File size: 43,107 Bytes
bec574b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8af5e
 
 
bec574b
 
 
3a8af5e
bec574b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8af5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec574b
3a8af5e
 
 
 
 
 
 
bec574b
3a8af5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec574b
3a8af5e
 
 
bec574b
 
3a8af5e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
'''
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
'''
import logging
import traceback,torchaudio,warnings
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
warnings.simplefilter(action='ignore', category=FutureWarning)

import os, re, sys, json
import pdb
import torch
from text.LangSegmenter import LangSegmenter

try:
    import gradio.analytics as analytics
    analytics.version_check = lambda:None
except:...
version=model_version="v3"
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2Gv3.pth"]
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1v3.ckpt"]


_ =[[],[]]
for i in range(1):
    if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
    if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
pretrained_gpt_name,pretrained_sovits_name = _


if os.path.exists(f"./weight.json"):
    pass
else:
    with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file)

with open(f"./weight.json", 'r', encoding="utf-8") as file:
    weight_data = file.read()
    weight_data=json.loads(weight_data)
    gpt_path = os.environ.get(
        "gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name))
    sovits_path = os.environ.get(
        "sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name))
    if isinstance(gpt_path,list):
        gpt_path = gpt_path[0]
    if isinstance(sovits_path,list):
        sovits_path = sovits_path[0]

# gpt_path = os.environ.get(
#     "gpt_path", pretrained_gpt_name
# )
# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
cnhubert_base_path = os.environ.get(
    "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
    "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa
from feature_extractor import cnhubert

cnhubert.cnhubert_base_path = cnhubert_base_path

from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from tools.my_utils import load_audio
from tools.i18n.i18n import I18nAuto, scan_language_list

language=os.environ.get("language","Auto")
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)

# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'  # 确保直接启动推理UI时也能够设置。

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

dict_language_v1 = {
    i18n("中文"): "all_zh",#全部按中文识别
    i18n("英文"): "en",#全部按英文识别#######不变
    i18n("日文"): "all_ja",#全部按日文识别
    i18n("中英混合"): "zh",#按中英混合识别####不变
    i18n("日英混合"): "ja",#按日英混合识别####不变
    i18n("多语种混合"): "auto",#多语种启动切分识别语种
}
dict_language_v2 = {
    i18n("中文"): "all_zh",#全部按中文识别
    i18n("英文"): "en",#全部按英文识别#######不变
    i18n("日文"): "all_ja",#全部按日文识别
    i18n("粤语"): "all_yue",#全部按中文识别
    i18n("韩文"): "all_ko",#全部按韩文识别
    i18n("中英混合"): "zh",#按中英混合识别####不变
    i18n("日英混合"): "ja",#按日英混合识别####不变
    i18n("粤英混合"): "yue",#按粤英混合识别####不变
    i18n("韩英混合"): "ko",#按韩英混合识别####不变
    i18n("多语种混合"): "auto",#多语种启动切分识别语种
    i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
}
dict_language = dict_language_v1 if version =='v1' else dict_language_v2

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    return phone_level_feature.T


class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")


ssl_model = cnhubert.get_model()
if is_half == True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)

resample_transform_dict={}
def resample(audio_tensor, sr0):
    global resample_transform_dict
    if sr0 not in resample_transform_dict:
        resample_transform_dict[sr0] = torchaudio.transforms.Resample(
            sr0, 24000
        ).to(device)
    return resample_transform_dict[sr0](audio_tensor)

def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
    global vq_model, hps, version, model_version, dict_language
    '''
        v1:about 82942KB
        half thr:82978KB
        v2:about 83014KB
        half thr:100MB
        v1base:103490KB
        half thr:103520KB
        v2base:103551KB
        v3:about 750MB
        
