File size: 2,402 Bytes
37b3a01 5cbc615 37b3a01 5cbc615 37b3a01 5cbc615 37b3a01 5cbc615 37b3a01 5cbc615 37b3a01 d80bcaf 5cbc615 37b3a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta_crf_ner_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta_crf_ner_finetuned
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8044
- Recall: 0.6309
- F1: 0.7014
- Accuracy: 0.8064
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0 | 1.0 | 85 | nan | 1.0 | 0.0 | 0.0 | 0.7707 |
| 0.0 | 2.0 | 170 | nan | 0.5105 | 0.1412 | 0.1284 | 0.8910 |
| 0.0 | 3.0 | 255 | nan | 0.3443 | 0.3458 | 0.3346 | 0.9210 |
| 0.0 | 4.0 | 340 | nan | 0.5898 | 0.5990 | 0.5930 | 0.9423 |
| 0.0 | 5.0 | 425 | nan | 0.5650 | 0.5795 | 0.5606 | 0.9421 |
| 0.0 | 6.0 | 510 | nan | 0.6261 | 0.6867 | 0.6515 | 0.9470 |
| 0.0 | 7.0 | 595 | nan | 0.6874 | 0.6640 | 0.6724 | 0.9457 |
| 0.0 | 8.0 | 680 | nan | 0.6825 | 0.7224 | 0.7011 | 0.9549 |
| 0.0 | 9.0 | 765 | nan | 0.6744 | 0.7224 | 0.6972 | 0.9551 |
| 0.0 | 10.0 | 850 | nan | 0.7020 | 0.7062 | 0.7035 | 0.9552 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|