,
# gen_logits=gen_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
loss = None
z_loss = None
gen_loss = None
copy_loss = None
if labels is not None:
if self.config.separate_copy_loss:
# Shift labels and logits for next-token prediction
shift_gen_logits = gen_logits[:, :-1, :].contiguous().float()
shift_copy_logits = copy_logits[:, :-1, :].contiguous().float()
shift_labels = labels[:, 1:].contiguous()
shift_logits = shift_copy_logits
# Build masks
gen_mask = shift_labels < self.config.copy_token_start
copy_mask = shift_labels >= self.config.copy_token_start
# Generation loss
if gen_mask.any():
gen_loss_fct = CrossEntropyLoss(reduction="none")
G = shift_gen_logits.shape[-1]
gen_logits_flat = shift_gen_logits.view(-1, G)
gen_labels_flat = shift_labels.view(-1)
gen_mask_flat = gen_mask.view(-1)
# mask logits
gen_logits_flat_masked = gen_logits_flat[gen_mask_flat]
gen_labels_flat_masked = gen_labels_flat[gen_mask_flat]
gen_loss_all = gen_loss_fct(
gen_logits_flat_masked, gen_labels_flat_masked
)
gen_loss = gen_loss_all.mean()
# Copy loss (adjust label indices to match copy_logits range)
if copy_mask.any():
copy_loss_fct = CrossEntropyLoss(reduction="none")
C = shift_copy_logits.shape[-1]
copy_logits_flat = shift_copy_logits.view(-1, C)
copy_labels_flat = (
shift_labels.view(-1) - self.config.copy_token_start
)
copy_mask_flat = copy_mask.view(-1)
copy_logits_flat_masked = copy_logits_flat[copy_mask_flat]
copy_labels_flat_masked = copy_labels_flat[copy_mask_flat]
copy_loss_all = copy_loss_fct(
copy_logits_flat_masked, copy_labels_flat_masked
)
copy_loss = copy_loss_all.mean()
else:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(label_smoothing=self.config.label_smoothing)
total_vocab_size = logits.shape[-1] # gen + copy
shift_logits = shift_logits.view(-1, total_vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
gen_loss = loss_fct(shift_logits, shift_labels)
loss = 0.0
if gen_loss is not None:
loss += gen_loss
if copy_loss is not None:
loss += copy_loss
if self.config.z_loss_weight > 0:
valid_mask = shift_labels >= 0
# top-k approx z_loss for better memory usage
top_logits, _ = torch.topk(
shift_logits, k=self.config.z_loss_top_k, dim=-1
)
lse = torch.logsumexp(top_logits, dim=-1)
z_loss = lse[valid_mask].pow(2).mean() * self.config.z_loss_weight
# z_loss = (
# torch.logsumexp(shift_logits, dim=-1).pow(2)[valid_mask].mean()
# * self.config.z_loss_weight
# )
loss = loss + z_loss
z_loss = z_loss.detach()
if gen_loss is not None:
gen_loss = gen_loss.detach()
if copy_loss is not None:
copy_loss = copy_loss.detach()
if self.config.use_cfg:
# expand as max_size for logit processors
extended_vocab_size = self.config.vocab_size + self.config.copy_token_num
B, L, V = logits.shape
pads = torch.full(
(B, L, extended_vocab_size - V),
torch.finfo(gen_logits.dtype).min,
device=logits.device,
).to(logits.dtype)
logits = torch.cat([logits, pads], dim=-1)
# logits = logits.clamp_min(-1e4)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
logits = logits.float()
return V1CausalLMOutputWithPast(
loss=loss,
z_loss=z_loss,
gen_loss=gen_loss,
copy_loss=copy_loss,
logits=logits,
# copy_logits=copy_logits,
# gen_logits=gen_logits,
past_key_values=present_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
def extract_image_tokens_right_pad(features: torch.FloatTensor, mask: torch.Tensor):
X, M = features, mask.long() # bool is not supported for sort in CUDA
B, L, _ = X.shape
device = X.device
M = M.to(device)
# Compute number of valid elements per batch
valid_counts = M.sum(dim=1) # Shape: [B]
# Replace `.item()` with `max()` and `clamp_min()` for Torch Dynamo compatibility
R = valid_counts.max().clamp_min(1) # Ensures at least 1 for tensor compatibility
# Create index tensors for selection
sorted_indices = M.argsort(dim=1, descending=True) # Move True values to front
batch_indices = torch.arange(B, device=device).unsqueeze(1).expand(B, L)
# Gather sorted X based on mask sorting
X_sorted = X[batch_indices, sorted_indices] # Shape: [B, L, C]
X_selected = X_sorted[:, :R, :] # Select the top valid elements per batch
# Create new mask M2 using `torch.arange`
M2 = torch.arange(L, device=device).expand(B, L) < valid_counts.unsqueeze(1)
M2 = M2[:, :R] # Trim to selected size
# Set out-of-bound values to zero
X_selected = torch.where(M2.unsqueeze(-1), X_selected, torch.zeros_like(X_selected))
return X_selected, M2
__all__ = ["V1ForConditionalGeneration"]
|