File size: 3,543 Bytes
c30fa45 9006a7e c30fa45 9006a7e c30fa45 9006a7e c30fa45 9006a7e cf257e4 9006a7e cf257e4 9006a7e c30fa45 8b6b174 cf257e4 c30fa45 cf257e4 c30fa45 8b6b174 c30fa45 8b6b174 c30fa45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language:
- ar
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-xls-r-300m-arabic
results:
- task:
type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
name: Speech Recognition # Optional. Example: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: Common Voice ar # Required. Example: Common Voice zh-CN
args: ar # Optional. Example: zh-CN
metrics:
- type: wer # Required. Example: wer
value: 38.83 # Required. Example: 20.90
name: Test WER With LM # Optional. Example: Test WER
- type: cer # Required. Example: wer
value: 15.33 # Required. Example: 20.90
name: Test CER # Optional. Example: Test WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-300-arabic
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4514
- Wer: 0.4256
- Cer: 0.1528
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 5.4375 | 1.8 | 500 | 3.3330 | 1.0 | 1.0 |
| 2.2187 | 3.6 | 1000 | 0.7790 | 0.6501 | 0.2338 |
| 0.9471 | 5.4 | 1500 | 0.5353 | 0.5015 | 0.1822 |
| 0.7416 | 7.19 | 2000 | 0.4889 | 0.4490 | 0.1640 |
| 0.6358 | 8.99 | 2500 | 0.4514 | 0.4256 | 0.1528 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|