        ~82978K~100M~103420~700M
        v1-v2-v1base-v2base-v3
        version:
            symbols version and timebre_embedding version
        model_version:
            sovits is v1/2 (VITS) or v3 (shortcut CFM DiT)
    '''
    size=os.path.getsize(sovits_path)
    if size<82978*1024:
        model_version=version="v1"
    elif size<100*1024*1024:
        model_version=version="v2"
    elif size<103520*1024:
        model_version=version="v1"
    elif size<700*1024*1024:
        model_version = version = "v2"
    else:
        version = "v2"
        model_version="v3"

    dict_language = dict_language_v1 if version =='v1' else dict_language_v2
    if prompt_language is not None and text_language is not None:
        if prompt_language in list(dict_language.keys()):
            prompt_text_update, prompt_language_update = {'__type__':'update'},  {'__type__':'update', 'value':prompt_language}
        else:
            prompt_text_update = {'__type__':'update', 'value':''}
            prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
        if text_language in list(dict_language.keys()):
            text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
        else:
            text_update = {'__type__':'update', 'value':''}
            text_language_update = {'__type__':'update', 'value':i18n("中文")}
        if model_version=="v3":
            visible_sample_steps=True
            visible_inp_refs=False
        else:
            visible_sample_steps=False
            visible_inp_refs=True
        yield  {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False}

    dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False)
    hps = dict_s2["config"]
    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
        hps.model.version = "v1"
    else:
        hps.model.version = "v2"
    version=hps.model.version
    # print("sovits版本:",hps.model.version)
    if model_version!="v3":
        vq_model = SynthesizerTrn(
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model
        )
        model_version=version
    else:
        vq_model = SynthesizerTrnV3(
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model
        )
    if ("pretrained" not in sovits_path):
        try:
            del vq_model.enc_q
        except:pass
    if is_half == True:
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
    with open("./weight.json")as f:
        data=f.read()
        data=json.loads(data)
        data["SoVITS"][version]=sovits_path
    with open("./weight.json","w")as f:f.write(json.dumps(data))


try:next(change_sovits_weights(sovits_path))
except:pass

def change_gpt_weights(gpt_path):
    global hz, max_sec, t2s_model, config
    hz = 50
    dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    max_sec = config["data"]["max_sec"]
    t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
    t2s_model.load_state_dict(dict_s1["weight"])
    if is_half == True:
        t2s_model = t2s_model.half()
    t2s_model = t2s_model.to(device)
    t2s_model.eval()
    # total = sum([param.nelement() for param in t2s_model.parameters()])
    # print("Number of parameter: %.2fM" % (total / 1e6))
    with open("./weight.json")as f:
        data=f.read()
        data=json.loads(data)
        data["GPT"][version]=gpt_path
    with open("./weight.json","w")as f:f.write(json.dumps(data))


change_gpt_weights(gpt_path)
os.environ["HF_ENDPOINT"]          = "https://hf-mirror.com"
import torch,soundfile
now_dir = os.getcwd()
import soundfile

def init_bigvgan():
    global model
    from BigVGAN import bigvgan
    model = bigvgan.BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False)  # if True, RuntimeError: Ninja is required to load C++ extensions
    # remove weight norm in the model and set to eval mode
    model.remove_weight_norm()
    model = model.eval()
    if is_half == True:
        model = model.half().to(device)
    else:
        model = model.to(device)

if model_version!="v3":model=None
else:init_bigvgan()


def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    maxx=audio.abs().max()
    if(maxx>1):audio/=min(2,maxx)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(
        audio_norm,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    return spec

def clean_text_inf(text, language, version):
    phones, word2ph, norm_text = clean_text(text, language, version)
    phones = cleaned_text_to_sequence(phones, version)
    return phones, word2ph, norm_text

dtype=torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
    language=language.replace("all_","")
    if language == "zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
    else:
        bert = torch.zeros(
            (1024, len(phones)),
            dtype=torch.float16 if is_half == True else torch.float32,
        ).to(device)

