File size: 24,108 Bytes
d6cd530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 测试效果\n",
"\n",
"- 测试代码: [speed_test.ipynb](speed_test.ipynb)\n",
"- 测试环境: Intel i5-12400 CPU, 48GB RAM, 1x NVIDIA GeForce RTX 4070\n",
"- 运行环境: Ubuntu 24.04.1 LTS, cuda 12.4, python 3.10.16\n",
"- 测试说明: 单任务执行的数据(非并发测试)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 默认情况下使用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import asyncio\n",
"import torchaudio\n",
"\n",
"import sys\n",
"sys.path.append('third_party/Matcha-TTS')\n",
"\n",
"from cosyvoice.cli.cosyvoice import CosyVoice2\n",
"from cosyvoice.utils.file_utils import load_wav\n",
"\n",
"prompt_text = '希望你以后能够做得比我还好哟'\n",
"prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)\n",
"\n",
"# cosyvoice = CosyVoice2('./pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=True)\n",
"cosyvoice = CosyVoice2('./pretrained_models/CosyVoice2-0.5B', load_jit=True, load_trt=True, fp16=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 使用vllm加速llm推理\n",
"\n",
"#### 1. **安装依赖**\n",
"\n",
"(该依赖环境下可以运行原本cosyvoice2代码)\n",
"```bash\n",
"pip install -r requirements_vllm.txt\n",
"```\n",
"\n",
"#### 2. **文件复制**\n",
"将 pretrained_models/CosyVoice2-0.5B/CosyVoice-BlankEN 文件夹下的部分文件复制到下载的CosyVoice2-0.5B模型文件夹下,并替换 config.json 文件中的 Qwen2ForCausalLM 为 CosyVoice2Model。\n",
"```bash\n",
"cp pretrained_models/CosyVoice2-0.5B/CosyVoice-BlankEN/{config.json,tokenizer_config.json,vocab.json,merges.txt} pretrained_models/CosyVoice2-0.5B/\n",
"sed -i 's/Qwen2ForCausalLM/CosyVoice2Model/' pretrained_models/CosyVoice2-0.5B/config.json\n",
"```\n",
"\n",
"#### **注意:**\n",
"\n",
"- 使用 load_trt 后,需要进行 **预热** 10次推理以上,使用流式推理预热效果较好\n",
"- 在 jupyter notebook 中,如果要使用 **vllm** 运行下列代码,需要将vllm_use_cosyvoice2_model.py正确复制到 vllm 包中,并注册到 _VLLM_MODELS 字典中。运行下面的 code 完成"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"\n",
"# 获取vllm包的安装路径\n",
"try:\n",
" import vllm\n",
"except ImportError:\n",
" raise ImportError(\"vllm package not installed\")\n",
"\n",
"\n",
"vllm_path = os.path.dirname(vllm.__file__)\n",
"print(f\"vllm package path: {vllm_path}\")\n",
"\n",
"# 定义目标路径\n",
"target_dir = os.path.join(vllm_path, \"model_executor\", \"models\")\n",
"target_file = os.path.join(target_dir, \"cosyvoice2.py\")\n",
"\n",
"# 复制模型文件\n",
"source_file = \"./cosyvoice/llm/vllm_use_cosyvoice2_model.py\"\n",
"if not os.path.exists(source_file):\n",
" raise FileNotFoundError(f\"Source file {source_file} not found\")\n",
"\n",
"shutil.copy(source_file, target_file)\n",
"print(f\"Copied {source_file} to {target_file}\")\n",
"\n",
"# 修改registry.py文件\n",
"registry_path = os.path.join(target_dir, \"registry.py\")\n",
"new_entry = ' \"CosyVoice2Model\": (\"cosyvoice2\", \"CosyVoice2Model\"), # noqa: E501\\n'\n",
"\n",
"# 读取并修改文件内容\n",
"with open(registry_path, \"r\") as f:\n",
" lines = f.readlines()\n",
"\n",
"# 检查是否已存在条目\n",
"entry_exists = any(\"CosyVoice2Model\" in line for line in lines)\n",
"\n",
"if not entry_exists:\n",
" # 寻找插入位置\n",
" insert_pos = None\n",
" for i, line in enumerate(lines):\n",
" if line.strip().startswith(\"**_FALLBACK_MODEL\"):\n",
" insert_pos = i + 1\n",
" break\n",
" \n",
" if insert_pos is None:\n",
" raise ValueError(\"Could not find insertion point in registry.py\")\n",
" \n",
" # 插入新条目\n",
" lines.insert(insert_pos, new_entry)\n",
" \n",
" # 写回文件\n",
" with open(registry_path, \"w\") as f:\n",
" f.writelines(lines)\n",
" print(\"Successfully updated registry.py\")\n",
"else:\n",
" print(\"Entry already exists in registry.py, skipping modification\")\n",
"\n",
"print(\"All operations completed successfully!\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"failed to import ttsfrd, use WeTextProcessing instead\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered.\n",
"/opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/diffusers/models/lora.py:393: FutureWarning: `LoRACompatibleLinear` is deprecated and will be removed in version 1.0.0. Use of `LoRACompatibleLinear` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.\n",
