File size: 6,621 Bytes
b1e25b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Evaluate models on a LongBench subset with Exact-Match (EM).
Supports both Qwen3 (Transformers) and other models (vLLM).
Requirements
------------
pip install vllm datasets tqdm transformers accelerate
"""
import argparse, logging, time, torch
from pathlib import Path
from datasets import load_dataset
from tqdm import tqdm
from utils.metrics import qa_em_score
import os
# ---------------------------- CLI ------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument("--hf_model",
default="Qwen/Qwen3-8B-Instruct",
help="Model name or local path")
parser.add_argument("--is_qwen3", action="store_true",
help="Set this flag if using Qwen3 model (uses Transformers). Otherwise uses vLLM.")
parser.add_argument("--max_new_tokens", type=int, default=20)
parser.add_argument("--max_tokens", type=int, default=20,
help="For vLLM models (ignored if --is_qwen3)")
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--top_p", type=float, default=1.0)
parser.add_argument("--tensor_parallel_size", type=int, default=2,
help="GPU parallel size for vLLM (ignored if --is_qwen3)")
parser.add_argument("--dataset_repo", default="THUDM/LongBench")
parser.add_argument("--dataset_subset", default="hotpotqa")
parser.add_argument("--split", default="test")
parser.add_argument("--sleep", type=float, default=0.0)
parser.add_argument("--log", default="summary.log")
parser.add_argument("--cuda_devices", default="1,6",
help="CUDA visible devices")
args = parser.parse_args()
# Set CUDA devices
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_devices
# --------------------------- logging ---------------------------------
logging.basicConfig(
filename=args.log,
level=logging.INFO,
format="%(asctime)s - %(message)s",
filemode="a",
)
logging.getLogger().addHandler(logging.StreamHandler())
# ------------------------- dataset -----------------------------------
ds = load_dataset(args.dataset_repo, args.dataset_subset, split=args.split)
total = len(ds)
logging.info("Loaded %d samples from %s/%s[%s]",
total, args.dataset_repo, args.dataset_subset, args.split)
if args.is_qwen3:
# ---------------------- Qwen3 with Transformers ----------------------------
from transformers import AutoTokenizer, AutoModelForCausalLM
load_kwargs = dict(
trust_remote_code=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(args.hf_model,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
args.hf_model,
torch_dtype=torch.float16,
**load_kwargs
)
EOS_ID = tokenizer.eos_token_id
THINK_ENDID = 151668 # </think> token id
gen_kwargs = dict(
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_p=args.top_p,
do_sample=args.temperature > 0,
eos_token_id=EOS_ID,
)
# -------------------------- Qwen3 loop -------------------------------------
correct_em = 0
for ex in tqdm(ds, desc="Evaluating with Transformers (Qwen3)"):
q = ex["input"]
golds = ex["answers"]
msgs = [
{"role": "system", "content": "You are a QA assistant."},
{"role": "user",
"content": f"Question: {q}\n"
"Please reply with *only* the final answer—no extra words."}
]
prompt = tokenizer.apply_chat_template(
msgs,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # Qwen3 thinking mode
)
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
with torch.no_grad():
outs = model.generate(**inputs, **gen_kwargs)[0]
# Extract newly generated tokens
new_ids = outs[len(inputs.input_ids[0]):].tolist()
# Find </think> (if not exist idx=0)
try:
idx = len(new_ids) - new_ids[::-1].index(THINK_ENDID)
except ValueError:
idx = 0
content = tokenizer.decode(new_ids[idx:],
skip_special_tokens=True).strip("\n").strip()
# Only use content for EM comparison
if any(qa_em_score(content, g) for g in golds):
correct_em += 1
if args.sleep:
time.sleep(args.sleep)
else:
# ---------------------- Other models with vLLM ----------------------------
from vllm import LLM, SamplingParams
# Initialize vLLM
llm = LLM(
model=args.hf_model,
tensor_parallel_size=args.tensor_parallel_size,
)
sampler = SamplingParams(
temperature=args.temperature,
max_tokens=args.max_tokens,
top_p=args.top_p,
stop=["</assistant>", "</s>", "<|end_of_text|>"],
)
# -------------------------- vLLM loop -------------------------------------
correct_em = 0
for ex in tqdm(ds, desc="Evaluating with vLLM"):
question = ex["input"]
golds = ex["answers"] # list[str]
chat_params = SamplingParams(
temperature=args.temperature,
max_tokens=args.max_tokens,
top_p=args.top_p,
stop=["</s>", "<|end_of_text|>"], # Safety stop tokens
)
messages = [
{"role": "system",
"content": "You are a QA assistant."},
{"role": "user",
"content": f"Question: {question}\n"
"Please first reply with *only* the final answer—no extra words.\n Answer:"}
]
result = llm.chat(messages, sampling_params=chat_params)
# vLLM returns list[RequestOutput]; take first output's first candidate
pred = result[0].outputs[0].text.strip()
print(f"A: {pred}\nG: {golds}\n")
if any(qa_em_score(pred, g) for g in golds):
correct_em += 1
if args.sleep:
time.sleep(args.sleep)
# -------------------------- result -----------------------------------
em = correct_em / total
model_type = "Qwen3 (Transformers)" if args.is_qwen3 else "vLLM"
logging.info("RESULT | model=%s | type=%s | subset=%s | EM=%.4f",
args.hf_model, model_type, args.dataset_subset, em)
print(
f"\n=== SUMMARY ===\n"
f"Model : {args.hf_model}\n"
f"Type : {model_type}\n"
f"Subset : {args.dataset_subset} ({args.split})\n"
f"EM : {em:.4f}\n"
f"(Log in {Path(args.log).resolve()})"
) |