    return bert


splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }


def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text

from text import chinese
def get_phones_and_bert(text,language,version,final=False):
    if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
        language = language.replace("all_","")
        if language == "en":
            formattext = text
        else:
            # 因无法区别中日韩文汉字,以用户输入为准
            formattext = text
        while "  " in formattext:
            formattext = formattext.replace("  ", " ")
        if language == "zh":
            if re.search(r'[A-Za-z]', formattext):
                formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
                formattext = chinese.mix_text_normalize(formattext)
                return get_phones_and_bert(formattext,"zh",version)
            else:
                phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
                bert = get_bert_feature(norm_text, word2ph).to(device)
        elif language == "yue" and re.search(r'[A-Za-z]', formattext):
                formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
                formattext = chinese.mix_text_normalize(formattext)
                return get_phones_and_bert(formattext,"yue",version)
        else:
            phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
            bert = torch.zeros(
                (1024, len(phones)),
                dtype=torch.float16 if is_half == True else torch.float32,
            ).to(device)
    elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
        textlist=[]
        langlist=[]
        if language == "auto":
            for tmp in LangSegmenter.getTexts(text):
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        elif language == "auto_yue":
            for tmp in LangSegmenter.getTexts(text):
                if tmp["lang"] == "zh":
                    tmp["lang"] = "yue"
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        else:
            for tmp in LangSegmenter.getTexts(text):
                if tmp["lang"] == "en":
                    langlist.append(tmp["lang"])
                else:
                    # 因无法区别中日韩文汉字,以用户输入为准
                    langlist.append(language)
                textlist.append(tmp["text"])
        print(textlist)
        print(langlist)
        phones_list = []
        bert_list = []
        norm_text_list = []
        for i in range(len(textlist)):
            lang = langlist[i]
            phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
            bert = get_bert_inf(phones, word2ph, norm_text, lang)
            phones_list.append(phones)
            norm_text_list.append(norm_text)
            bert_list.append(bert)
        bert = torch.cat(bert_list, dim=1)
        phones = sum(phones_list, [])
        norm_text = ''.join(norm_text_list)

    if not final and len(phones) < 6:
        return get_phones_and_bert("." + text,language,version,final=True)

    return phones,bert.to(dtype),norm_text

from module.mel_processing import spectrogram_torch,spec_to_mel_torch
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
    spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center)
    mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax)
    return mel
mel_fn_args = {
    "n_fft": 1024,
    "win_size": 1024,
    "hop_size": 256,
    "num_mels": 100,
    "sampling_rate": 24000,
    "fmin": 0,
    "fmax": None,
    "center": False
}

spec_min = -12
spec_max = 2
def norm_spec(x):
    return (x - spec_min) / (spec_max - spec_min) * 2 - 1
def denorm_spec(x):
    return (x + 1) / 2 * (spec_max - spec_min) + spec_min
mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args)


def merge_short_text_in_array(texts, threshold):
    if (len(texts)) < 2:
        return texts
    result = []
    text = ""
    for ele in texts:
        text += ele
        if len(text) >= threshold:
            result.append(text)
            text = ""
    if (len(text) > 0):
        if len(result) == 0:
            result.append(text)
        else:
            result[len(result) - 1] += text
    return result

##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
# cache_tokens={}#暂未实现清理机制
cache= {}
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=None,sample_steps=8):
    global cache
    if ref_wav_path:pass
    else:gr.Warning(i18n('请上传参考音频'))
    if text:pass
    else:gr.Warning(i18n('请填入推理文本'))
    t = []
    if prompt_text is None or len(prompt_text) == 0:
        ref_free = True
    if model_version=="v3":ref_free=False#s2v3暂不支持ref_free
    t0 = ttime()
    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]


    if not ref_free:
        prompt_text = prompt_text.strip("\n")
        if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
        print(i18n("实际输入的参考文本:"), prompt_text)
    text = text.strip("\n")
    # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
    
    print(i18n("实际输入的目标文本:"), text)
    zero_wav = np.zeros(
        int(hps.data.sampling_rate * 0.3),
        dtype=np.float16 if is_half == True else np.float32,
    )
    if not ref_free:
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000)
            if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
                gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
                raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
            wav16k = torch.from_numpy(wav16k)
            zero_wav_torch = torch.from_numpy(zero_wav)
            if is_half == True:
                wav16k = wav16k.half().to(device)
                zero_wav_torch = zero_wav_torch.half().to(device)
            else:
                wav16k = wav16k.to(device)
                zero_wav_torch = zero_wav_torch.to(device)
            wav16k = torch.cat([wav16k, zero_wav_torch])
            ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
                "last_hidden_state"
            ].transpose(
                1, 2
            )  # .float()
            codes = vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0]
            prompt = prompt_semantic.unsqueeze(0).to(device)

