File size: 2,027 Bytes
2f0088a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: twitter-roberta-base-sentiment-latest_30122024T181940
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# twitter-roberta-base-sentiment-latest_30122024T181940

This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8705
- F1: 0.6956
- Learning Rate: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Rate   |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log        | 1.0   | 323  | 0.9172          | 0.6218 | 0.0000 |
| 1.0967        | 2.0   | 646  | 0.8711          | 0.6842 | 0.0000 |
| 1.0967        | 3.0   | 969  | 0.8705          | 0.6956 | 0.0000 |
| 0.6577        | 4.0   | 1292 | 0.9586          | 0.6920 | 0.0000 |
| 0.4085        | 5.0   | 1615 | 0.9746          | 0.6869 | 0.0    |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.20.3