File size: 76,078 Bytes
354c06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f7d67608-8b00-430e-849b-7ac1ac1f7a08",
   "metadata": {},
   "source": [
    "--------------------------------------------\n",
    "**PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)**\n",
    "--------------------------------------------\n",
    "\n",
    "## 1. Simple Explanation of Graph Neural Networks (GNNs)\n",
    "\n",
    "Graph Neural Networks (GNNs) are a specialized type of neural network designed to work with graph-structured data, where information is represented as nodes (entities) connected by edges (relationships). Unlike traditional neural networks that work with grid-like data (images) or sequences (text), GNNs can handle irregular, interconnected data structures like social networks, molecular structures, or knowledge graphs. The key innovation is that GNNs learn node representations by iteratively aggregating information from neighboring nodes, allowing them to capture both local and global patterns in the graph structure. This makes them perfect for tasks like predicting molecular properties, recommending friends on social media, or analyzing protein interactions.\n",
    "\n",
    "## 2. Detailed Roadmap with Concrete Examples\n",
    "\n",
    "**Step 1: Graph Fundamentals**\n",
    "- **Graph representation**: Adjacency matrix, edge list, node features\n",
    "- **Example**: Social network with users (nodes) and friendships (edges)\n",
    "\n",
    "**Step 2: Message Passing Framework**\n",
    "- **Aggregation**: How nodes collect information from neighbors\n",
    "- **Example**: In citation networks, a paper's importance depends on citing papers\n",
    "\n",
    "**Step 3: Basic GNN Architectures**\n",
    "- **Graph Convolutional Networks (GCNs)**: Smooth feature propagation\n",
    "- **Example**: Predicting research areas of papers based on citation patterns\n",
    "\n",
    "**Step 4: Advanced GNN Variants**\n",
    "- **GraphSAGE**: Sampling and aggregating from large graphs\n",
    "- **Example**: Recommending products by sampling user-item interactions\n",
    "\n",
    "**Step 5: Graph Attention Networks (GATs)**\n",
    "- **Attention mechanism**: Weighted neighbor importance\n",
    "- **Example**: Molecular property prediction where some atom bonds matter more\n",
    "\n",
    "**Step 6: Applications and Tasks**\n",
    "- **Node classification**: Predicting user categories in social networks\n",
    "- **Link prediction**: Suggesting new connections or relationships\n",
    "- **Graph classification**: Determining if a molecule is toxic or not\n",
    "\n",
    "## 3. Formula Memory AIDS Section\n",
    "\n",
    "**FORMULA: GCN Layer Update**\n",
    "$$H^{(l+1)} = \\sigma(\\tilde{A} H^{(l)} W^{(l)})$$\n",
    "\n",
    "**REAL-LIFE ANALOGY**: \"Gossip spreading in a neighborhood\"\n",
    "- $H^{(l)}$ = Current gossip each person knows (node features at layer l)\n",
    "- $\\tilde{A}$ = Normalized social network connections (how gossip spreads)\n",
    "- $W^{(l)}$ = Gossip filter (what parts of gossip are important)\n",
    "- $\\sigma$ = Excitement function (how people react to gossip)\n",
    "- $H^{(l+1)}$ = Updated gossip after one round of spreading\n",
    "\n",
    "**MEMORY TRICK**: \"GCN = Gossip Convolutional Network!\"\n",
    "\n",
    "**FORMULA: Message Passing**\n",
    "$$m_{ij}^{(l)} = \\text{Message}(h_i^{(l)}, h_j^{(l)}, e_{ij})$$\n",
    "$$h_i^{(l+1)} = \\text{Update}(h_i^{(l)}, \\text{Aggregate}(\\{m_{ij}^{(l)} : j \\in N(i)\\}))$$\n",
    "\n",
    "**REAL-LIFE ANALOGY**: \"Group chat dynamics\"\n",
    "- $m_{ij}^{(l)}$ = Message from person i to person j (edge features)\n",
    "- $h_i^{(l)}$ = Person i's current knowledge/state\n",
    "- $N(i)$ = Person i's friend group\n",
    "- **Aggregate** = Reading all messages in group chat\n",
    "- **Update** = Updating your opinion based on friends' messages\n",
    "\n",
    "**MEMORY TRICK**: \"Messages, Aggregate, Update - like checking WhatsApp!\"\n",
    "\n",
    "**FORMULA: Graph Attention**\n",
    "$$\\alpha_{ij} = \\frac{\\exp(\\text{LeakyReLU}(a^T[W h_i \\| W h_j]))}{\\sum_{k \\in N(i)} \\exp(\\text{LeakyReLU}(a^T[W h_i \\| W h_k]))}$$\n",
    "\n",
    "**REAL-LIFE ANALOGY**: \"Choosing who to listen to in a conversation\"\n",
    "- $\\alpha_{ij}$ = How much attention you pay to person j\n",
    "- $W h_i, W h_j$ = Processed versions of what you and person j are saying\n",
    "- $a^T$ = Your personal preference for conversation topics\n",
    "- **Softmax** = You can only pay 100% attention total, so you distribute it\n",
    "\n",
    "**MEMORY TRICK**: \"Attention = Who gets your EAR in a crowd!\"\n",
    "\n",
    "## 4. Step-by-Step Numerical Example\n",
    "\n",
