File size: 2,386 Bytes
b99d6b1 221cd4f 3233cb8 3cf7061 bdffe78 e812c65 e4306f9 e812c65 e4306f9 e812c65 e4306f9 e812c65 e4306f9 e812c65 221cd4f 1e2b3d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
pipeline_tag: reinforcement-learning
library_name: pytorch
language:
- en
tags:
- reinforcement-learning
- deep-reinforcement-learning
- pytorch
- gymnasium
- collision-avoidance
- navigation
- self-driving
- autonomous-vehicle
model-index:
- name: sac_v2-230704203226
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: urban-road-v0
type: RoadEnv
metrics:
- type: mean-reward
value: 0.53 - 0.72
name: mean-reward
- name: sac_v2_lstm-230706072839
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: urban-road-v0
type: RoadEnv
metrics:
- type: mean-reward
value: 0.62 - 0.76
name: mean-reward
---
This repository contains model weights for the agents performing in [RoadEnv](https://github.com/kengboon/RoadEnv).
## Models
- Recurrent Soft Actor-Critic (RSAC/SAC-LSTM) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-lstm-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2_lstm.py)]
- Recurrent Soft Actor-Critic Share (RSAC-Share) [[Paper](https://arxiv.org/abs/2110.12628)] [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2_lstm_share.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-rsac_share.py)]
- Soft Actor-Critic (SAC) [[Agent](https://github.com/kengboon/RoadEnv/blob/main/rl_algorithms2/sac_v2.py)] [[Training](https://github.com/kengboon/RoadEnv/blob/main/scripts/training-sac_v2-2.py)] [[Test](https://github.com/kengboon/RoadEnv/blob/main/scripts/test-sac_v2.py)]
## Usage
```Python
# Register environment
from road_env import register_road_envs
register_road_envs()
# Make environment
import gymnasium as gym
env = gym.make('urban-road-v0', render_mode='rgb_array')
# Configure parameters (example)
env.configure({
"random_seed": None,
"duration": 60,
})
obs, info = env.reset()
# Graphic display
import matplotlib.pyplot as plt
plt.imshow(env.render())
# Execution
done = truncated = False
while not (done or truncated):
action = ... # Your agent code here
obs, reward, done, truncated, info = env.step(action)
env.render() # Update graphic
``` |