File size: 11,700 Bytes
060b3d4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLQIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 64, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670431053568105410, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAACcAAAAAAAAANwAAAAAAAAABAAAAAAAAABUAAAAAAAAAAQAAAAAAAAAOAAAAAAAAAAAAAAAAAAAADQAAAAAAAAADAAAAAAAAACcAAAAAAAAAAwAAAAAAAAACAAAAAAAAAC8AAAAAAAAANwAAAAAAAAAAAAAAAAAAAA4AAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSw6MAXSUR0CMwrQ3PzFudX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwsPjn3cpdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwsB5ooNNdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwrGuLaVVdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwswljVhDdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwriG34KydX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwtM8HObBdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMwsLMs6JZdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwrznzQNTdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwsHRCx/vdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwtodMj/udX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMwtayKNyYdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwtWqcVgydX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwtJAdGRWdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwtupCKJmdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwukMTewcdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwth8YyfudX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwulrM1TBdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwuYAsCkodX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwtczqKP5dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwvHBk7OndX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwt4u9OARdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwvj0cwQEdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwuiX6ZYxdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwuKziS7odX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwufbsWwedX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwwA5q/M4dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwvzPKMefdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwvvOyE+QdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMwvsmfGuLdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwwHXVbzLdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMww8VYZEVdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwv6FdszmdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMww4lQdjodX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwvvnbItEdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwxZW7voedX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMww1TisGQdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwwK5TZQIdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwx1uivgWdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwwcSXdCWdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMww+W4Vh1dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwwv9tMwldX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwyRISUTtdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwyDlHSWrdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwx/VAiV0dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwx7rLQokdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwyWepXIVdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwzLjghr4dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwyJUHY6GdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwzHrhR64dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwzoM8YAKdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwzEJjUd8dX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMwyI7eVLSdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwyaBqbjMdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0E4ecQRdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwyrcTJyRdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMwzNlAeJYdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0gSOBDpdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0SntOVPdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMwzJiiItUdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0Op84PxdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0LG7z06dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0l1KXfJdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw1a3Zwn6dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0YoiLVGdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw1XJ5mh/dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw130PH1fdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw1Tx5LRKdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0Yk3S8bdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0peeFtbdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw0690zTGdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMw2fChvitdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw1dSEUTMdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw2xsVLzxdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw2kCV8kVdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw1bB42S/dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw2f7rLQpdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw222G7BgdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMw2mfGuLadX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw2plSS/1dX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMw32Pkq+bdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw3oNd7fIdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw3ksjFAFdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw2piI+GHdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMw4TKT0QLdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw26ij+JhdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw3Lq2SdOdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw4vStvGZdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw3thNM4+dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw5BPbfxddX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw4zkZJkHdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw3qj8DSxdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw4vnr6cidX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw5Gsmv4edX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw42VmjCYdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw45hjOLSdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw6F+NLlFdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw538GcFydX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw50K7ZnMdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CMw44//vORdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}