File size: 2,141 Bytes
3a44fa5
4ae1954
 
3a44fa5
 
4ae1954
3a44fa5
 
4ae1954
fa6c669
 
4b98bda
3a44fa5
4ae1954
fa6c669
 
 
4b98bda
fa6c669
4ae1954
 
fa6c669
 
 
 
4b98bda
4ae1954
4b98bda
3a44fa5
 
 
 
 
4ae1954
3a44fa5
4ae1954
22e3a01
4ae1954
 
3a44fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6c669
3a44fa5
 
 
fa6c669
22e3a01
3a44fa5
 
fa6c669
 
 
 
 
 
 
 
 
 
 
3a44fa5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- ja
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Japanese
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 ja
      type: mozilla-foundation/common_voice_11_0
      config: ja
      split: test
      args: ja
    metrics:
    - type: wer
      value: 13.768684731417652
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Japanese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ja dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2543
- Wer: 13.7687

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2515        | 1.06  | 200  | 0.2881          | 16.9442 |
| 0.2212        | 2.12  | 400  | 0.2616          | 14.6884 |
| 0.0774        | 4.04  | 600  | 0.2543          | 13.7687 |
| 0.0564        | 5.09  | 800  | 0.2731          | 13.9769 |
| 0.0221        | 7.01  | 1000 | 0.2814          | 13.9700 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2