File size: 6,996 Bytes
c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 c5cd586 64c01a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import torch
import torch.nn as nn
import pandas as pd
from model import LSTMModel
from preprocessing import preprocess_text
from data_loader import create_data_loader
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, roc_auc_score
from keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences
import pickle
import train as tr
from torch.utils.data import Dataset, DataLoader
from data_loader import NewsDataset
import os
version = 9
if __name__ == "__main__":
# fake_path = './data_1/Fake.csv'
# true_path = './data_1/True.csv'
# cleaned_path = './cleaned_news_data.csv'
# # Load data
# try:
# df = pd.read_csv(cleaned_path)
# df.dropna(inplace=True)
# print("Cleaned data found.")
# except:
# print("No cleaned data found. Cleaning data now...")
# # Load the datasets
# true_news = pd.read_csv('data_1/True.csv')
# fake_news = pd.read_csv('data_1/Fake.csv')
# # Add labels
# true_news['label'] = 1
# fake_news['label'] = 0
# # Combine the datasets
# df = pd.concat([true_news, fake_news], ignore_index=True)
# # Drop unnecessary columns
# df.drop(columns=['subject', 'date'], inplace=True)
# df['title'] = df['title'].apply(preprocess_text)
# df['text'] = df['text'].apply(preprocess_text)
# df.to_csv('cleaned_news_data.csv', index=False)
# df.dropna(inplace=True)
data_path = "./data_2/WELFake_Dataset.csv"
cleaned_path = f"./output/version_{version}/cleaned_news_data_{version}.csv"
# Load data
try:
df = pd.read_csv(cleaned_path)
df.dropna(inplace=True)
print("Cleaned data found.")
except:
print("No cleaned data found. Cleaning data now...")
df = pd.read_csv(data_path)
# Drop index
df.drop(df.columns[0], axis=1, inplace=True)
df.dropna(inplace=True)
# Swapping labels around since it originally is the opposite
df["label"] = df["label"].map({0: 1, 1: 0})
df["title"] = df["title"].apply(preprocess_text)
df["text"] = df["text"].apply(preprocess_text)
# Create the directory if it does not exist
os.makedirs(os.path.dirname(cleaned_path), exist_ok=True)
df.to_csv(cleaned_path, index=False)
print("Cleaned data saved.")
# Splitting the data
train_val, test = train_test_split(df, test_size=0.2, random_state=42)
train, val = train_test_split(
train_val, test_size=0.25, random_state=42
) # 0.25 * 0.8 = 0.2
# Initialize the tokenizer
tokenizer = Tokenizer()
# Fit the tokenizer on the training data
tokenizer.fit_on_texts(train["title"] + train["text"])
with open(f"./output/version_{version}/tokenizer_{version}.pickle", "wb") as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
# Tokenize the data
X_train_title = tokenizer.texts_to_sequences(train["title"])
X_train_text = tokenizer.texts_to_sequences(train["text"])
X_val_title = tokenizer.texts_to_sequences(val["title"])
X_val_text = tokenizer.texts_to_sequences(val["text"])
X_test_title = tokenizer.texts_to_sequences(test["title"])
X_test_text = tokenizer.texts_to_sequences(test["text"])
# Padding sequences
max_length = 500
X_train_title = pad_sequences(X_train_title, maxlen=max_length)
X_train_text = pad_sequences(X_train_text, maxlen=max_length)
X_val_title = pad_sequences(X_val_title, maxlen=max_length)
X_val_text = pad_sequences(X_val_text, maxlen=max_length)
X_test_title = pad_sequences(X_test_title, maxlen=max_length)
X_test_text = pad_sequences(X_test_text, maxlen=max_length)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
model = LSTMModel(len(tokenizer.word_index) + 1).to(device)
# Convert data to PyTorch tensors
train_data = NewsDataset(
torch.tensor(X_train_title),
torch.tensor(X_train_text),
torch.tensor(train["label"].values),
)
val_data = NewsDataset(
torch.tensor(X_val_title),
torch.tensor(X_val_text),
torch.tensor(val["label"].values),
)
test_data = NewsDataset(
torch.tensor(X_test_title),
torch.tensor(X_test_text),
torch.tensor(test["label"].values),
)
train_loader = DataLoader(
train_data,
batch_size=32,
shuffle=True,
num_workers=6,
pin_memory=True,
persistent_workers=True,
)
val_loader = DataLoader(
val_data,
batch_size=32,
shuffle=False,
num_workers=6,
pin_memory=True,
persistent_workers=True,
)
test_loader = DataLoader(
test_data,
batch_size=32,
shuffle=False,
num_workers=6,
pin_memory=True,
persistent_workers=True,
)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
trained_model, best_accuracy, best_epoch = tr.train(
model=model,
train_loader=train_loader,
val_loader=val_loader,
criterion=criterion,
optimizer=optimizer,
version=version,
epochs=10,
device=device,
max_grad_norm=1.0,
early_stopping_patience=3,
early_stopping_delta=0.01,
)
print(f"Best model was saved at epoch: {best_epoch}")
# Load the best model before testing
best_model_path = f"./output/version_{version}/best_model_{version}.pth"
model.load_state_dict(torch.load(best_model_path, map_location=device))
# Testing
model.eval()
true_labels = []
predicted_labels = []
predicted_probs = []
with torch.no_grad():
correct = 0
total = 0
for titles, texts, labels in test_loader:
titles, texts, labels = (
titles.to(device),
texts.to(device),
labels.to(device).float(),
)
outputs = model(titles, texts).squeeze()
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted == labels).sum().item()
true_labels.extend(labels.cpu().numpy())
predicted_labels.extend(predicted.cpu().numpy())
predicted_probs.extend(outputs.cpu().numpy())
test_accuracy = 100 * correct / total
f1 = f1_score(true_labels, predicted_labels)
auc_roc = roc_auc_score(true_labels, predicted_probs)
print(
f"Test Accuracy: {test_accuracy:.2f}%, F1 Score: {f1:.4f}, AUC-ROC: {auc_roc:.4f}"
)
# Create DataFrame and Save to CSV
confusion_data = pd.DataFrame({"True": true_labels, "Predicted": predicted_labels})
confusion_data.to_csv(
f"./output/version_{version}/confusion_matrix_data_{version}.csv", index=False
)
|