Transformers
custom_generate
sampling
File size: 14,125 Bytes
a42769a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from collections import deque
from typing import Any, Optional, Union

import torch
import torch.nn.functional as F

from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
from transformers.generation.logits_process import (
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
)
from transformers.generation.utils import GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput


def generate(
    model: Any,
    input_ids: torch.LongTensor,
    logits_processor: Optional[LogitsProcessorList] = None,
    stopping_criteria: Optional[StoppingCriteriaList] = None,
    generation_config: Optional[GenerationConfig] = None,
    synced_gpus: bool = False,
    streamer: Optional[Any] = None,
    **model_kwargs,
) -> Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput, torch.LongTensor]:
    """Custom decoding with DeepCONF (confidence-based early stopping).

    Args:
        model: PreTrainedModel with a LM head.
        input_ids: Prompt ids of shape (batch, seq_len).
        logits_processor: Optional logits processors.
        stopping_criteria: Optional stopping criteria.
        generation_config: GenerationConfig controlling sampling/outputs.
        synced_gpus: Keep looping to max length for distributed setups.
        streamer: Optional streamer for incremental tokens.
        **model_kwargs: Forward pass kwargs (e.g., attention_mask).

    Returns:
        GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput, or LongTensor
        depending on `return_dict_in_generate` and model type.
    """

    # Get DeepCONF parameters from generation_config or set defaults
    enable_conf = getattr(generation_config, "enable_conf", False)
    window_size = getattr(generation_config, "window_size", 2048)
    threshold = getattr(generation_config, "threshold", 17.0)  # Default threshold for confidence (positive value)

    # If DeepCONF is not enabled, fall back to standard sampling
    if not enable_conf:
        return model._sample(
            input_ids,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            streamer=streamer,
            **model_kwargs,
        )

    # Initialize values
    # Handle pad token properly (following HF best practices)
    pad_token_id = generation_config.pad_token_id
    if pad_token_id is None and hasattr(generation_config, "_pad_token_tensor"):
        pad_token_id = generation_config._pad_token_tensor
    if pad_token_id is None and hasattr(model.config, "pad_token_id"):
        pad_token_id = model.config.pad_token_id
    if pad_token_id is None and generation_config.eos_token_id is not None:
        # Use eos token as pad token if not set
        pad_token_id = generation_config.eos_token_id

    output_attentions = generation_config.output_attentions
    output_hidden_states = generation_config.output_hidden_states
    output_scores = generation_config.output_scores
    output_logits = generation_config.output_logits
    return_dict_in_generate = generation_config.return_dict_in_generate
    output_confidences = getattr(generation_config, "output_confidences", False)
    has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
    do_sample = generation_config.do_sample

    # Initialize attention / hidden states / scores tuples
    scores = () if (return_dict_in_generate and output_scores) else None
    raw_logits = () if (return_dict_in_generate and output_logits) else None
    decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
    cross_attentions = () if (return_dict_in_generate and output_attentions) else None
    decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

    # If model is an encoder-decoder, retrieve encoder attention weights and hidden states
    if return_dict_in_generate and model.config.is_encoder_decoder:
        encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
        encoder_hidden_states = model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None

    # Keep track of which sequences are already finished
    batch_size, cur_len = input_ids.shape[:2]
    unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
    # Use public kv-cache via past_key_values

    # Initialize confidence tracking
    # Use deque for sliding window with fixed size
    conf_group_lists = [deque(maxlen=window_size) for _ in range(batch_size)]
    conf_grouped_sums = [0.0 for _ in range(batch_size)]  # Running sums for efficient mean calculation

    # Initialize via prepare_inputs_for_generation

    # Optional per-step confidences for debugging/visualization
    step_confidences = [] if (return_dict_in_generate and output_confidences) else None

    # Main generation loop using public controls
    steps = 0
    max_new_tokens = getattr(generation_config, "max_new_tokens", None) or 512
    # Initialize cache_position for first forward over the full prompt
    # Subsequent steps will pass a single position incrementally
    model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
    while steps < max_new_tokens and unfinished_sequences.max() != 0:
        # Prepare model inputs (proper KV cache handling)
        model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)

        # Prepare variable output controls
        model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
        model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})

        # Forward pass with proper KV cache handling
        with torch.no_grad():
            outputs = model(**model_inputs, return_dict=True)
            next_token_logits = outputs.logits[:, -1, :].detach()

        # Update model kwargs for next iteration (public): carry past_key_values
        if hasattr(outputs, "past_key_values") and outputs.past_key_values is not None:
            model_kwargs["past_key_values"] = outputs.past_key_values

        # Pre-process distribution with logits processors
        next_token_scores = logits_processor(input_ids, next_token_logits)

        # Apply logits warpers (e.g., temperature, top-k, top-p) from generation_config
        warpers = LogitsProcessorList()
        # Temperature
        temperature = getattr(generation_config, "temperature", 1.0)
        if temperature is not None and temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(temperature))
        # Top-k
        top_k = getattr(generation_config, "top_k", None)
        if top_k is not None and isinstance(top_k, int) and top_k > 0:
            warpers.append(TopKLogitsWarper(top_k))
        # Top-p
        top_p = getattr(generation_config, "top_p", None)
        if top_p is not None and top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p))
        if len(warpers) > 0:
            next_token_scores = warpers(input_ids, next_token_scores)

