metadata
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
pipeline_tag: text-generation
llm-jp-3-13b-finetune
概要
このモデルは、LLM-jp-3 13BをベースにLoRA (Low-Rank Adaptation) を用いてFine-tuningされたモデルです。 主に ELYZA-tasks-100-TV のタスクに対応するために調整されています。以下のような指示応答形式で動作します。
入力形式: 指示 <ユーザーからの指示や質問>
回答 """"
下記のversionで実行をしました。
Package Version
--------------------------------------- --------------------
absl-py 1.4.0
accelerate 1.2.1
aiohappyeyeballs 2.4.3
aiohttp 3.11.7
aiosignal 1.3.1
annotated-types 0.7.0
antlr4-python3-runtime 4.9.3
anyio 4.6.2.post1
apex 0.1
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
asttokens 2.2.1
astunparse 1.6.3
async-timeout 4.0.2
attrs 24.2.0
audioread 3.0.0
backcall 0.2.0
beautifulsoup4 4.12.3
bitsandbytes 0.45.0
bleach 6.0.0
blis 0.7.9
cachetools 5.3.1
catalogue 2.0.8
certifi 2023.5.7
cffi 1.15.1
charset-normalizer 3.1.0
click 8.1.7
cloudpickle 2.2.1
cmake 3.26.4
comm 0.1.3
confection 0.1.0
contourpy 1.1.0
cubinlinker 0.3.0+2.g155b525
cuda-python 12.1.0rc5+1.g8659927
cudf 23.6.0
cugraph 23.6.0
cugraph-dgl 23.6.0
cugraph-service-client 23.6.0
cugraph-service-server 23.6.0
cuml 23.6.0
cupy-cuda12x 12.1.0
cut-cross-entropy 24.11.4
cycler 0.11.0
cymem 2.0.7
Cython 0.29.36
dask 2023.3.2
dask-cuda 23.6.0
dask-cudf 23.6.0
dataclasses-json 0.6.7
datasets 3.2.0
debugpy 1.6.7
decorator 5.1.1
deepspeed 0.15.4
defusedxml 0.7.1
Deprecated 1.2.15
dill 0.3.8
dirtyjson 1.0.8
distributed 2023.3.2.1
distro 1.9.0
dm-tree 0.1.8
docker-pycreds 0.4.0
docstring_parser 0.16
einops 0.6.1
exceptiongroup 1.1.2
execnet 1.9.0
executing 1.2.0
expecttest 0.1.3
fastjsonschema 2.17.1
fastrlock 0.8.1
filelock 3.12.2
filetype 1.2.0
fire 0.7.0
flash-attn 1.0.7
fonttools 4.40.0
frozenlist 1.3.3
fsspec 2023.6.0
gast 0.5.4
gitdb 4.0.11
GitPython 3.1.43
google-auth 2.21.0
google-auth-oauthlib 0.4.6
graphsurgeon 0.4.6
greenlet 3.1.1
grpcio 1.56.0
h11 0.14.0
h5py 3.11.0
hdf5plugin 4.4.0
hf_transfer 0.1.8
hjson 3.1.0
httpcore 1.0.7
httpx 0.27.2
huggingface-hub 0.26.2
hydra-core 1.3.2
hypothesis 5.35.1
idna 3.4
imageio 2.34.1
importlib-metadata 6.7.0
iniconfig 2.0.0
intel-openmp 2021.4.0
ipykernel 6.24.0
ipython 8.14.0
ipython-genutils 0.2.0
jedi 0.18.2
Jinja2 3.1.2
jiter 0.7.1
joblib 1.3.0
json5 0.9.14
jsonpatch 1.33
jsonpointer 3.0.0
jsonschema 4.18.0
jsonschema-specifications 2023.6.1
jupyter_client 8.3.0
jupyter_core 5.3.1
jupyter-tensorboard 0.2.0
jupyterlab 2.2.9
jupyterlab-pygments 0.2.2
jupyterlab-server 1.2.0
jupytext 1.14.7
kiwisolver 1.4.4
langchain 0.3.8
langchain-core 0.3.21
langchain-text-splitters 0.3.2
langcodes 3.3.0
langsmith 0.1.145
lazy_loader 0.4
librosa 0.9.2
lightning-utilities 0.11.9
llama-cloud 0.1.5
llama-index 0.12.1
llama-index-agent-openai 0.4.0
llama-index-cli 0.4.0
llama-index-core 0.12.1
llama-index-embeddings-openai 0.3.0
llama-index-indices-managed-llama-cloud 0.6.2
llama-index-legacy 0.9.48.post4
llama-index-llms-openai 0.3.1
llama-index-multi-modal-llms-openai 0.3.0
llama-index-program-openai 0.3.0
llama-index-question-gen-openai 0.3.0
llama-index-readers-file 0.4.0
llama-index-readers-llama-parse 0.4.0
llama-parse 0.5.15
llvmlite 0.40.1
locket 1.0.0
Markdown 3.4.3
markdown-it-py 3.0.0
MarkupSafe 2.1.3
marshmallow 3.23.1
matplotlib 3.7.2
matplotlib-inline 0.1.6
mdit-py-plugins 0.4.0
mdurl 0.1.2
mistune 3.0.1
mkl 2021.1.1
mkl-devel 2021.1.1
mkl-include 2021.1.1
mne 1.6.0
mock 5.0.2
mpmath 1.3.0
msgpack 1.0.5
multidict 6.0.4
multiprocess 0.70.16
murmurhash 1.0.9
mypy-extensions 1.0.0
nbclient 0.8.0
nbconvert 7.6.0
