|
--- |
|
language: |
|
- en |
|
- ko |
|
license: llama3 |
|
library_name: transformers |
|
base_model: |
|
- meta-llama/Meta-Llama-3-8B |
|
--- |
|
|
|
<a href="https://taemin6697.github.io/"> |
|
<img src="https://github.com/taemin6697/taemin6697/assets/96530685/46a29020-e640-4e74-9d77-f12e466fc706" width="40%" height="50%"> |
|
</a> |
|
|
|
# Hansung Bllossom | [Demo]() | [Developer κΉνλ―Ό](https://taemin6697.github.io/) | [Github](https://github.com/taemin6697/HansungGPT/tree/main) | |
|
|
|
```bash |
|
νμ±λνκ΅ QA κΈ°λ°μΌλ‘ νμ΅μν¨Hansung-Bllossom-8B λ₯Ό μΆμν©λλ€. |
|
μ΄λ MLP-KTLim/llama-3-Korean-Bllossom-8B μ κΈ°λ°μΌλ‘ νμ΅λμμ΅λλ€. |
|
``` |
|
|
|
The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features: |
|
|
|
* **Knowledge Linking**: Linking Korean and English knowledge through additional training |
|
* **Vocabulary Expansion**: Expansion of Korean vocabulary to enhance Korean expressiveness. |
|
* **Instruction Tuning**: Tuning using custom-made instruction following data specialized for Korean language and Korean culture |
|
* **Human Feedback**: DPO has been applied |
|
* **Vision-Language Alignment**: Aligning the vision transformer with this language model |
|
|
|
## Example code |
|
|
|
### Install Dependencies |
|
```bash |
|
pip install torch transformers==4.40.0 accelerate |
|
``` |
|
|
|
### Python code with Pipeline |
|
```python |
|
import transformers |
|
import torch |
|
|
|
model_id = "MLP-KTLim/llama-3-Korean-Bllossom-8B" |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
) |
|
|
|
pipeline.model.eval() |
|
|
|
PROMPT = '''λΉμ μ μ μ©ν AI μ΄μμ€ν΄νΈμ
λλ€. μ¬μ©μμ μ§μμ λν΄ μΉμ νκ³ μ ννκ² λ΅λ³ν΄μΌ ν©λλ€. |
|
You are a helpful AI assistant, you'll need to answer users' queries in a friendly and accurate manner.''' |
|
instruction = "νμ±λνκ΅μμλ μ΄λ€ μΆμ λ νμ¬κ° μ΄λ¦¬λμ?" |
|
|
|
messages = [ |
|
{"role": "system", "content": f"{PROMPT}"}, |
|
{"role": "user", "content": f"{instruction}"} |
|
] |
|
|
|
prompt = pipeline.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
terminators = [ |
|
pipeline.tokenizer.eos_token_id, |
|
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = pipeline( |
|
prompt, |
|
max_new_tokens=2048, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9 |
|
) |
|
|
|
print(outputs[0]["generated_text"][len(prompt):]) |
|
|
|
``` |
|
|
|
### Python code with AutoModel |
|
```python |
|
|
|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = 'MLP-KTLim/llama-3-Korean-Bllossom-8B' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
|
|
model.eval() |
|
|
|
PROMPT = '''λΉμ μ μ μ©ν AI μ΄μμ€ν΄νΈμ
λλ€. μ¬μ©μμ μ§μμ λν΄ μΉμ νκ³ μ ννκ² λ΅λ³ν΄μΌ ν©λλ€. |
|
You are a helpful AI assistant, you'll need to answer users' queries in a friendly and accurate manner.''' |
|
instruction = "νμ±λνκ΅λ μΈμ μ€λ¦½λμλμ?" |
|
|
|
messages = [ |
|
{"role": "system", "content": f"{PROMPT}"}, |
|
{"role": "user", "content": f"{instruction}"} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=2048, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9 |
|
) |
|
|
|
print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|
|
## Citation |
|
**Language Model** |
|
```text |
|
@misc{bllossom, |
|
author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim}, |
|
title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean}, |
|
year = {2024}, |
|
journal = {LREC-COLING 2024}, |
|
paperLink = {\url{https://arxiv.org/pdf/2403.10882}}, |
|
}, |
|
} |
|
``` |
|
|
|
**Vision-Language Model** |
|
```text |
|
@misc{bllossom-V, |
|
author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim}, |
|
title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment}, |
|
year = {2024}, |
|
publisher = {GitHub}, |
|
journal = {NAACL 2024 findings}, |
|
paperLink = {\url{https://arxiv.org/pdf/2403.11399}}, |
|
}, |
|
} |
|
``` |
|
|
|
## Contact |
|
- κΉνλ―Ό(Taemin Kim), Intelligent System. `taemin6697@gmail.com` |
|
|
|
## Contributor |
|
- κΉνλ―Ό(Taemin Kim), Intelligent System. `taemin6697@gmail.com` |