File size: 9,043 Bytes
c647091
 
 
 
 
 
 
 
 
 
 
 
66a5b47
 
 
 
 
 
 
 
 
 
 
 
 
 
c647091
 
 
 
 
 
 
 
 
 
 
 
 
66a5b47
c647091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a5b47
 
 
 
c647091
 
 
 
 
 
66a5b47
c647091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a5b47
c647091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a5b47
 
 
c647091
 
 
66a5b47
 
c647091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ff6cd0
 
66a5b47
 
 
 
 
 
 
 
 
c647091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I'm so excited for the weekend, I get to spend time with my friends and family.
    We're planning a hike and then having a BBQ. I love days like this!
- text: You're just a stupid white person, you'll never understand what it's like
    to be a minority. You're so privileged, you have no idea how much racism you've
    experienced in your life. Get out of here with your entitled attitude.
- text: Are you f***ing kidding me?! This is the worst customer service I've ever
    experienced. I've been on hold for 45 minutes and no one has even bothered to
    answer my call. Unbelievable.
- text: You're such a f***ing idiot, how dare you even try to tell me what to do.
    I swear to god, you're the most annoying person I've ever met. Just f*** off and
    leave me alone.
- text: 'Just got the cutest puppy and I''m so in love with him! He''s already stolen
    my heart and I''m sure he''ll bring so much joy to our family. Anyone else have
    a furry friend at home? #puppylove #dogsofinstagram #loveofmylife'
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: f1
      value: 0.8648435963013968
      name: F1
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|:----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Toxic     | <ul><li>"Can't believe this black guy thinks he can be president. What a joke. He's only in office because of affirmative action. Get over it, America!"</li><li>"I'm so sick of you, you think you're so much better than everyone else just because you have a few more followers. Newsflash, you're just as toxic as the rest of us. Go cry to your mom."</li><li>"I'm going to smash your car window if you don't give me money right now. You're going to regret messing with me."</li></ul>               |
| Non toxic | <ul><li>"I just wanted to say thank you to the amazing team at @CompanyX for their incredible customer service. They went above and beyond to resolve my issue and I'm so grateful for their help. #CustomerLove #Respect"</li><li>"I'm having a great day, thanks for asking! How about you? I just got back from a lovely hike in the mountains and I'm feeling refreshed."</li><li>"I'm feeling really overwhelmed with my coursework. Do you have any tips on how to manage my time effectively?"</li></ul> |

## Evaluation

### Metrics
| Label   | F1     |
|:--------|:-------|
| **all** | 0.8648 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("I'm so excited for the weekend, I get to spend time with my friends and family. We're planning a hike and then having a BBQ. I love days like this!")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 14  | 27.5   | 42  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| Non toxic | 12                    |
| Toxic     | 20                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step   | Training Loss | Validation Loss |
|:-------:|:------:|:-------------:|:---------------:|
| 0.0278  | 1      | 0.2873        | -               |
| 1.0     | 36     | -             | 0.1098          |
| 1.3889  | 50     | 0.0013        | -               |
| **2.0** | **72** | **-**         | **0.0981**      |
| 2.7778  | 100    | 0.0003        | -               |
| 3.0     | 108    | -             | 0.112           |
| 4.0     | 144    | -             | 0.1174          |
| 4.1667  | 150    | 0.0001        | -               |
| 5.0     | 180    | -             | 0.1075          |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.9.19
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->