" deprecate(\"LoRACompatibleLinear\", \"1.0.0\", deprecation_message)\n",
"2025-03-08 00:37:04,867 INFO input frame rate=25\n",
"/opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:115: UserWarning: Specified provider 'CUDAExecutionProvider' is not in available provider names.Available providers: 'AzureExecutionProvider, CPUExecutionProvider'\n",
" warnings.warn(\n",
"2025-03-08 00:37:06,103 WETEXT INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_tagger.fst\n",
"2025-03-08 00:37:06,103 INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_tagger.fst\n",
"2025-03-08 00:37:06,104 WETEXT INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_verbalizer.fst\n",
"2025-03-08 00:37:06,104 INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/zh_tn_verbalizer.fst\n",
"2025-03-08 00:37:06,104 WETEXT INFO skip building fst for zh_normalizer ...\n",
"2025-03-08 00:37:06,104 INFO skip building fst for zh_normalizer ...\n",
"2025-03-08 00:37:06,313 WETEXT INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_tagger.fst\n",
"2025-03-08 00:37:06,313 INFO found existing fst: /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_tagger.fst\n",
"2025-03-08 00:37:06,314 WETEXT INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_verbalizer.fst\n",
"2025-03-08 00:37:06,314 INFO /opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/tn/en_tn_verbalizer.fst\n",
"2025-03-08 00:37:06,314 WETEXT INFO skip building fst for en_normalizer ...\n",
"2025-03-08 00:37:06,314 INFO skip building fst for en_normalizer ...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 03-08 00:37:07 __init__.py:207] Automatically detected platform cuda.\n",
"WARNING 03-08 00:37:07 registry.py:352] Model architecture CosyVoice2Model is already registered, and will be overwritten by the new model class <class 'cosyvoice.llm.vllm_use_cosyvoice2_model.CosyVoice2Model'>.\n",
"WARNING 03-08 00:37:07 config.py:2517] Casting torch.bfloat16 to torch.float16.\n",
"INFO 03-08 00:37:07 config.py:560] This model supports multiple tasks: {'embed', 'classify', 'reward', 'generate', 'score'}. Defaulting to 'generate'.\n",
"INFO 03-08 00:37:07 config.py:1624] Chunked prefill is enabled with max_num_batched_tokens=1024.\n",
"WARNING 03-08 00:37:08 utils.py:2164] CUDA was previously initialized. We must use the `spawn` multiprocessing start method. Setting VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. See https://docs.vllm.ai/en/latest/getting_started/troubleshooting.html#python-multiprocessing for more information.\n",
"INFO 03-08 00:37:10 __init__.py:207] Automatically detected platform cuda.\n",
"INFO 03-08 00:37:11 core.py:50] Initializing a V1 LLM engine (v0.7.3.dev213+gede41bc7.d20250219) with config: model='./pretrained_models/CosyVoice2-0.5B', speculative_config=None, tokenizer='./pretrained_models/CosyVoice2-0.5B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=1024, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=./pretrained_models/CosyVoice2-0.5B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={\"level\":3,\"custom_ops\":[\"none\"],\"splitting_ops\":[\"vllm.unified_attention\",\"vllm.unified_attention_with_output\"],\"use_inductor\":true,\"compile_sizes\":[],\"use_cudagraph\":true,\"cudagraph_num_of_warmups\":1,\"cudagraph_capture_sizes\":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],\"max_capture_size\":512}\n",
"WARNING 03-08 00:37:11 utils.py:2298] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,list_loras,load_config,pin_lora,remove_lora,scheduler_config not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x771e56fb9a50>\n",
"INFO 03-08 00:37:11 parallel_state.py:948] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0\n",
"INFO 03-08 00:37:11 gpu_model_runner.py:1055] Starting to load model ./pretrained_models/CosyVoice2-0.5B...\n",
