File size: 2,251 Bytes
817f376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-newsroom-filtered
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small2bert-small-finetuned-cnn_daily_mail-summarization-newsroom-filtered
This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5413
- Rouge1: 32.3232
- Rouge2: 20.9203
- Rougel: 27.232
- Rougelsum: 29.345
- Gen Len: 72.2217
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 3.796 | 0.89 | 405 | 3.6945 | 29.7168 | 17.6705 | 24.4204 | 26.484 | 69.6847 |
| 3.6426 | 1.78 | 810 | 3.5532 | 32.3051 | 20.8789 | 27.1724 | 29.384 | 72.3695 |
| 3.2645 | 2.66 | 1215 | 3.5437 | 32.2016 | 20.758 | 27.083 | 29.0954 | 73.3892 |
| 3.1719 | 3.55 | 1620 | 3.5377 | 32.5493 | 21.083 | 27.0881 | 29.4691 | 71.5222 |
| 2.9763 | 4.44 | 2025 | 3.5413 | 32.3232 | 20.9203 | 27.232 | 29.345 | 72.2217 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|