nbformat 5.9.0
nest-asyncio 1.6.0
networkx 3.4.2
ninja 1.11.1
nltk 3.9.1
notebook 6.4.10
numba 0.57.1+1.gf851d279c
numpy 1.26.4
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-dali-cuda120 1.27.0
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127
nvidia-pyindex 1.0.9
nvtx 0.2.5
oauthlib 3.2.2
omegaconf 2.3.0
onnx 1.14.0
openai 1.55.0
opencv 4.7.0
orjson 3.10.12
outcome 1.3.0.post0
packaging 24.2
pandas 1.5.2
pandocfilters 1.5.0
parso 0.8.3
partd 1.4.0
pathy 0.10.2
peft 0.14.0
pexpect 4.8.0
pickleshare 0.7.5
Pillow 9.2.0
pip 23.1.2
platformdirs 3.8.0
pluggy 1.2.0
ply 3.11
polygraphy 0.47.1
pooch 1.7.0
preshed 3.0.8
prettytable 3.8.0
prometheus-client 0.17.0
prompt-toolkit 3.0.39
propcache 0.2.0
protobuf 3.20.3
psutil 5.9.4
ptxcompiler 0.8.1+1.gb323413
ptyprocess 0.7.0
pure-eval 0.2.2
py-cpuinfo 9.0.0
pyarrow 18.0.0
pyasn1 0.5.0
pyasn1-modules 0.3.0
pybind11 2.10.4
pycocotools 2.0+nv0.7.3
pycparser 2.21
pydantic 2.9.2
pydantic_core 2.23.4
Pygments 2.15.1
pylibcugraph 23.6.0
pylibcugraphops 23.6.0
pylibraft 23.6.0
pynvml 11.4.1
pyparsing 3.0.9
pypdf 5.1.0
PySocks 1.7.1
pytest 7.4.0
pytest-flakefinder 1.1.0
pytest-rerunfailures 12.0
pytest-shard 0.1.2
pytest-xdist 3.3.1
python-dateutil 2.8.2
python-hostlist 1.23.0
pytorch-quantization 2.1.2
pytz 2023.3
PyYAML 6.0.2
pyzmq 25.1.0
raft-dask 23.6.0
referencing 0.29.1
regex 2023.6.3
requests 2.32.3
requests-oauthlib 1.3.1
requests-toolbelt 1.0.0
resampy 0.4.2
rich 13.9.4
rmm 23.6.0
rpds-py 0.8.8
rsa 4.9
safetensors 0.4.5
scikit-learn 1.2.0
scipy 1.11.0
selenium 4.26.1
Send2Trash 1.8.2
sentence-transformers 3.3.1
sentencepiece 0.2.0
sentry-sdk 2.19.0
setproctitle 1.3.4
setuptools 68.0.0
shtab 1.7.1
six 1.16.0
smart-open 6.3.0
smmap 5.0.1
sniffio 1.3.1
sortedcontainers 2.4.0
soundfile 0.12.1
soupsieve 2.4.1
spacy 3.5.4
spacy-legacy 3.0.12
spacy-loggers 1.0.4
sphinx-glpi-theme 0.3
SQLAlchemy 2.0.36
srsly 2.4.6
stack-data 0.6.2
striprtf 0.0.26
sympy 1.13.1
tabulate 0.9.0
tbb 2021.9.0
tblib 2.0.0
tenacity 8.5.0
tensorboard 2.9.0
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorrt 8.6.1
termcolor 2.5.0
terminado 0.17.1
thinc 8.1.10
threadpoolctl 3.1.0
thriftpy2 0.4.16
tiktoken 0.8.0
tinycss2 1.2.1
tokenizers 0.21.0
toml 0.10.2
tomli 2.0.1
toolz 0.12.0
torch 2.5.1
torch-tensorrt 1.5.0.dev0
torchaudio 2.5.1
torchdata 0.7.0a0
torchmetrics 1.6.0
torchtext 0.16.0a0
torchvision 0.20.1
tornado 6.3.2
tqdm 4.67.1
traitlets 5.9.0
transformer-engine 0.10.0+96ed6fc
transformers 4.47.0
treelite 3.2.0
treelite-runtime 3.2.0
trio 0.27.0
trio-websocket 0.11.1
triton 3.1.0
trl 0.12.1
typeguard 4.4.1
typer 0.9.0
types-dataclasses 0.6.6
typing_extensions 4.12.2
typing-inspect 0.9.0
tyro 0.9.2
ucx-py 0.32.0
uff 0.6.9
unsloth 2024.11.9
unsloth_zoo 2024.11.7
urllib3 1.26.16
wandb 0.18.7
wasabi 1.1.2
wcwidth 0.2.6
webencodings 0.5.1
websocket-client 1.8.0
Werkzeug 2.3.6
wheel 0.45.1
wrapt 1.17.0
wsproto 1.2.0
xdoctest 1.0.2
xformers 0.0.28.post3
xgboost 1.7.5
xxhash 3.5.0
yarl 1.18.0
zict 3.0.0
zipp 3.15.0
下記のコードで実行をしました。
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
# ベースとなるモデルと学習したLoRAのアダプタ。
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "kevineen/llm-jp-3-13b-finetune" # Hugging FaceのIDを指定。
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id)
# 出力したいデータセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
## 対象のデータセットを用意してください(※ elyza-tasks-100-TV_0.jsonl
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# llmjp
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')