File size: 25,761 Bytes
2720487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import copy
from typing import Optional, List, Union, Tuple
from transformers import MBartForCausalLM, MBartConfig
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_attention_mask
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartDecoder, MBartLearnedPositionalEmbedding, MBartDecoderLayer
from surya.model.ordering.config import MBartOrderConfig
import torch
import math
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
From llama
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class MBartGQAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
num_kv_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MBartConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
assert self.num_heads % self.num_kv_heads == 0, f"num_heads ({self.num_heads}) must be divisible by num_kv_heads ({self.num_kv_heads})"
assert embed_dim % self.num_kv_heads == 0, f"embed_dim ({self.embed_dim}) must be divisible by num_kv_heads ({self.num_kv_heads})"
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape_key_value(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape_key_value(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
# Expand kv heads, then match query shape
key_states = repeat_kv(key_states, self.num_kv_groups)
value_states = repeat_kv(value_states, self.num_kv_groups)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
MBART_ATTENTION_CLASSES = {
"eager": MBartGQAttention,
"flash_attention_2": None
}
class MBartOrderDecoderLayer(MBartDecoderLayer):
def __init__(self, config: MBartConfig):
nn.Module.__init__(self)
self.embed_dim = config.d_model
self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
num_kv_heads=config.kv_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
num_kv_heads=config.kv_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
class BboxEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.x1_embed = nn.Embedding(config.max_width, config.d_model)
self.y1_embed = nn.Embedding(config.max_height, config.d_model)
self.x2_embed = nn.Embedding(config.max_width, config.d_model)
self.y2_embed = nn.Embedding(config.max_height, config.d_model)
self.w_embed = nn.Embedding(config.max_width, config.d_model)
self.h_embed = nn.Embedding(config.max_height, config.d_model)
self.cx_embed = nn.Embedding(config.max_width, config.d_model)
self.cy_embed = nn.Embedding(config.max_height, config.d_model)
self.box_pos_embed = nn.Embedding(config.max_position_embeddings, config.d_model)
def forward(self, boxes: torch.LongTensor, input_box_counts: torch.LongTensor, past_key_values_length: int):
x1, y1, x2, y2 = boxes.unbind(dim=-1)
# Shape is (batch_size, num_boxes/seq len, d_model)
w = x2 - x1
h = y2 - y1
# Center x and y in torch long tensors
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
cx = cx.long()
cy = cy.long()
coord_embeds = self.x1_embed(x1) + self.y1_embed(y1) + self.x2_embed(x2) + self.y2_embed(y2)
embedded = coord_embeds + self.w_embed(w) + self.h_embed(h) + self.cx_embed(cx) + self.cy_embed(cy)
# Add in positional embeddings for the boxes
if past_key_values_length == 0:
for j in range(embedded.shape[0]):
box_start = input_box_counts[j, 0]
box_end = input_box_counts[j, 1] - 1 # Skip the sep token
box_count = box_end - box_start
embedded[j, box_start:box_end] = embedded[j, box_start:box_end] + self.box_pos_embed.weight[:box_count]
return embedded
class MBartOrderDecoder(MBartDecoder):
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
MBartPreTrainedModel.__init__(self, config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = BboxEmbedding(config) if embed_tokens is None else embed_tokens
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
# Language-specific MoE goes at second and second-to-last layer
self.layers = nn.ModuleList([MBartOrderDecoderLayer(config) for _ in range(config.decoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_boxes: torch.LongTensor = None,
input_boxes_mask: Optional[torch.Tensor] = None,
input_boxes_counts: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_boxes is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_boxes is not None:
input = input_boxes
input_shape = input_boxes.size()[:-1] # Shape (batch_size, num_boxes)
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_boxes, input_boxes_counts, past_key_values_length) * self.embed_scale
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = input_boxes_mask if (input_boxes_mask is not None and 0 in input_boxes_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
input_boxes_mask, input_shape, inputs_embeds, past_key_values_length
)
if past_key_values_length == 0:
box_ends = input_boxes_counts[:, 1]
box_starts = input_boxes_counts[:, 0]
input_shape_arranged = torch.arange(input_shape[1], device=attention_mask.device)[None, :]
# Enable all boxes to attend to each other (before the sep token)
# Ensure that the boxes are not attending to the padding tokens
boxes_end_mask = input_shape_arranged < box_ends[:, None]
boxes_start_mask = input_shape_arranged >= box_starts[:, None]
boxes_mask = boxes_end_mask & boxes_start_mask
boxes_mask = boxes_mask.unsqueeze(1).unsqueeze(1) # Enable proper broadcasting
attention_mask = attention_mask.masked_fill(boxes_mask, 0)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class MBartOrderDecoderWrapper(MBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MBartOrderDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class MBartOrder(MBartForCausalLM):
config_class = MBartOrderConfig
_tied_weights_keys = []
def __init__(self, config, **kwargs):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
MBartPreTrainedModel.__init__(self, config)
self.model = MBartOrderDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_boxes: torch.LongTensor = None,
input_boxes_mask: Optional[torch.Tensor] = None,
input_boxes_counts: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_boxes=input_boxes,
input_boxes_mask=input_boxes_mask,
input_boxes_counts=input_boxes_counts,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
) |