    t1 = ttime()
    t.append(t1-t0)

    if (how_to_cut == i18n("凑四句一切")):
        text = cut1(text)
    elif (how_to_cut == i18n("凑50字一切")):
        text = cut2(text)
    elif (how_to_cut == i18n("按中文句号。切")):
        text = cut3(text)
    elif (how_to_cut == i18n("按英文句号.切")):
        text = cut4(text)
    elif (how_to_cut == i18n("按标点符号切")):
        text = cut5(text)
    while "\n\n" in text:
        text = text.replace("\n\n", "\n")
    print(i18n("实际输入的目标文本(切句后):"), text)
    texts = text.split("\n")
    texts = process_text(texts)
    texts = merge_short_text_in_array(texts, 5)
    audio_opt = []
    ###s2v3暂不支持ref_free
    if not ref_free:
        phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)

    for i_text,text in enumerate(texts):
        # 解决输入目标文本的空行导致报错的问题
        if (len(text.strip()) == 0):
            continue
        if (text[-1] not in splits): text += "。" if text_language != "en" else "."
        print(i18n("实际输入的目标文本(每句):"), text)
        phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
        print(i18n("前端处理后的文本(每句):"), norm_text2)
        if not ref_free:
            bert = torch.cat([bert1, bert2], 1)
            all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
        else:
            bert = bert2
            all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)

        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)

        t2 = ttime()
        # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
        # print(cache.keys(),if_freeze)
        if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
        else:
            with torch.no_grad():
                pred_semantic, idx = t2s_model.model.infer_panel(
                    all_phoneme_ids,
                    all_phoneme_len,
                    None if ref_free else prompt,
                    bert,
                    # prompt_phone_len=ph_offset,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    early_stop_num=hz * max_sec,
                )
                pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
                cache[i_text]=pred_semantic
        t3 = ttime()
        ###v3不存在以下逻辑和inp_refs
        if model_version!="v3":
            refers=[]
            if(inp_refs):
                for path in inp_refs:
                    try:
                        refer = get_spepc(hps, path.name).to(dtype).to(device)
                        refers.append(refer)
                    except:
                        traceback.print_exc()
            if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
            audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
        else:
            refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)#######这里要重采样切到32k,因为src是24k的,没有单独的32k的src,所以不能改成2个路径
            phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
            phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
            fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
            ref_audio, sr = torchaudio.load(ref_wav_path)
            ref_audio=ref_audio.to(device).float()
            if (ref_audio.shape[0] == 2):
                ref_audio = ref_audio.mean(0).unsqueeze(0)
            if sr!=24000:
                ref_audio=resample(ref_audio,sr)
            mel2 = mel_fn(ref_audio.to(dtype))
            mel2 = norm_spec(mel2)
            T_min = min(mel2.shape[2], fea_ref.shape[2])
            mel2 = mel2[:, :, :T_min]
            fea_ref = fea_ref[:, :, :T_min]
            if (T_min > 468):
                mel2 = mel2[:, :, -468:]
                fea_ref = fea_ref[:, :, -468:]
                T_min = 468
            chunk_len = 934 - T_min
            fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge)
            cfm_resss = []
            idx = 0
            while (1):
                fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
                if (fea_todo_chunk.shape[-1] == 0): break
                idx += chunk_len
                fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
                cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
                cfm_res = cfm_res[:, :, mel2.shape[2]:]
                mel2 = cfm_res[:, :, -T_min:]
                fea_ref = fea_todo_chunk[:, :, -T_min:]
                cfm_resss.append(cfm_res)
            cmf_res = torch.cat(cfm_resss, 2)
            cmf_res = denorm_spec(cmf_res)
            if model==None:init_bigvgan()
            with torch.inference_mode():
                wav_gen = model(cmf_res)
                audio=wav_gen[0][0].cpu().detach().numpy()
            max_audio=np.abs(audio).max()#简单防止16bit爆音
            if max_audio>1:audio/=max_audio
        audio_opt.append(audio)
        audio_opt.append(zero_wav)
        t4 = ttime()
        t.extend([t2 - t1,t3 - t2, t4 - t3])
        t1 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % 
           (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
           )
    sr=hps.data.sampling_rate if model_version!="v3"else 24000
    yield sr, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)