        # Store scores, attentions and hidden_states when required
        if return_dict_in_generate:
            if output_scores:
                scores += (next_token_scores,)
            if output_logits:
                raw_logits += (next_token_logits,)
            if output_attentions:
                decoder_attentions += (
                    (outputs.decoder_attentions,) if model.config.is_encoder_decoder else (outputs.attentions,)
                )
                if model.config.is_encoder_decoder:
                    cross_attentions += (outputs.cross_attentions,)

            if output_hidden_states:
                decoder_hidden_states += (
                    (outputs.decoder_hidden_states,) if model.config.is_encoder_decoder else (outputs.hidden_states,)
                )

        # Token selection
        if do_sample:
            probs = F.softmax(next_token_scores, dim=-1)
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
        else:
            next_tokens = torch.argmax(next_token_scores, dim=-1)

        # Calculate confidence using only top-k/top-p filtered candidates (post-logits processors),
        # excluding the sampled token.
        # We consider candidates where logits are finite after warpers (e.g., top-k/top-p/temperature).
        logprobs = F.log_softmax(next_token_scores, dim=-1)
        candidate_mask = torch.isfinite(next_token_scores)

        deepconf_stopping = torch.ones(batch_size, dtype=torch.bool, device=input_ids.device)
        step_conf_values = [0.0] * batch_size  # collect per-sequence confidences for this step (full batch)

        for i in range(batch_size):
            if not unfinished_sequences[i]:
                continue

            # Count valid candidates
            num_candidates = int(candidate_mask[i].sum().item())
            if num_candidates <= 1:
                conf = 0.0
            else:
                # Sum logprobs over valid candidates and exclude the sampled token's logprob
                total_lp = torch.sum(logprobs[i][candidate_mask[i]])
                selected_lp = (
                    logprobs[i, next_tokens[i]]
                    if candidate_mask[i, next_tokens[i]]
                    else torch.tensor(0.0, device=logprobs.device)
                )
                denom = num_candidates - 1
                # Negative mean of non-selected candidate logprobs
                conf = -((total_lp - selected_lp) / denom).item()

            # Update tracking structures
            if len(conf_group_lists[i]) >= window_size:
                conf_grouped_sums[i] -= conf_group_lists[i][0]
            conf_group_lists[i].append(conf)
            conf_grouped_sums[i] += conf

            # Apply confidence-based early stopping when window is full
            if len(conf_group_lists[i]) >= window_size:
                avg_conf = conf_grouped_sums[i] / len(conf_group_lists[i])
                if avg_conf < threshold:
                    deepconf_stopping[i] = False

            if step_confidences is not None:
                step_conf_values[i] = conf

        if step_confidences is not None:
            # Store this step's confidences as a tensor of shape (batch,)
            step_confidences.append(torch.tensor(step_conf_values, device=input_ids.device))

        # Finished sentences should have their next token be a padding token
        if has_eos_stopping_criteria and pad_token_id is not None:
            next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

        # Update generated ids, model inputs, and length for next step
        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
        # Update attention mask if available
        if model_kwargs.get("attention_mask") is not None:
            attn = model_kwargs["attention_mask"]
            model_kwargs["attention_mask"] = torch.cat(
                [attn, torch.ones((batch_size, 1), dtype=attn.dtype, device=attn.device)], dim=-1
            )
        # Update cache_position for next step (single next token)
        model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
        if streamer is not None:
            streamer.put(next_tokens.cpu())

        # Update unfinished sequences with standard stopping criteria (per-sequence if available)
        sc = stopping_criteria(input_ids, scores)
        if isinstance(sc, torch.Tensor):
            unfinished_sequences = unfinished_sequences & ~sc
        elif sc:
            # global stop
            unfinished_sequences = torch.zeros_like(unfinished_sequences)

        # Apply DeepCONF stopping
        unfinished_sequences = unfinished_sequences & deepconf_stopping

        # Early break if all sequences finished and not synchronized
        if unfinished_sequences.max() == 0 and not synced_gpus:
            break
        cur_len += 1
        steps += 1

        # Clean up outputs to save memory
        del outputs

    if streamer is not None:
        streamer.end()

    # Return results
    if return_dict_in_generate:
        # Prepare confidences tensor if requested
        confidences_tensor = None
        if step_confidences is not None and len(step_confidences) > 0:
            # Shape: (steps, batch) -> (batch, steps)
            confidences_tensor = torch.stack(step_confidences, dim=0).transpose(0, 1)
        if model.config.is_encoder_decoder:
            output = GenerateEncoderDecoderOutput(
                sequences=input_ids,
                scores=scores,
                logits=raw_logits,
                encoder_attentions=encoder_attentions,
                encoder_hidden_states=encoder_hidden_states,
                decoder_attentions=decoder_attentions,
                cross_attentions=cross_attentions,
                decoder_hidden_states=decoder_hidden_states,
                past_key_values=model_kwargs.get("past_key_values"),
            )
            if confidences_tensor is not None:
                output["confidences"] = confidences_tensor
                try:
                    setattr(output, "confidences", confidences_tensor)
                except Exception:
                    pass
            return output
        else:
            output = GenerateDecoderOnlyOutput(
                sequences=input_ids,
                scores=scores,
                logits=raw_logits,
                attentions=decoder_attentions,
                hidden_states=decoder_hidden_states,
                past_key_values=model_kwargs.get("past_key_values"),
            )
            if confidences_tensor is not None:
                output["confidences"] = confidences_tensor
                try:
                    setattr(output, "confidences", confidences_tensor)
                except Exception:
                    pass
            return output
    else:
        return input_ids