"INFO 03-08 00:37:11 cuda.py:157] Using Flash Attention backend on V1 engine.\n",
"WARNING 03-08 00:37:11 topk_topp_sampler.py:46] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.\n",
"WARNING 03-08 00:37:11 rejection_sampler.py:47] FlashInfer is not available. Falling back to the PyTorch-native implementation of rejection sampling. For the best performance, please install FlashInfer.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/envs/cosyvoice/lib/python3.10/site-packages/torch/utils/_device.py:106: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
" return func(*args, **kwargs)\n",
"Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]\n",
"Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 1.12it/s]\n",
"Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 1.12it/s]\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 03-08 00:37:12 gpu_model_runner.py:1068] Loading model weights took 0.9532 GB and 1.023026 seconds\n",
"INFO 03-08 00:37:16 backends.py:408] Using cache directory: /home/qihua/.cache/vllm/torch_compile_cache/29f70599cb/rank_0 for vLLM's torch.compile\n",
"INFO 03-08 00:37:16 backends.py:418] Dynamo bytecode transform time: 3.62 s\n",
"INFO 03-08 00:37:16 backends.py:115] Directly load the compiled graph for shape None from the cache\n",
"INFO 03-08 00:37:19 monitor.py:33] torch.compile takes 3.62 s in total\n",
"INFO 03-08 00:37:20 kv_cache_utils.py:524] GPU KV cache size: 216,560 tokens\n",
"INFO 03-08 00:37:20 kv_cache_utils.py:527] Maximum concurrency for 1,024 tokens per request: 211.48x\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-03-08 00:37:30,767 DEBUG Using selector: EpollSelector\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 03-08 00:37:30 gpu_model_runner.py:1375] Graph capturing finished in 11 secs, took 0.37 GiB\n",
"INFO 03-08 00:37:30 core.py:116] init engine (profile, create kv cache, warmup model) took 17.82 seconds\n",
"inference_processor\n",
"[03/08/2025-00:37:31] [TRT] [I] Loaded engine size: 158 MiB\n",
"[03/08/2025-00:37:31] [TRT] [I] [MS] Running engine with multi stream info\n",
"[03/08/2025-00:37:31] [TRT] [I] [MS] Number of aux streams is 1\n",
"[03/08/2025-00:37:31] [TRT] [I] [MS] Number of total worker streams is 2\n",
"[03/08/2025-00:37:31] [TRT] [I] [MS] The main stream provided by execute/enqueue calls is the first worker stream\n",
"[03/08/2025-00:37:32] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +4545, now: CPU 0, GPU 4681 (MiB)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n",
"inference_processor\n"
]
}
],
"source": [
"import time\n",
"import asyncio\n",
"import torchaudio\n",
"\n",
"import sys\n",
"sys.path.append('third_party/Matcha-TTS')\n",
"\n",
"from cosyvoice.cli.cosyvoice import CosyVoice2\n",
"from cosyvoice.utils.file_utils import load_wav\n",
"\n",
"prompt_text = '希望你以后能够做得比我还好哟'\n",
"prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)\n",
"\n",
"# cosyvoice = CosyVoice2(\n",
"# './pretrained_models/CosyVoice2-0.5B', \n",
"# load_jit=False, \n",
"# load_trt=False, \n",
"# fp16=True, \n",
"# use_vllm=True,\n",
"# )\n",
"cosyvoice = CosyVoice2(\n",
" './pretrained_models/CosyVoice2-0.5B', \n",
" load_jit=True, \n",
" load_trt=True, \n",
" fp16=True, \n",
" use_vllm=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:38:59,777 INFO synthesis text 收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。\n",
"2025-03-08 00:39:00,917 INFO yield speech len 11.68, rtf 0.09757431402598342\n",
"100%|██████████| 1/1 [00:01<00:00, 1.47s/it]\n"
]
}
],
"source": [
"for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', prompt_text, prompt_speech_16k, stream=False)):\n",
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:01,208 INFO synthesis text 收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。\n",
"2025-03-08 00:39:01,587 INFO yield speech len 1.84, rtf 0.20591642545617145\n",
