File size: 2,394 Bytes
1821682 b3e83af 1821682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language: en
---
# ChartVE (Chart Visual Entailment)
ChartVE is a visual entailment model introduced in the paper "Do LVLMs Understand Charts?
Analyzing and Correcting Factual Errors in Chart Captioning" for evaluating the factuality of a generated caption sentence with regard to the input chart. The model takes in a chart figure and a caption sentence as input, and outputs an entailment probability. To compute the the entailment probability, please refer to the "How to use" section below. The underlying architecture of this model is UniChart.
### How to use
Using the pre-trained model directly:
```python
from transformers import DonutProcessor, VisionEncoderDecoderModel
from PIL import Image
model_name = "khhuang/chartve"
model = VisionEncoderDecoderModel.from_pretrained(model_name).cuda()
processor = DonutProcessor.from_pretrained(model_name)
image_path = "PATH_TO_IMAGE"
def format_query(sentence):
return f"Does the image entails this statement: \"{sentence}\"?"
# Format text inputs
CAPTION_SENTENCE = "The state that has the highest number of population is California."
query = format_query(CAPTION_SENTENCE)
# Encode chart figure and tokenize text
img = Image.open(IMAGE_PATH)
pixel_values = processor(img.convert("RGB"), random_padding=False, return_tensors="pt").pixel_values
pixel_values = pixel_values.cuda()
decoder_input_ids = processor.tokenizer(query, add_special_tokens=False, return_tensors="pt", max_length=510).input_ids.cuda()#.squeeze(0)
outputs = model(pixel_values, decoder_input_ids=decoder_input_ids)
# positive_logit = outputs['logits'].squeeze()[-1,49922]
# negative_logit = outputs['logits'].squeeze()[-1,2334]
# Probe the probability of generating "yes"
binary_entail_prob_positive = torch.nn.functional.softmax(outputs['logits'].squeeze()[-1,[2334, 49922]])[1].item()
# binary_entail_prob_positive corresponds to the computed probability that the chart entails the caption sentence.
```
### Citation
```
@inproceedings{huang-etal-2023-do,
title = "Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning",
author = "Huang, Kung-Hsiang and
Zhou, Mingyang and
Chan, Hou Pong and
Fung, Yi R. and
Wang, Zhenhailong and
Zhang, Lingyu and
Chang, Shih-Fu and
Ji, Heng",
year={2023},
archivePrefix={arXiv},
primaryClass={cs.CL}
```
}
|