def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
    else:
        opts = [inp]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return inp
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    # print(opts)
    if len(opts) > 1 and len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut3(inp):
    inp = inp.strip("\n")
    opts = ["%s" % item for item in inp.strip("。").split("。")]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return  "\n".join(opts)

def cut4(inp):
    inp = inp.strip("\n")
    opts = ["%s" % item for item in inp.strip(".").split(".")]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
    inp = inp.strip("\n")
    punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
    mergeitems = []
    items = []

    for i, char in enumerate(inp):
        if char in punds:
            if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
                items.append(char)
            else:
                items.append(char)
                mergeitems.append("".join(items))
                items = []
        else:
            items.append(char)

    if items:
        mergeitems.append("".join(items))

    opt = [item for item in mergeitems if not set(item).issubset(punds)]
    return "\n".join(opt)


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split('(\d+)', s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts

def process_text(texts):
    _text=[]
    if all(text in [None, " ", "\n",""] for text in texts):
        raise ValueError(i18n("请输入有效文本"))
    for text in texts:
        if text in  [None, " ", ""]:
            pass
        else:
            _text.append(text)
    return _text


def change_choices():
    SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
    return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}


SoVITS_weight_root=["SoVITS_weights","SoVITS_weights_v2","SoVITS_weights_v3"]
GPT_weight_root=["GPT_weights","GPT_weights_v2","GPT_weights_v3"]
for path in SoVITS_weight_root+GPT_weight_root:
    os.makedirs(path,exist_ok=True)


def get_weights_names(GPT_weight_root, SoVITS_weight_root):
    SoVITS_names = [i for i in pretrained_sovits_name]
    for path in SoVITS_weight_root:
        for name in os.listdir(path):
            if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
    GPT_names = [i for i in pretrained_gpt_name]
    for path in GPT_weight_root:
        for name in os.listdir(path):
            if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
    return SoVITS_names, GPT_names


SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)

def html_center(text, label='p'):
    return f"""<div style="text-align: center; margin: 100; padding: 50;">
                <{label} style="margin: 0; padding: 0;">{text}</{label}>
                </div>"""

def html_left(text, label='p'):
    return f"""<div style="text-align: left; margin: 0; padding: 0;">
                <{label} style="margin: 0; padding: 0;">{text}</{label}>
                </div>"""


import gradio as gr
import torch
import torch.nn.functional as F
import numpy as np
import torchaudio
import librosa

def get_code_from_wav(wav_path):
    """Extract codes from input speech audio"""
    wav16k, sr = librosa.load(wav_path, sr=16000)
    wav16k = torch.from_numpy(wav16k)
    if is_half:
        wav16k = wav16k.half().to(device)
    else:
        wav16k = wav16k.to(device)
    
    # Extract SSL features
    ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)
    
    # Extract latent codes from SSL features
    codes = vq_model.extract_latent(ssl_content)
    
    return codes

def vc_main(wav_path, text, language, prompt_wav, noise_scale=0.5, top_k=20, top_p=0.6, temperature=0.6, speed=1, sample_steps=8):
    """
    Voice Conversion function that supports both v2 and v3 model versions
    
    Args:
        wav_path: Path to source audio for conversion
        text: Corresponding text for phoneme extraction
        language: Language of the text
        prompt_wav: Path to target/reference voice
        noise_scale: Noise scale for v2 models
        top_k, top_p, temperature: Parameters for v3 models
        speed: Speed factor for audio playback
        sample_steps: Number of sample steps for v3 models
    
    Returns:
        Sampling rate and converted audio
    """
    # Get language format
    language = dict_language[language]
    
