File size: 2,527 Bytes
148906a 4d72e76 148906a 4d72e76 148906a 4d72e76 148906a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi_news
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
args: default
metrics:
- name: Rouge1
type: rouge
value: 38.5318
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi_news
This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3760
- Rouge1: 38.5318
- Rouge2: 12.7285
- Rougel: 21.4358
- Rougelsum: 33.4565
- Gen Len: 128.985
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 4.6946 | 0.89 | 400 | 4.5393 | 37.164 | 11.5191 | 20.2519 | 32.1568 | 126.415 |
| 4.5128 | 1.78 | 800 | 4.4185 | 38.2345 | 12.2053 | 20.954 | 33.0667 | 128.975 |
| 4.2926 | 2.67 | 1200 | 4.3866 | 38.4475 | 12.6488 | 21.3046 | 33.2768 | 129.0 |
| 4.231 | 3.56 | 1600 | 4.3808 | 38.7008 | 12.6323 | 21.307 | 33.3693 | 128.955 |
| 4.125 | 4.44 | 2000 | 4.3760 | 38.5318 | 12.7285 | 21.4358 | 33.4565 | 128.985 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|