metadata
tags:
- merge
- mergekit
- lazymergekit
- OmnicromsBrain/StoryFusion-7B
- jdqwoi/TooManyMixRolePlay-7B
base_model:
- OmnicromsBrain/StoryFusion-7B
- jdqwoi/TooManyMixRolePlay-7B
EXL2 quants of jdqwoi/TooManyMixRolePlay-7B-Story
4.00 bits per weight
5.00 bits per weight
6.00 bits per weight
7.00 bits per weight
8.00 bits per weight
TooManyMixRolePlay-7B-Story
TooManyMixRolePlay-7B-Story is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: OmnicromsBrain/StoryFusion-7B
layer_range: [0, 32]
- model: jdqwoi/TooManyMixRolePlay-7B
layer_range: [0, 32]
merge_method: slerp
base_model: OmnicromsBrain/StoryFusion-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jdqwoi/TooManyMixRolePlay-7B-Story"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])