    # Get phones from text
    phones, word2ph, norm_text = clean_text_inf(text, language, version)
    
    # Get reference audio spectrogram
    refer = get_spepc(hps, prompt_wav).to(dtype).to(device)
    
    # Get codes from source audio
    source_codes = get_code_from_wav(wav_path)
    
    if model_version != "v3":
        # V1/V2 models voice conversion logic
        ge = vq_model.ref_enc(refer)  # [B, D, T/1]
        quantized = vq_model.quantizer.decode(source_codes[None, None])  # [B, D, T]
        
        # Interpolate if necessary for 25hz models
        if hps.model.semantic_frame_rate == "25hz":
            quantized = F.interpolate(
                quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
            )
        
        m_p, logs_p, y_mask = vq_model.enc_p(
            quantized, 
            torch.LongTensor([quantized.shape[-1]]).to(device),
            torch.LongTensor(phones).to(device).unsqueeze(0),
            torch.LongTensor([len(phones)]).to(device),
            ge
        )
        
        z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
        z = vq_model.flow(z_p, y_mask, g=ge, reverse=True)
        o = vq_model.dec((z * y_mask)[:, :, :], g=ge)  # [B, D=1, T], torch.float32 (-1, 1)
        audio = o.detach().cpu().numpy()[0, 0]
        
    else:
        # V3 model voice conversion logic
        if model is None:
            init_bigvgan()
        
        # For v3 models, inspect shape and prepare correctly
        # The shape problem is in how the codes are being passed to decode_encp
        
        # The error is: "b n d -> b d n" expects 3D tensor but got 4D: [1, 1, 225, 768]
        # This suggests source_codes may have a shape like [225, 768] or [1, 225, 768]
        
        # Prepare the semantic tensor for v3, ensuring it has the correct shape
        if source_codes.dim() == 3:  # If [B, T, D]
            semantic = source_codes
        elif source_codes.dim() == 2:  # If [T, D]
            semantic = source_codes.unsqueeze(0)  # Add batch dimension [1, T, D]
        else:
            # Handle unexpected shapes
            raise ValueError(f"Unexpected source_codes shape: {source_codes.shape}")
        
        # Prepare phoneme IDs
        phoneme_ids = torch.LongTensor(phones).to(device).unsqueeze(0)
        
        # Get reference audio features and global embedding
        fea_ref, ge = vq_model.decode_encp(semantic, phoneme_ids, refer)
        
        # Load and process reference audio
        ref_audio, sr = torchaudio.load(prompt_wav)
        ref_audio = ref_audio.to(device).float()
        if ref_audio.shape[0] == 2:  # Convert stereo to mono
            ref_audio = ref_audio.mean(0).unsqueeze(0)
        if sr != 24000:
            ref_audio = resample(ref_audio, sr)
        
        # Convert to mel spectrogram and normalize
        mel2 = mel_fn(ref_audio.to(dtype))
        mel2 = norm_spec(mel2)
        
        # Adjust time dimensions
        T_min = min(mel2.shape[2], fea_ref.shape[2])
        mel2 = mel2[:, :, :T_min]
        fea_ref = fea_ref[:, :, :T_min]
        
        if T_min > 468:
            mel2 = mel2[:, :, -468:]
            fea_ref = fea_ref[:, :, -468:]
            T_min = 468
        
        # Process source audio features with phoneme conditioning
        fea_todo, ge = vq_model.decode_encp(semantic, phoneme_ids, refer, ge)
        
        # Process audio in chunks
        chunk_len = 934 - T_min
        cfm_resss = []
        idx = 0
        
        while True:
            fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
            if fea_todo_chunk.shape[-1] == 0:
                break
            
            idx += chunk_len
            fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
            cfm_res = vq_model.cfm.inference(
                fea, 
                torch.LongTensor([fea.size(1)]).to(fea.device), 
                mel2, 
                sample_steps, 
                inference_cfg_rate=0
            )
            
            cfm_res = cfm_res[:, :, mel2.shape[2]:]
            mel2 = cfm_res[:, :, -T_min:]
            fea_ref = fea_todo_chunk[:, :, -T_min:]
            cfm_resss.append(cfm_res)
        
        # Concatenate results and convert to audio
        cmf_res = torch.cat(cfm_resss, 2)
        cmf_res = denorm_spec(cmf_res)
        
        with torch.inference_mode():
            wav_gen = model(cmf_res)
            audio = wav_gen[0][0].cpu().detach().numpy()
    
