metadata
license: apache-2.0
base_model: microsoft/resnet-18
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- precision
model-index:
- name: resnet-18-finetuned-fraud
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Precision
type: precision
value: 0
resnet-18-finetuned-fraud
This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2060572751382446080.0000
- Precision: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision |
---|---|---|---|---|
No log | 1.0 | 2 | 2060572751382446080.0000 | 0.0 |
No log | 2.0 | 4 | 2060572751382446080.0000 | 0.0 |
No log | 3.0 | 6 | 2060572751382446080.0000 | 0.0 |
No log | 4.0 | 8 | 2060572751382446080.0000 | 0.0 |
2569276759331150336.0000 | 5.0 | 10 | 2060572751382446080.0000 | 0.0 |
2569276759331150336.0000 | 6.0 | 12 | 2060572751382446080.0000 | 0.0 |
2569276759331150336.0000 | 7.0 | 14 | 2060572751382446080.0000 | 0.0 |
2569276759331150336.0000 | 8.0 | 16 | 2060572751382446080.0000 | 0.0 |
2569276759331150336.0000 | 9.0 | 18 | 2060572751382446080.0000 | 0.0 |
2411513773224361984.0000 | 10.0 | 20 | 2060572751382446080.0000 | 0.0 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1