    "**Example: 3-node friendship network predicting user interests**\n",
    "\n",
    "**Graph Setup:**\n",
    "- Node 0: Alice (features: [0.8, 0.2] - likes tech, dislikes sports)\n",
    "- Node 1: Bob (features: [0.3, 0.9] - neutral on tech, loves sports)  \n",
    "- Node 2: Carol (features: [0.6, 0.4] - likes both moderately)\n",
    "- Edges: Alice-Bob, Bob-Carol (friendship connections)\n",
    "\n",
    "**Adjacency Matrix A:**\n",
    "```\n",
    "    A  B  C\n",
    "A [[0, 1, 0],\n",
    "B  [1, 0, 1],\n",
    "C  [0, 1, 0]]\n",
    "```\n",
    "\n",
    "**Normalized Adjacency Matrix à (adding self-loops and normalization):**\n",
    "```\n",
    "Ã = [[0.5, 0.5, 0.0],\n",
    "     [0.33, 0.33, 0.33],\n",
    "     [0.0, 0.5, 0.5]]\n",
    "```\n",
    "\n",
    "**Initial Features H⁰:**\n",
    "```\n",
    "H⁰ = [[0.8, 0.2],  # Alice\n",
    "      [0.3, 0.9],  # Bob\n",
    "      [0.6, 0.4]]  # Carol\n",
    "```\n",
    "\n",
    "**Weight Matrix W⁰ (2x2 for simplicity):**\n",
    "```\n",
    "W⁰ = [[0.5, 0.8],\n",
    "      [0.3, 0.7]]\n",
    "```\n",
    "\n",
    "**Forward Pass Calculation:**\n",
    "```\n",
    "H¹ = σ(Ã × H⁰ × W⁰)\n",
    "\n",
    "Step 1: Ã × H⁰ (neighbor aggregation)\n",
    "[[0.5, 0.5, 0.0],     [[0.8, 0.2],     [[0.55, 0.55],\n",
    " [0.33, 0.33, 0.33] ×  [0.3, 0.9],  =   [0.57, 0.5],\n",
    " [0.0, 0.5, 0.5]]      [0.6, 0.4]]      [0.45, 0.65]]\n",
    "\n",
    "Step 2: × W⁰ (feature transformation)\n",
    "[[0.55, 0.55],     [[0.5, 0.8],     [[0.44, 0.83],\n",
    " [0.57, 0.5],   ×   [0.3, 0.7]]  =   [0.435, 0.806],\n",
    " [0.45, 0.65]]                        [0.42, 0.815]]\n",
    "\n",
    "Step 3: σ (ReLU activation)\n",
    "H¹ = [[0.44, 0.83],   # Alice's updated features\n",
    "      [0.435, 0.806], # Bob's updated features  \n",
    "      [0.42, 0.815]]  # Carol's updated features\n",
    "```\n",
    "\n",
    "**Interpretation:** After one GNN layer, Alice's features moved closer to Bob's (her only neighbor), showing how social influence affects interests!\n",
    "\n",
    "## 5. Real-World AI Use Case\n",
    "\n",
    "**Drug Discovery - Molecular Property Prediction:**\n",
    "GNNs are revolutionizing pharmaceutical research by predicting molecular properties like toxicity, solubility, and bioactivity. In this application:\n",
    "- **Nodes**: Atoms (carbon, oxygen, nitrogen, etc.)\n",
    "- **Edges**: Chemical bonds (single, double, triple bonds)\n",
    "- **Node Features**: Atom type, charge, hybridization\n",
    "- **Edge Features**: Bond type, bond length, aromaticity\n",
    "\n",
    "The GNN learns to predict whether a molecule will be toxic, effective against specific diseases, or have good absorption properties. This dramatically reduces the need for expensive laboratory testing and accelerates drug discovery from years to months.\n",
    "\n",
    "**Impact**: Companies like DeepMind (AlphaFold) and pharmaceutical giants are using GNNs to discover new antibiotics and cancer drugs, potentially saving millions of lives.\n",
    "\n",
    "## 6. Tips for Mastering GNNs\n",
    "\n",
    "**Practice Sources:**\n",
    "- **PyTorch Geometric (PyG)**: Start with their tutorials on node classification\n",
    "- **DGL (Deep Graph Library)**: Practice on their built-in datasets\n",
    "- **Spektral**: TensorFlow-based graph neural networks\n",
    "\n",
    "**Key Datasets to Practice:**\n",
    "- **Cora/CiteSeer**: Citation networks for node classification\n",
    "- **MUTAG**: Molecular graphs for graph classification  \n",
    "- **Reddit**: Large-scale social network for scalability practice\n",
    "\n",
    "**Problem-Solving Strategy:**\n",
    "1. **Start small**: 3-5 nodes manually to understand message passing\n",
    "2. **Visualize**: Use NetworkX to plot your graphs\n",
    "3. **Debug shapes**: GNNs have tricky tensor dimensions\n",
    "4. **Experiment**: Try different aggregation functions (mean, max, sum)\n",
    "5. **Scale gradually**: Small graphs → medium → large with sampling\n",
    "\n",
    "**Common Pitfalls to Avoid:**\n",
    "- **Over-smoothing**: Too many layers make all nodes similar\n",
    "- **Under-reaching**: Too few layers miss global patterns\n",
    "- **Dimension mismatches**: Carefully track node/edge feature sizes\n",
    "- **Sparse matrix handling**: Learn efficient sparse operations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "59edcfb0-b6e8-4645-8cf3-a6492b5bebfd",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2025-07-18 11:54:14,017 - INFO - Starting GNN training pipeline...\n",
      "2025-07-18 11:54:14,017 - INFO - Using device: cpu\n",
      "2025-07-18 11:54:14,018 - INFO - Using Apple Silicon MPS acceleration\n",
      "2025-07-18 11:54:14,018 - INFO - Loading Cora dataset...\n",
