keremberke's picture
add ultralytics model card
39a4cc3
|
raw
history blame
1.72 kB
metadata
tags:
  - ultralyticsplus
  - yolov8
  - ultralytics
  - yolo
  - vision
  - image-classification
  - pytorch
  - awesome-yolov8-models
library_name: ultralytics
library_version: 8.0.21
inference: false
datasets:
  - keremberke/chest-xray-classification
model-index:
  - name: keremberke/yolov8n-chest-xray-classification
    results:
      - task:
          type: image-classification
        dataset:
          type: keremberke/chest-xray-classification
          name: chest-xray-classification
          split: validation
        metrics:
          - type: accuracy
            value: 0.9433
            name: top1 accuracy
          - type: accuracy
            value: 1
            name: top5 accuracy
keremberke/yolov8n-chest-xray-classification

Supported Labels

['NORMAL', 'PNEUMONIA']

How to use

pip install ultralyticsplus==0.0.23 ultralytics==8.0.21
  • Load model and perform prediction:
from ultralyticsplus import YOLO, postprocess_classify_output

# load model
model = YOLO('keremberke/yolov8n-chest-xray-classification')

# set model parameters
model.overrides['conf'] = 0.25  # model confidence threshold

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image)

# observe results
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result) # {"cat": 0.4, "dog": 0.6}