File size: 2,141 Bytes
3a44fa5 4ae1954 3a44fa5 4ae1954 3a44fa5 4ae1954 fa6c669 4b98bda 3a44fa5 4ae1954 fa6c669 4b98bda fa6c669 4ae1954 fa6c669 4b98bda 4ae1954 4b98bda 3a44fa5 4ae1954 3a44fa5 4ae1954 22e3a01 4ae1954 3a44fa5 fa6c669 3a44fa5 fa6c669 22e3a01 3a44fa5 fa6c669 3a44fa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- ja
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Japanese
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 ja
type: mozilla-foundation/common_voice_11_0
config: ja
split: test
args: ja
metrics:
- type: wer
value: 13.768684731417652
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Japanese
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ja dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2543
- Wer: 13.7687
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2515 | 1.06 | 200 | 0.2881 | 16.9442 |
| 0.2212 | 2.12 | 400 | 0.2616 | 14.6884 |
| 0.0774 | 4.04 | 600 | 0.2543 | 13.7687 |
| 0.0564 | 5.09 | 800 | 0.2731 | 13.9769 |
| 0.0221 | 7.01 | 1000 | 0.2814 | 13.9700 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|