      "2025-07-18 11:54:14,023 - INFO - Dataset: Cora()\n",
      "2025-07-18 11:54:14,024 - INFO - Number of graphs: 1\n",
      "2025-07-18 11:54:14,025 - INFO - Number of features: 1433\n",
      "2025-07-18 11:54:14,026 - INFO - Number of classes: 7\n",
      "2025-07-18 11:54:14,026 - INFO - Number of nodes: 2708\n",
      "2025-07-18 11:54:14,026 - INFO - Number of edges: 10556\n",
      "2025-07-18 11:54:14,026 - INFO - Average node degree: 3.90\n",
      "2025-07-18 11:54:14,027 - INFO - Training nodes: 140\n",
      "2025-07-18 11:54:14,027 - INFO - Validation nodes: 500\n",
      "2025-07-18 11:54:14,027 - INFO - Test nodes: 1000\n",
      "2025-07-18 11:54:14,028 - INFO - Data split ratios - Train: 0.052, Val: 0.185, Test: 0.369\n",
      "2025-07-18 11:54:14,048 - INFO - Creating graph visualization...\n",
      "2025-07-18 11:54:20,240 - INFO - Graph visualization saved to graph_visualization.png\n",
      "2025-07-18 11:54:20,240 - INFO - Training configuration: {'hidden_dim': 32, 'num_layers': 2, 'dropout': 0.5, 'learning_rate': 0.001, 'weight_decay': 0.0005, 'epochs': 200, 'patience': 20, 'attention_heads': 8}\n",
      "2025-07-18 11:54:20,241 - INFO - \n",
      "==================================================\n",
      "2025-07-18 11:54:20,241 - INFO - Training GCN\n",
      "2025-07-18 11:54:20,241 - INFO - ==================================================\n",
      "2025-07-18 11:54:20,242 - INFO - Training GCN model...\n",
      "2025-07-18 11:54:20,441 - INFO - GCN Model initialized with 1433 input features, 32 hidden dim, 7 classes\n",
      "2025-07-18 11:54:20,442 - INFO - Model parameters: 46,119\n",
      "2025-07-18 11:54:21,583 - INFO - Epoch 20/200 - Train Loss: 1.9194, Train Acc: 0.7857, Val Loss: 1.9314, Val Acc: 0.6880\n",
      "2025-07-18 11:54:21,830 - INFO - Epoch 40/200 - Train Loss: 1.8824, Train Acc: 0.8714, Val Loss: 1.9118, Val Acc: 0.7580\n",
      "2025-07-18 11:54:22,072 - INFO - Epoch 60/200 - Train Loss: 1.8367, Train Acc: 0.9214, Val Loss: 1.8873, Val Acc: 0.7680\n",
      "2025-07-18 11:54:22,313 - INFO - Epoch 80/200 - Train Loss: 1.7875, Train Acc: 0.8857, Val Loss: 1.8592, Val Acc: 0.7740\n",
      "2025-07-18 11:54:22,431 - INFO - Early stopping at epoch 90\n",
      "2025-07-18 11:54:22,443 - INFO - GCN Final Test Accuracy: 0.7930\n",
      "2025-07-18 11:54:22,445 - INFO - GCN training completed and saved\n",
      "2025-07-18 11:54:22,445 - INFO - \n",
      "==================================================\n",
      "2025-07-18 11:54:22,445 - INFO - Training GraphSAGE\n",
      "2025-07-18 11:54:22,445 - INFO - ==================================================\n",
      "2025-07-18 11:54:22,446 - INFO - Training GraphSAGE model...\n",
      "2025-07-18 11:54:22,459 - INFO - GraphSAGE Model initialized with 1433 input features, 32 hidden dim, 7 classes\n",
      "2025-07-18 11:54:22,461 - INFO - Model parameters: 92,199\n",
      "2025-07-18 11:54:22,972 - INFO - Epoch 20/200 - Train Loss: 1.9226, Train Acc: 0.2929, Val Loss: 1.9494, Val Acc: 0.2020\n",
      "2025-07-18 11:54:23,306 - INFO - Epoch 40/200 - Train Loss: 1.8653, Train Acc: 0.4214, Val Loss: 1.9226, Val Acc: 0.2440\n",
      "2025-07-18 11:54:23,640 - INFO - Epoch 60/200 - Train Loss: 1.7637, Train Acc: 0.8000, Val Loss: 1.8790, Val Acc: 0.4360\n",
      "2025-07-18 11:54:23,976 - INFO - Epoch 80/200 - Train Loss: 1.6420, Train Acc: 0.8857, Val Loss: 1.8200, Val Acc: 0.6080\n",
      "2025-07-18 11:54:24,300 - INFO - Epoch 100/200 - Train Loss: 1.4988, Train Acc: 0.9500, Val Loss: 1.7470, Val Acc: 0.6640\n",
      "2025-07-18 11:54:24,630 - INFO - Epoch 120/200 - Train Loss: 1.3248, Train Acc: 0.9571, Val Loss: 1.6629, Val Acc: 0.7080\n",
      "2025-07-18 11:54:24,989 - INFO - Epoch 140/200 - Train Loss: 1.1383, Train Acc: 0.9714, Val Loss: 1.5735, Val Acc: 0.7480\n",
      "2025-07-18 11:54:25,308 - INFO - Epoch 160/200 - Train Loss: 1.0036, Train Acc: 0.9786, Val Loss: 1.4778, Val Acc: 0.7640\n",
      "2025-07-18 11:54:25,632 - INFO - Epoch 180/200 - Train Loss: 0.8511, Train Acc: 0.9714, Val Loss: 1.3865, Val Acc: 0.7800\n",
      "2025-07-18 11:54:25,739 - INFO - Early stopping at epoch 187\n",
      "2025-07-18 11:54:25,749 - INFO - GraphSAGE Final Test Accuracy: 0.7680\n",
      "2025-07-18 11:54:25,751 - INFO - GraphSAGE training completed and saved\n",
      "2025-07-18 11:54:25,752 - INFO - \n",
      "==================================================\n",
      "2025-07-18 11:54:25,752 - INFO - Training GAT\n",
      "2025-07-18 11:54:25,753 - INFO - ==================================================\n",
      "2025-07-18 11:54:25,753 - INFO - Training GAT model...\n",
      "2025-07-18 11:54:25,776 - INFO - GAT Model initialized with 1433 input features, 32 hidden dim, 7 classes, 8 attention heads\n",
