|
--- |
|
language: |
|
- ar |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- hf-asr-leaderboard |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
metrics: |
|
- wer |
|
- cer |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
model-index: |
|
- name: wav2vec2-xls-r-300m-arabic |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
name: Common Voice ar |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: ar |
|
metrics: |
|
- type: wer |
|
value: 38.83 |
|
name: Test WER With LM |
|
- type: cer |
|
value: 15.33 |
|
name: Test CER With LM |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: ar |
|
metrics: |
|
- type: wer |
|
value: 89.8 |
|
name: Test WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: ar |
|
metrics: |
|
- type: wer |
|
value: 87.46 |
|
name: Test WER |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-300-arabic |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4514 |
|
- Wer: 0.4256 |
|
- Cer: 0.1528 |
|
|
|
#### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test |
|
``` |
|
|
|
|
|
### Inference With LM |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic" |
|
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ar", split="test", streaming=True, use_auth_token=True)) |
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() |
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
transcription = processor.batch_decode(logits.numpy()).text |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 5.4375 | 1.8 | 500 | 3.3330 | 1.0 | 1.0 | |
|
| 2.2187 | 3.6 | 1000 | 0.7790 | 0.6501 | 0.2338 | |
|
| 0.9471 | 5.4 | 1500 | 0.5353 | 0.5015 | 0.1822 | |
|
| 0.7416 | 7.19 | 2000 | 0.4889 | 0.4490 | 0.1640 | |
|
| 0.6358 | 8.99 | 2500 | 0.4514 | 0.4256 | 0.1528 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|