File size: 3,328 Bytes
3650a61
8ca2db9
 
 
3650a61
 
87ff56f
8ca2db9
3650a61
8ca2db9
 
 
3650a61
 
8ca2db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3650a61
 
 
 
 
 
 
 
 
87ff56f
 
 
8ca2db9
 
87ff56f
8ca2db9
 
 
87ff56f
 
8ca2db9
87ff56f
8ca2db9
d036b29
 
 
 
 
 
 
 
 
 
8ca2db9
d036b29
 
 
 
 
 
 
8ca2db9
3650a61
 
 
 
 
 
87ff56f
 
3650a61
 
87ff56f
3650a61
 
 
87ff56f
 
3650a61
 
 
87ff56f
 
 
 
 
 
 
 
3650a61
 
 
 
 
 
 
 
8ca2db9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
---
language: 
- ur
license: apache-2.0
tags:
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-Urdu
  results:
  - task: 
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      type: mozilla-foundation/common_voice_8_0
      name: Common Voice 8
      args: ur
    metrics:
      - type: wer    # Required. Example: wer
        value: 39.89  # Required. Example: 20.90
        name: Test WER    # Optional. Example: Test WER
      - name: Test CER
        type: cer
        value: 16.70
---
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-Urdu

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9889
- Wer: 0.5607
- Cer: 0.2370
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
```


### Inference With LM

```python
from datasets import load_dataset, Audio
from transformers import pipeline
model = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu"
data = load_dataset("mozilla-foundation/common_voice_8_0",
                     "ur",
                     split="test", 
                     streaming=True, 
                     use_auth_token=True)

sample_iter = iter(data.cast_column("path", Audio(sampling_rate=16_000)))
sample = next(sample_iter)

asr = pipeline("automatic-speech-recognition", model=model)
prediction = asr(sample["path"]["array"], 
                  chunk_length_s=5, 
                  stride_length_s=1)
prediction
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
```



### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 3.6398        | 30.77  | 400  | 3.3517          | 1.0    | 1.0    |
| 2.9225        | 61.54  | 800  | 2.5123          | 1.0    | 0.8310 |
| 1.2568        | 92.31  | 1200 | 0.9699          | 0.6273 | 0.2575 |
| 0.8974        | 123.08 | 1600 | 0.9715          | 0.5888 | 0.2457 |
| 0.7151        | 153.85 | 2000 | 0.9984          | 0.5588 | 0.2353 |
| 0.6416        | 184.62 | 2400 | 0.9889          | 0.5607 | 0.2370 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0

### Eval results on Common Voice 8 "test" (WER):

| Without LM | With LM (run `./eval.py`) |
|---|---|
| 52.03 | 39.89 |