    # Normalize audio to prevent clipping
    max_audio = np.abs(audio).max()
    if max_audio > 1:
        audio /= max_audio
    
    sr = hps.data.sampling_rate if model_version != "v3" else 24000
    return sr, (audio * 32768).astype(np.int16)

# Create and launch the standalone Gradio interface for voice conversion
def launch_vc_ui():
    with gr.Blocks(title="GPT-SoVITS Voice Conversion") as vc_app:
        gr.Markdown("# GPT-SoVITS Voice Conversion")
        gr.Markdown(f"Current Model Version: {model_version}")
        
        with gr.Row():
            with gr.Column():
                source_audio = gr.Audio(type="filepath", label="Source Audio (to be converted)")
                text_input = gr.Textbox(label="Text content of the source audio")
                language_input = gr.Dropdown(
                    choices=list(dict_language.keys()),
                    value=i18n("中文"),
                    label=i18n("语言 / Language")
                )
                target_audio = gr.Audio(type="filepath", label="Target Voice (reference)")
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        speed = gr.Slider(
                            minimum=0.1, maximum=5, value=1, step=0.1, 
                            label=i18n("语速 / Speed")
                        )
                    
                    if model_version != "v3":
                        noise_scale = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.5, step=0.1, 
                            label="Noise Scale (V2 models only)"
                        )
                    else:
                        noise_scale = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.5, step=0.1, 
                            label="Noise Scale (ignored for V3)",
                            visible=False
                        )
                    
                    if model_version == "v3":
                        sample_steps = gr.Slider(
                            minimum=1, maximum=30, value=8, step=1, 
                            label=i18n("采样步数 / Sample Steps")
                        )
                        top_k = gr.Slider(
                            minimum=1, maximum=100, value=20, step=1, 
                            label=i18n("Top K")
                        )
                        top_p = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.6, step=0.1, 
                            label=i18n("Top P")
                        )
                        temperature = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.6, step=0.1, 
                            label=i18n("Temperature")
                        )
                    else:
                        sample_steps = gr.Slider(
                            minimum=1, maximum=30, value=8, step=1, 
                            label=i18n("采样步数 / Sample Steps"),
                            visible=False
                        )
                        top_k = gr.Slider(
                            minimum=1, maximum=100, value=20, step=1, 
                            label=i18n("Top K"),
                            visible=False
                        )
                        top_p = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.6, step=0.1, 
                            label=i18n("Top P"),
                            visible=False
                        )
                        temperature = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.6, step=0.1, 
                            label=i18n("Temperature"),
                            visible=False
                        )
                
                go_btn = gr.Button(i18n("开始转换 / Start Conversion"), variant="primary")
            
            with gr.Column():
                output_audio = gr.Audio(label=i18n("转换后的声音 / Converted Audio"))
                status_output = gr.Markdown("Ready")
        
        def process_vc(source_path, text, lang, target_path, noise, k, p, temp, spd, steps):
            try:
                if not source_path:
                    return None, "Error: Source audio is required"
                if not target_path:
                    return None, "Error: Target audio is required"
                if not text:
                    return None, "Error: Text content is required"
                
                return vc_main(
                    source_path, text, lang, target_path, 
                    noise_scale=noise, 
                    top_k=k, 
                    top_p=p, 
                    temperature=temp, 
                    speed=spd, 
                    sample_steps=steps
                ), "Conversion completed successfully"
            except Exception as e:
                import traceback
                return None, f"Error: {str(e)}\n{traceback.format_exc()}"
        
        go_btn.click(
            fn=process_vc,
            inputs=[
                source_audio, text_input, language_input, target_audio, 
                noise_scale, top_k, top_p, temperature, speed, sample_steps
            ],
            outputs=[output_audio, status_output]
        )
    
    # Launch the app with the infer_ttswebui port + 1 to avoid conflicts
    vc_app.launch(
        share=True,
    )

if __name__ == "__main__":
    print(f"Launching Voice Conversion UI with model version: {model_version}")
    launch_vc_ui()