      "2025-07-18 11:54:25,778 - INFO - Model parameters: 369,429\n",
      "2025-07-18 11:54:28,023 - INFO - Epoch 20/200 - Train Loss: 1.8903, Train Acc: 0.7857, Val Loss: 1.9061, Val Acc: 0.7900\n",
      "2025-07-18 11:54:28,464 - INFO - Epoch 40/200 - Train Loss: 1.7788, Train Acc: 0.9143, Val Loss: 1.8423, Val Acc: 0.7960\n",
      "2025-07-18 11:54:28,605 - INFO - Early stopping at epoch 46\n",
      "2025-07-18 11:54:28,618 - INFO - GAT Final Test Accuracy: 0.8190\n",
      "2025-07-18 11:54:28,622 - INFO - GAT training completed and saved\n",
      "2025-07-18 11:54:28,622 - INFO - Creating training curves...\n",
      "2025-07-18 11:54:29,106 - INFO - Training curves saved to training_curves.png\n",
      "2025-07-18 11:54:29,106 - INFO - Creating embeddings visualization...\n",
      "2025-07-18 11:54:36,376 - INFO - Embeddings visualization saved to embeddings_tsne.png\n",
      "2025-07-18 11:54:36,377 - INFO - Saving results summary...\n",
      "2025-07-18 11:54:36,377 - INFO - Results summary saved to results_summary.json\n",
      "2025-07-18 11:54:36,378 - INFO - \n",
      "============================================================\n",
      "2025-07-18 11:54:36,378 - INFO - FINAL RESULTS COMPARISON\n",
      "2025-07-18 11:54:36,378 - INFO - ============================================================\n",
      "2025-07-18 11:54:36,378 - INFO - GCN          - Test Accuracy: 0.7930\n",
      "2025-07-18 11:54:36,378 - INFO - GraphSAGE    - Test Accuracy: 0.7680\n",
      "2025-07-18 11:54:36,379 - INFO - GAT          - Test Accuracy: 0.8190\n",
      "2025-07-18 11:54:36,379 - INFO - \n",
      "Best performing model: GAT with accuracy: 0.8190\n",
      "2025-07-18 11:54:36,379 - INFO - \n",
      "All training artifacts saved:\n",
      "2025-07-18 11:54:36,379 - INFO - - Model checkpoints: best_*_model.pth\n",
      "2025-07-18 11:54:36,379 - INFO - - Full models: *_full_model.pkl\n",
      "2025-07-18 11:54:36,380 - INFO - - Training curves: training_curves.png\n",
      "2025-07-18 11:54:36,380 - INFO - - Embeddings visualization: embeddings_tsne.png\n",
      "2025-07-18 11:54:36,380 - INFO - - Graph visualization: graph_visualization.png\n",
      "2025-07-18 11:54:36,380 - INFO - - Results summary: results_summary.json\n",
      "2025-07-18 11:54:36,380 - INFO - - Training logs: gnn_training.log\n",
      "2025-07-18 11:54:36,381 - INFO - \n",
      "GNN training pipeline completed successfully!\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "import torch.optim as optim\n",
    "from torch_geometric.datasets import Planetoid\n",
    "from torch_geometric.nn import GCNConv, SAGEConv, GATConv, global_mean_pool\n",
    "from torch_geometric.data import DataLoader\n",
    "from torch_geometric.transforms import NormalizeFeatures\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import networkx as nx\n",
    "from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n",
    "from sklearn.manifold import TSNE\n",
    "import json\n",
    "import pickle\n",
    "import logging\n",
    "import os\n",
    "from datetime import datetime\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "\n",
    "logging.basicConfig(\n",
    "    level=logging.INFO,\n",
    "    format='%(asctime)s - %(levelname)s - %(message)s',\n",
    "    handlers=[\n",
    "        logging.FileHandler('gnn_training.log'),\n",
    "        logging.StreamHandler()\n",
    "    ]\n",
    ")\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "class GCNModel(nn.Module):\n",
    "    def __init__(self, num_features, hidden_dim, num_classes, num_layers=2, dropout=0.5):\n",
    "        super(GCNModel, self).__init__()\n",
    "        self.num_layers = num_layers\n",
    "        self.dropout = dropout\n",
    "        \n",
    "        self.convs = nn.ModuleList()\n",
    "        self.convs.append(GCNConv(num_features, hidden_dim))\n",
    "        \n",
    "        for _ in range(num_layers - 2):\n",
    "            self.convs.append(GCNConv(hidden_dim, hidden_dim))\n",
    "        \n",
    "        self.convs.append(GCNConv(hidden_dim, num_classes))\n",
    "        \n",
    "        logger.info(f\"GCN Model initialized with {num_features} input features, {hidden_dim} hidden dim, {num_classes} classes\")\n",
    "        \n",
    "    def forward(self, x, edge_index, batch=None):\n",
    "        for i, conv in enumerate(self.convs[:-1]):\n",
    "            x = conv(x, edge_index)\n",
    "            x = F.relu(x)\n",
    "            x = F.dropout(x, p=self.dropout, training=self.training)\n",
    "            \n",
    "        x = self.convs[-1](x, edge_index)\n",
    "        return F.log_softmax(x, dim=1)\n",
    "\n",
    "class GraphSAGEModel(nn.Module):\n",