"2025-03-08 00:39:01,790 INFO yield speech len 2.0, rtf 0.10057318210601807\n",
"2025-03-08 00:39:02,116 INFO yield speech len 2.0, rtf 0.16271138191223145\n",
"2025-03-08 00:39:02,367 INFO yield speech len 2.0, rtf 0.1247786283493042\n",
"2025-03-08 00:39:02,640 INFO yield speech len 2.0, rtf 0.13561689853668213\n",
"2025-03-08 00:39:02,980 INFO yield speech len 1.88, rtf 0.1803158445561186\n",
"100%|██████████| 1/1 [00:02<00:00, 2.05s/it]\n"
]
}
],
"source": [
"for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', prompt_text, prompt_speech_16k, stream=True)):\n",
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-03-08 00:39:02,990 INFO get tts_text generator, will skip text_normalize!\n",
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:02,991 INFO get tts_text generator, will return _extract_text_token_generator!\n",
"2025-03-08 00:39:03,236 INFO synthesis text <generator object text_generator at 0x79c694dae340>\n",
"2025-03-08 00:39:03,237 INFO not enough text token to decode, wait for more\n",
"2025-03-08 00:39:03,252 INFO get fill token, need to append more text token\n",
"2025-03-08 00:39:03,253 INFO append 5 text token\n",
"2025-03-08 00:39:03,311 INFO get fill token, need to append more text token\n",
"2025-03-08 00:39:03,312 INFO append 5 text token\n",
"2025-03-08 00:39:03,456 INFO no more text token, decode until met eos\n",
"2025-03-08 00:39:04,861 INFO yield speech len 15.16, rtf 0.1072180145334128\n",
"100%|██████████| 1/1 [00:01<00:00, 1.88s/it]\n"
]
}
],
"source": [
"def text_generator():\n",
" yield '收到好友从远方寄来的生日礼物,'\n",
" yield '那份意外的惊喜与深深的祝福'\n",
" yield '让我心中充满了甜蜜的快乐,'\n",
" yield '笑容如花儿般绽放。'\n",
"\n",
" \n",
"for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), prompt_text, prompt_speech_16k, stream=False)):\n",
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-03-08 00:39:04,878 INFO get tts_text generator, will skip text_normalize!\n",
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:04,880 INFO get tts_text generator, will return _extract_text_token_generator!\n",
"2025-03-08 00:39:05,151 INFO synthesis text <generator object text_generator at 0x79c694dad690>\n",
"2025-03-08 00:39:05,152 INFO not enough text token to decode, wait for more\n",
"2025-03-08 00:39:05,169 INFO get fill token, need to append more text token\n",
"2025-03-08 00:39:05,169 INFO append 5 text token\n",
"2025-03-08 00:39:05,292 INFO get fill token, need to append more text token\n",
"2025-03-08 00:39:05,293 INFO append 5 text token\n",
"2025-03-08 00:39:05,438 INFO no more text token, decode until met eos\n",
"2025-03-08 00:39:05,638 INFO yield speech len 1.84, rtf 0.26492670826289966\n",
"2025-03-08 00:39:05,841 INFO yield speech len 2.0, rtf 0.10065567493438721\n",
"2025-03-08 00:39:06,164 INFO yield speech len 2.0, rtf 0.16065263748168945\n",
"2025-03-08 00:39:06,422 INFO yield speech len 2.0, rtf 0.12791669368743896\n",
"2025-03-08 00:39:06,697 INFO yield speech len 2.0, rtf 0.13690149784088135\n",
"2025-03-08 00:39:06,998 INFO yield speech len 2.0, rtf 0.14957869052886963\n",
"2025-03-08 00:39:07,335 INFO yield speech len 1.0, rtf 0.3356931209564209\n",
"100%|██████████| 1/1 [00:02<00:00, 2.46s/it]\n"
]
}
],
"source": [
"def text_generator():\n",
" yield '收到好友从远方寄来的生日礼物,'\n",
" yield '那份意外的惊喜与深深的祝福'\n",
" yield '让我心中充满了甜蜜的快乐,'\n",
" yield '笑容如花儿般绽放。'\n",
"for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), prompt_text, prompt_speech_16k, stream=True)):\n",
" torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/1 [00:00<?, ?it/s]2025-03-08 00:39:07,592 INFO synthesis text 收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。\n",
"2025-03-08 00:39:08,925 INFO yield speech len 11.24, rtf 0.11861237342671567\n",
"100%|██████████| 1/1 [00:01<00:00, 1.58s/it]\n"
]
}
],
"source": [
"# instruct usage\n",
"for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):\n",
" torchaudio.save('instruct2_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|