File size: 3,728 Bytes
c30fa45
c47aa28
9006a7e
c30fa45
 
9006a7e
d707371
9006a7e
c30fa45
9006a7e
 
 
 
4a7d7da
c30fa45
9006a7e
 
c47aa28
 
 
 
 
4a7d7da
c47aa28
 
 
 
 
 
 
 
 
 
4a7d7da
c47aa28
 
 
 
 
4a7d7da
c47aa28
4a7d7da
c47aa28
 
4a7d7da
9006a7e
c47aa28
 
 
9006a7e
4a7d7da
c47aa28
4a7d7da
c30fa45
 
 
 
 
 
 
 
 
8b6b174
 
 
 
cf257e4
 
c30fa45
cf257e4
 
 
 
 
 
 
 
 
 
 
 
 
f123239
cf257e4
 
 
 
 
 
 
 
 
c30fa45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6b174
 
 
 
 
c30fa45
 
 
 
8b6b174
 
 
c30fa45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
language:
- ar
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
- cer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-xls-r-300m-arabic
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Common Voice ar
      type: mozilla-foundation/common_voice_7_0
      args: ar
    metrics:
    - type: wer
      value: 38.83
      name: Test WER With LM
    - type: cer
      value: 15.33
      name: Test CER With LM
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: ar
    metrics:
    - type: wer
      value: 89.8
      name: Test WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: ar
    metrics:
    - type: wer
      value: 87.46
      name: Test WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-300-arabic

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4514
- Wer: 0.4256
- Cer: 0.1528

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`

```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test
```


### Inference With LM

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ar", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 5.4375        | 1.8   | 500  | 3.3330          | 1.0    | 1.0    |
| 2.2187        | 3.6   | 1000 | 0.7790          | 0.6501 | 0.2338 |
| 0.9471        | 5.4   | 1500 | 0.5353          | 0.5015 | 0.1822 |
| 0.7416        | 7.19  | 2000 | 0.4889          | 0.4490 | 0.1640 |
| 0.6358        | 8.99  | 2500 | 0.4514          | 0.4256 | 0.1528 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0