    "    def __init__(self, num_features, hidden_dim, num_classes, num_layers=2, dropout=0.5):\n",
    "        super(GraphSAGEModel, self).__init__()\n",
    "        self.num_layers = num_layers\n",
    "        self.dropout = dropout\n",
    "        \n",
    "        self.convs = nn.ModuleList()\n",
    "        self.convs.append(SAGEConv(num_features, hidden_dim))\n",
    "        \n",
    "        for _ in range(num_layers - 2):\n",
    "            self.convs.append(SAGEConv(hidden_dim, hidden_dim))\n",
    "        \n",
    "        self.convs.append(SAGEConv(hidden_dim, num_classes))\n",
    "        \n",
    "        logger.info(f\"GraphSAGE Model initialized with {num_features} input features, {hidden_dim} hidden dim, {num_classes} classes\")\n",
    "        \n",
    "    def forward(self, x, edge_index, batch=None):\n",
    "        for i, conv in enumerate(self.convs[:-1]):\n",
    "            x = conv(x, edge_index)\n",
    "            x = F.relu(x)\n",
    "            x = F.dropout(x, p=self.dropout, training=self.training)\n",
    "            \n",
    "        x = self.convs[-1](x, edge_index)\n",
    "        return F.log_softmax(x, dim=1)\n",
    "\n",
    "class GATModel(nn.Module):\n",
    "    def __init__(self, num_features, hidden_dim, num_classes, num_layers=2, dropout=0.5, heads=8):\n",
    "        super(GATModel, self).__init__()\n",
    "        self.num_layers = num_layers\n",
    "        self.dropout = dropout\n",
    "        \n",
    "        self.convs = nn.ModuleList()\n",
    "        self.convs.append(GATConv(num_features, hidden_dim, heads=heads, dropout=dropout))\n",
    "        \n",
    "        for _ in range(num_layers - 2):\n",
    "            self.convs.append(GATConv(hidden_dim * heads, hidden_dim, heads=heads, dropout=dropout))\n",
    "        \n",
    "        self.convs.append(GATConv(hidden_dim * heads, num_classes, heads=1, dropout=dropout))\n",
    "        \n",
    "        logger.info(f\"GAT Model initialized with {num_features} input features, {hidden_dim} hidden dim, {num_classes} classes, {heads} attention heads\")\n",
    "        \n",
    "    def forward(self, x, edge_index, batch=None):\n",
    "        for i, conv in enumerate(self.convs[:-1]):\n",
    "            x = conv(x, edge_index)\n",
    "            x = F.relu(x)\n",
    "            x = F.dropout(x, p=self.dropout, training=self.training)\n",
    "            \n",
    "        x = self.convs[-1](x, edge_index)\n",
    "        return F.log_softmax(x, dim=1)\n",
    "\n",
    "def load_and_explore_data():\n",
    "    logger.info(\"Loading Cora dataset...\")\n",
    "    dataset = Planetoid(root='/tmp/Cora', name='Cora', transform=NormalizeFeatures())\n",
    "    data = dataset[0]\n",
    "    \n",
    "    logger.info(f\"Dataset: {dataset}\")\n",
    "    logger.info(f\"Number of graphs: {len(dataset)}\")\n",
    "    logger.info(f\"Number of features: {dataset.num_features}\")\n",
    "    logger.info(f\"Number of classes: {dataset.num_classes}\")\n",
    "    logger.info(f\"Number of nodes: {data.num_nodes}\")\n",
    "    logger.info(f\"Number of edges: {data.num_edges}\")\n",
    "    logger.info(f\"Average node degree: {data.num_edges / data.num_nodes:.2f}\")\n",
    "    logger.info(f\"Training nodes: {data.train_mask.sum()}\")\n",
    "    logger.info(f\"Validation nodes: {data.val_mask.sum()}\")\n",
    "    logger.info(f\"Test nodes: {data.test_mask.sum()}\")\n",
    "    \n",
    "    train_ratio = data.train_mask.sum() / data.num_nodes\n",
    "    val_ratio = data.val_mask.sum() / data.num_nodes\n",
    "    test_ratio = data.test_mask.sum() / data.num_nodes\n",
    "    logger.info(f\"Data split ratios - Train: {train_ratio:.3f}, Val: {val_ratio:.3f}, Test: {test_ratio:.3f}\")\n",
    "    \n",
    "    return dataset, data\n",
    "\n",
    "def create_graph_visualization(data, save_path='graph_visualization.png'):\n",
    "    logger.info(\"Creating graph visualization...\")\n",
    "    \n",
    "    edge_index = data.edge_index.cpu().numpy()\n",
    "    node_labels = data.y.cpu().numpy()\n",
    "    \n",
    "    G = nx.Graph()\n",
    "    G.add_edges_from(edge_index.T)\n",
    "    \n",
    "    fig, ax = plt.subplots(figsize=(12, 8))\n",
    "    pos = nx.spring_layout(G, k=0.5, iterations=50)\n",
    "    \n",
    "    nx.draw(G, pos, node_color=node_labels, node_size=20, \n",
    "            with_labels=False, cmap='Set3', alpha=0.7, ax=ax)\n",
    "    \n",
    "    ax.set_title(\"Cora Citation Network Visualization\")\n",
    "    \n",
    "    sm = plt.cm.ScalarMappable(cmap='Set3', norm=plt.Normalize(vmin=node_labels.min(), vmax=node_labels.max()))\n",
    "    sm.set_array([])\n",
    "    plt.colorbar(sm, ax=ax, label='Node Classes')\n",
    "    \n",
    "    plt.savefig(save_path, dpi=300, bbox_inches='tight')\n",
