kisa-misa's picture
End of training
d05da49 verified
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-phones
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8653846153846154
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-phones
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3938
- Accuracy: 0.8654
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 0.9333 | 7 | 0.6743 | 0.5673 |
| 0.6763 | 2.0 | 15 | 0.6166 | 0.6923 |
| 0.635 | 2.9333 | 22 | 0.5646 | 0.7404 |
| 0.5724 | 4.0 | 30 | 0.5074 | 0.7308 |
| 0.5724 | 4.9333 | 37 | 0.4809 | 0.7692 |
| 0.527 | 6.0 | 45 | 0.4597 | 0.7692 |
| 0.5304 | 6.9333 | 52 | 0.4758 | 0.7596 |
| 0.4597 | 8.0 | 60 | 0.4343 | 0.7885 |
| 0.4597 | 8.9333 | 67 | 0.4249 | 0.7981 |
| 0.4606 | 10.0 | 75 | 0.4236 | 0.7981 |
| 0.4286 | 10.9333 | 82 | 0.4055 | 0.8462 |
| 0.3857 | 12.0 | 90 | 0.4144 | 0.8269 |
| 0.3857 | 12.9333 | 97 | 0.4294 | 0.7981 |
| 0.3801 | 14.0 | 105 | 0.4081 | 0.8462 |
| 0.3538 | 14.9333 | 112 | 0.4195 | 0.8462 |
| 0.3585 | 16.0 | 120 | 0.4069 | 0.8558 |
| 0.3585 | 16.9333 | 127 | 0.3971 | 0.8558 |
| 0.3258 | 18.0 | 135 | 0.3938 | 0.8654 |
| 0.3288 | 18.9333 | 142 | 0.3964 | 0.8462 |
| 0.3276 | 20.0 | 150 | 0.4423 | 0.8558 |
| 0.3276 | 20.9333 | 157 | 0.4067 | 0.8365 |
| 0.317 | 22.0 | 165 | 0.4179 | 0.8654 |
| 0.288 | 22.9333 | 172 | 0.3882 | 0.8558 |
| 0.2735 | 24.0 | 180 | 0.4215 | 0.8558 |
| 0.2735 | 24.9333 | 187 | 0.3972 | 0.8462 |
| 0.2805 | 26.0 | 195 | 0.3943 | 0.8558 |
| 0.2961 | 26.9333 | 202 | 0.3999 | 0.8558 |
| 0.2832 | 28.0 | 210 | 0.4043 | 0.8558 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1