File size: 2,142 Bytes
617d6c4
8a813aa
 
617d6c4
 
8a813aa
617d6c4
 
8a813aa
abeace2
 
617d6c4
8a813aa
abeace2
 
 
 
 
8a813aa
 
abeace2
 
 
 
 
 
b29e3e1
617d6c4
 
 
 
 
8a813aa
617d6c4
8a813aa
abeace2
b29e3e1
 
617d6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29e3e1
617d6c4
 
 
b29e3e1
f850092
617d6c4
 
abeace2
 
 
 
b29e3e1
 
 
 
 
abeace2
 
617d6c4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Traditional Chinese
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 zh-TW
      type: mozilla-foundation/common_voice_11_0
      config: zh-TW
      split: test
      args: zh-TW
    metrics:
    - name: Wer
      type: wer
      value: 32.594792142530835
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Traditional Chinese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 zh-TW dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3250
- Wer: 32.5948

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3465        | 1.05  | 200  | 0.3499          | 41.9324 |
| 0.2137        | 2.1   | 400  | 0.2953          | 36.2951 |
| 0.1255        | 4.01  | 600  | 0.2927          | 33.7232 |
| 0.0509        | 5.06  | 800  | 0.3149          | 34.0566 |
| 0.0164        | 6.11  | 1000 | 0.3250          | 32.5948 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2