    "    plt.close()\n",
    "    \n",
    "    logger.info(f\"Graph visualization saved to {save_path}\")\n",
    "\n",
    "def train_model(model, data, optimizer, criterion, device):\n",
    "    model.train()\n",
    "    optimizer.zero_grad()\n",
    "    \n",
    "    out = model(data.x, data.edge_index)\n",
    "    loss = criterion(out[data.train_mask], data.y[data.train_mask])\n",
    "    loss.backward()\n",
    "    optimizer.step()\n",
    "    \n",
    "    with torch.no_grad():\n",
    "        pred = out[data.train_mask].argmax(dim=1)\n",
    "        train_acc = accuracy_score(data.y[data.train_mask].cpu(), pred.cpu())\n",
    "    \n",
    "    return loss.item(), train_acc\n",
    "\n",
    "def validate_model(model, data, criterion, device):\n",
    "    model.eval()\n",
    "    with torch.no_grad():\n",
    "        out = model(data.x, data.edge_index)\n",
    "        val_loss = criterion(out[data.val_mask], data.y[data.val_mask])\n",
    "        pred = out[data.val_mask].argmax(dim=1)\n",
    "        val_acc = accuracy_score(data.y[data.val_mask].cpu(), pred.cpu())\n",
    "    \n",
    "    return val_loss.item(), val_acc\n",
    "\n",
    "def test_model(model, data, device):\n",
    "    model.eval()\n",
    "    with torch.no_grad():\n",
    "        out = model(data.x, data.edge_index)\n",
    "        pred = out[data.test_mask].argmax(dim=1)\n",
    "        test_acc = accuracy_score(data.y[data.test_mask].cpu(), pred.cpu())\n",
    "        \n",
    "        y_true = data.y[data.test_mask].cpu().numpy()\n",
    "        y_pred = pred.cpu().numpy()\n",
    "        \n",
    "        report = classification_report(y_true, y_pred, output_dict=True)\n",
    "        conf_matrix = confusion_matrix(y_true, y_pred)\n",
    "    \n",
    "    return test_acc, report, conf_matrix, out\n",
    "\n",
    "def train_and_evaluate_model(model_class, model_name, data, device, config):\n",
    "    logger.info(f\"Training {model_name} model...\")\n",
    "    \n",
    "    if model_name == 'GAT':\n",
    "        model = model_class(\n",
    "            num_features=data.num_features,\n",
    "            hidden_dim=config['hidden_dim'],\n",
    "            num_classes=data.y.max().item() + 1,\n",
    "            num_layers=config['num_layers'],\n",
    "            dropout=config['dropout'],\n",
    "            heads=config['attention_heads']\n",
    "        ).to(device)\n",
    "    else:\n",
    "        model = model_class(\n",
    "            num_features=data.num_features,\n",
    "            hidden_dim=config['hidden_dim'],\n",
    "            num_classes=data.y.max().item() + 1,\n",
    "            num_layers=config['num_layers'],\n",
    "            dropout=config['dropout']\n",
    "        ).to(device)\n",
    "    \n",
    "    optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'], weight_decay=config['weight_decay'])\n",
    "    criterion = nn.NLLLoss()\n",
    "    \n",
    "    logger.info(f\"Model parameters: {sum(p.numel() for p in model.parameters()):,}\")\n",
    "    \n",
    "    train_losses, train_accs = [], []\n",
    "    val_losses, val_accs = [], []\n",
    "    best_val_acc = 0\n",
    "    patience_counter = 0\n",
    "    \n",
    "    for epoch in range(config['epochs']):\n",
    "        train_loss, train_acc = train_model(model, data, optimizer, criterion, device)\n",
    "        val_loss, val_acc = validate_model(model, data, criterion, device)\n",
    "        \n",
    "        train_losses.append(train_loss)\n",
    "        train_accs.append(train_acc)\n",
    "        val_losses.append(val_loss)\n",
    "        val_accs.append(val_acc)\n",
    "        \n",
    "        if val_acc > best_val_acc:\n",
    "            best_val_acc = val_acc\n",
    "            patience_counter = 0\n",
    "            torch.save(model.state_dict(), f'best_{model_name.lower()}_model.pth')\n",
    "        else:\n",
    "            patience_counter += 1\n",
    "        \n",
    "        if (epoch + 1) % 20 == 0:\n",
    "            logger.info(f\"Epoch {epoch+1}/{config['epochs']} - \"\n",
    "                       f\"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, \"\n",
    "                       f\"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}\")\n",
    "        \n",
    "        if patience_counter >= config['patience']:\n",
    "            logger.info(f\"Early stopping at epoch {epoch+1}\")\n",
    "            break\n",
    "    \n",
    "    model.load_state_dict(torch.load(f'best_{model_name.lower()}_model.pth'))\n",
    "    test_acc, report, conf_matrix, embeddings = test_model(model, data, device)\n",
    "    \n",
    "    logger.info(f\"{model_name} Final Test Accuracy: {test_acc:.4f}\")\n",
    "    \n",
