metadata
license: mit
base_model: khadija69/roberta_ASE_clb_large_layers_tail
tags:
- generated_from_keras_callback
model-index:
- name: khadija69/roberta_ASE_clb_ACCURACY
results: []
khadija69/roberta_ASE_clb_ACCURACY
This model is a fine-tuned version of khadija69/roberta_ASE_clb_large_layers_tail on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1366
- Train Accuracy: 0.6940
- Validation Loss: 0.2910
- Validation Accuracy: 0.6609
- Epoch: 5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.2680 | 0.6558 | 0.2525 | 0.6643 | 0 |
0.2325 | 0.6609 | 0.2515 | 0.6654 | 1 |
0.1997 | 0.6755 | 0.2630 | 0.6556 | 2 |
0.1735 | 0.6763 | 0.2681 | 0.6652 | 3 |
0.1546 | 0.6789 | 0.2752 | 0.6586 | 4 |
0.1366 | 0.6940 | 0.2910 | 0.6609 | 5 |
Framework versions
- Transformers 4.41.1
- TensorFlow 2.15.0
- Datasets 2.19.2
- Tokenizers 0.19.1