File size: 2,056 Bytes
8b6ab0a
 
 
 
 
fcf1de2
 
8b6ab0a
 
 
 
 
 
 
 
 
 
 
fcf1de2
 
 
8b6ab0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf1de2
69ab8df
8b6ab0a
 
 
fcf1de2
 
 
 
 
 
 
 
 
 
 
 
8b6ab0a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: opus-em-deberta-3-large-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opus-em-deberta-3-large-v2

This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4267
- F1: 0.1942

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2929        | 1.0   | 179  | 13.4522         | 0.1942 |
| 0.1541        | 2.0   | 359  | 8.4684          | 0.1942 |
| 0.1257        | 3.0   | 538  | 7.6370          | 0.1942 |
| 0.1684        | 4.0   | 718  | 0.7054          | 0.6376 |
| 0.0911        | 5.0   | 897  | 5.1195          | 0.1942 |
| 0.145         | 6.0   | 1077 | 0.2694          | 0.7984 |
| 0.1191        | 7.0   | 1256 | 2.9415          | 0.2027 |
| 0.1008        | 8.0   | 1436 | 0.1785          | 0.9023 |
| 0.0231        | 9.0   | 1615 | 8.5722          | 0.1942 |
| 0.0521        | 9.97  | 1790 | 4.4267          | 0.1942 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0