    "    return {\n",
    "        'model': model,\n",
    "        'train_losses': train_losses,\n",
    "        'train_accs': train_accs,\n",
    "        'val_losses': val_losses,\n",
    "        'val_accs': val_accs,\n",
    "        'test_acc': test_acc,\n",
    "        'classification_report': report,\n",
    "        'confusion_matrix': conf_matrix,\n",
    "        'embeddings': embeddings\n",
    "    }\n",
    "\n",
    "def create_training_plots(results, save_path='training_curves.png'):\n",
    "    logger.info(\"Creating training curves...\")\n",
    "    \n",
    "    fig, axes = plt.subplots(2, 3, figsize=(18, 12))\n",
    "    \n",
    "    model_names = list(results.keys())\n",
    "    colors = ['blue', 'red', 'green']\n",
    "    \n",
    "    for i, (model_name, color) in enumerate(zip(model_names, colors)):\n",
    "        result = results[model_name]\n",
    "        \n",
    "        axes[0, i].plot(result['train_losses'], color=color, label='Train Loss')\n",
    "        axes[0, i].plot(result['val_losses'], color=color, linestyle='--', label='Val Loss')\n",
    "        axes[0, i].set_title(f'{model_name} - Loss Curves')\n",
    "        axes[0, i].set_xlabel('Epoch')\n",
    "        axes[0, i].set_ylabel('Loss')\n",
    "        axes[0, i].legend()\n",
    "        axes[0, i].grid(True)\n",
    "        \n",
    "        axes[1, i].plot(result['train_accs'], color=color, label='Train Acc')\n",
    "        axes[1, i].plot(result['val_accs'], color=color, linestyle='--', label='Val Acc')\n",
    "        axes[1, i].set_title(f'{model_name} - Accuracy Curves')\n",
    "        axes[1, i].set_xlabel('Epoch')\n",
    "        axes[1, i].set_ylabel('Accuracy')\n",
    "        axes[1, i].legend()\n",
    "        axes[1, i].grid(True)\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig(save_path, dpi=300, bbox_inches='tight')\n",
    "    plt.close()\n",
    "    \n",
    "    logger.info(f\"Training curves saved to {save_path}\")\n",
    "\n",
    "def create_embeddings_visualization(results, data, save_path='embeddings_tsne.png'):\n",
    "    logger.info(\"Creating embeddings visualization...\")\n",
    "    \n",
    "    fig, axes = plt.subplots(1, 3, figsize=(18, 6))\n",
    "    \n",
    "    model_names = list(results.keys())\n",
    "    \n",
    "    for i, model_name in enumerate(model_names):\n",
    "        embeddings = results[model_name]['embeddings'].cpu().numpy()\n",
    "        labels = data.y.cpu().numpy()\n",
    "        \n",
    "        tsne = TSNE(n_components=2, random_state=42, perplexity=30)\n",
    "        embeddings_2d = tsne.fit_transform(embeddings)\n",
    "        \n",
    "        scatter = axes[i].scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], \n",
    "                                 c=labels, cmap='Set3', alpha=0.7, s=20)\n",
    "        axes[i].set_title(f'{model_name} - Node Embeddings (t-SNE)')\n",
    "        axes[i].set_xlabel('t-SNE 1')\n",
    "        axes[i].set_ylabel('t-SNE 2')\n",
    "        plt.colorbar(scatter, ax=axes[i])\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig(save_path, dpi=300, bbox_inches='tight')\n",
    "    plt.close()\n",
    "    \n",
    "    logger.info(f\"Embeddings visualization saved to {save_path}\")\n",
    "\n",
    "def save_results_summary(results, config, save_path='results_summary.json'):\n",
    "    logger.info(\"Saving results summary...\")\n",
    "    \n",
    "    summary = {\n",
    "        'experiment_config': config,\n",
    "        'model_performance': {},\n",
    "        'timestamp': datetime.now().isoformat()\n",
    "    }\n",
    "    \n",
    "    for model_name, result in results.items():\n",
    "        summary['model_performance'][model_name] = {\n",
    "            'test_accuracy': float(result['test_acc']),\n",
    "            'final_train_accuracy': float(result['train_accs'][-1]),\n",
    "            'final_val_accuracy': float(result['val_accs'][-1]),\n",
    "            'best_val_accuracy': float(max(result['val_accs'])),\n",
    "            'precision_macro': float(result['classification_report']['macro avg']['precision']),\n",
    "            'recall_macro': float(result['classification_report']['macro avg']['recall']),\n",
    "            'f1_macro': float(result['classification_report']['macro avg']['f1-score'])\n",
    "        }\n",
    "    \n",
    "    with open(save_path, 'w') as f:\n",
    "        json.dump(summary, f, indent=2)\n",
    "    \n",
    "    logger.info(f\"Results summary saved to {save_path}\")\n",
    "\n",
    "def main():\n",
    "    logger.info(\"Starting GNN training pipeline...\")\n",
    "    \n",
    "    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "    logger.info(f\"Using device: {device}\")\n",
    "    \n",
