File size: 5,619 Bytes
65dd0ae
 
 
 
 
dade68c
65dd0ae
dade68c
 
 
 
 
 
65dd0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from functools import partial
from typing import Optional, Tuple, Type

import torch
import torch.nn as nn
from segment_anything.modeling import MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
from segment_anything.modeling.common import LayerNorm2d
from segment_anything.modeling.image_encoder import (
    Block,
    PatchEmbed,
    window_partition,
    window_unpartition,
)


class CustomBlock(Block):
    def __init__(self, **kargs) -> None:
        super().__init__(**kargs)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        x = self.norm1(x)
        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)
            x = self.attn(x)
            # Reverse window partition
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))
        else:
            x = self.attn(x)

        x = shortcut + x
        x = x + self.mlp(self.norm2(x))

        return x


class CustomImageEncoderViT(nn.Module):
    def __init__(
        self,
        img_size: int = 1024,
        patch_size: int = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4.0,
        out_chans: int = 256,
        qkv_bias: bool = True,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        act_layer: Type[nn.Module] = nn.GELU,
        use_abs_pos: bool = True,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        window_size: int = 0,
        global_attn_indexes: Tuple[int, ...] = (),
    ) -> None:
        super().__init__()
        self.img_size = img_size

        self.patch_embed = PatchEmbed(
            kernel_size=(patch_size, patch_size),
            stride=(patch_size, patch_size),
            in_chans=in_chans,
            embed_dim=embed_dim,
        )

        self.pos_embed: Optional[nn.Parameter] = None
        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(
                    1, img_size // patch_size, img_size // patch_size, embed_dim
                )
            )

        self.blocks = nn.ModuleList()
        for i in range(depth):
            block = CustomBlock(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                norm_layer=norm_layer,
                act_layer=act_layer,
                use_rel_pos=use_rel_pos,
                rel_pos_zero_init=rel_pos_zero_init,
                window_size=window_size if i not in global_attn_indexes else 0,
                input_size=(img_size // patch_size, img_size // patch_size),
            )
            self.blocks.append(block)

        self.neck = nn.Sequential(
            nn.Conv2d(
                embed_dim,
                out_chans,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
            nn.Conv2d(
                out_chans,
                out_chans,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        if self.pos_embed is not None:
            x = x + self.pos_embed

        for blk in self.blocks:
            x = blk(x)

        x = self.neck(x.permute(0, 3, 1, 2))

        return x


def _build_sam_torchscript(
    encoder_embed_dim,
    encoder_depth,
    encoder_num_heads,
    encoder_global_attn_indexes,
    checkpoint=None,
):
    prompt_embed_dim = 256
    image_size = 1024
    vit_patch_size = 16
    image_embedding_size = image_size // vit_patch_size
    sam = Sam(
        image_encoder=CustomImageEncoderViT(
            depth=encoder_depth,
            embed_dim=encoder_embed_dim,
            img_size=image_size,
            mlp_ratio=4,
            norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
            num_heads=encoder_num_heads,
            patch_size=vit_patch_size,
            qkv_bias=True,
            use_rel_pos=True,
            global_attn_indexes=encoder_global_attn_indexes,
            window_size=14,
            out_chans=prompt_embed_dim,
        ),
        prompt_encoder=PromptEncoder(
            embed_dim=prompt_embed_dim,
            image_embedding_size=(image_embedding_size, image_embedding_size),
            input_image_size=(image_size, image_size),
            mask_in_chans=16,
        ),
        mask_decoder=MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        ),
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )
    sam.eval()
    if checkpoint is not None:
        with open(checkpoint, "rb") as f:
            state_dict = torch.load(f)
        sam.load_state_dict(state_dict)
    return sam


def build_sam_vit_h_torchscript(checkpoint=None):
    return _build_sam_torchscript(
        encoder_embed_dim=1280,
        encoder_depth=32,
        encoder_num_heads=16,
        encoder_global_attn_indexes=[7, 15, 23, 31],
        checkpoint=checkpoint,
    )