    "    if torch.backends.mps.is_available():\n",
    "        device = torch.device('mps')\n",
    "        logger.info(\"Using Apple Silicon MPS acceleration\")\n",
    "    \n",
    "    dataset, data = load_and_explore_data()\n",
    "    data = data.to(device)\n",
    "    \n",
    "    create_graph_visualization(data)\n",
    "    \n",
    "    config = {\n",
    "        'hidden_dim': 32,\n",
    "        'num_layers': 2,\n",
    "        'dropout': 0.5,\n",
    "        'learning_rate': 0.001,\n",
    "        'weight_decay': 5e-4,\n",
    "        'epochs': 200,\n",
    "        'patience': 20,\n",
    "        'attention_heads': 8\n",
    "    }\n",
    "    \n",
    "    logger.info(f\"Training configuration: {config}\")\n",
    "    \n",
    "    models = {\n",
    "        'GCN': GCNModel,\n",
    "        'GraphSAGE': GraphSAGEModel,\n",
    "        'GAT': GATModel\n",
    "    }\n",
    "    \n",
    "    results = {}\n",
    "    \n",
    "    for model_name, model_class in models.items():\n",
    "        logger.info(f\"\\n{'='*50}\")\n",
    "        logger.info(f\"Training {model_name}\")\n",
    "        logger.info(f\"{'='*50}\")\n",
    "        \n",
    "        result = train_and_evaluate_model(model_class, model_name, data, device, config)\n",
    "        results[model_name] = result\n",
    "        \n",
    "        with open(f'{model_name.lower()}_full_model.pkl', 'wb') as f:\n",
    "            pickle.dump(result['model'], f)\n",
    "        \n",
    "        logger.info(f\"{model_name} training completed and saved\")\n",
    "    \n",
    "    create_training_plots(results)\n",
    "    create_embeddings_visualization(results, data)\n",
    "    save_results_summary(results, config)\n",
    "    \n",
    "    logger.info(\"\\n\" + \"=\"*60)\n",
    "    logger.info(\"FINAL RESULTS COMPARISON\")\n",
    "    logger.info(\"=\"*60)\n",
    "    \n",
    "    for model_name, result in results.items():\n",
    "        logger.info(f\"{model_name:12} - Test Accuracy: {result['test_acc']:.4f}\")\n",
    "    \n",
    "    best_model = max(results.items(), key=lambda x: x[1]['test_acc'])\n",
    "    logger.info(f\"\\nBest performing model: {best_model[0]} with accuracy: {best_model[1]['test_acc']:.4f}\")\n",
    "    \n",
    "    logger.info(\"\\nAll training artifacts saved:\")\n",
    "    logger.info(\"- Model checkpoints: best_*_model.pth\")\n",
    "    logger.info(\"- Full models: *_full_model.pkl\")\n",
    "    logger.info(\"- Training curves: training_curves.png\")\n",
    "    logger.info(\"- Embeddings visualization: embeddings_tsne.png\")\n",
    "    logger.info(\"- Graph visualization: graph_visualization.png\")\n",
    "    logger.info(\"- Results summary: results_summary.json\")\n",
    "    logger.info(\"- Training logs: gnn_training.log\")\n",
    "    \n",
    "    logger.info(\"\\nGNN training pipeline completed successfully!\")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7efc8f6a-9293-42be-b891-e3feaa6471c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import all necessary libraries for graph neural networks, visualization, and logging\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "import torch.optim as optim\n",
    "from torch_geometric.datasets import Planetoid  # PyTorch Geometric dataset loader\n",
    "from torch_geometric.nn import GCNConv, SAGEConv, GATConv, global_mean_pool  # GNN layer types\n",
    "from torch_geometric.data import DataLoader\n",
    "from torch_geometric.transforms import NormalizeFeatures  # Data preprocessing\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import networkx as nx  # For graph visualization\n",
    "from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n",
    "from sklearn.manifold import TSNE  # For dimensionality reduction visualization\n",
    "import json\n",
    "import pickle\n",
    "import logging\n",
    "import os\n",
    "from datetime import datetime\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')  # Suppress non-critical warnings\n",
    "\n",
    "# Configure comprehensive logging to both file and console\n",
    "# This replaces traditional comments with runtime information\n",
    "logging.basicConfig(\n",
    "    level=logging.INFO,\n",
    "    format='%(asctime)s - %(levelname)s - %(message)s',\n",
    "    handlers=[\n",
    "        logging.FileHandler('gnn_training.log'),  # Save logs to file\n",
    "        logging.StreamHandler()  # Display logs in console\n",
    "    ]\n",
    ")\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "class GCNModel(nn.Module):\n",
    "    \"\"\"\n",
    "    Graph Convolutional Network (GCN) implementation\n",
    "    \n",
    "    GCN Architecture Rationale:\n",
    "    - Uses spectral approach to graph convolutions\n",
    "    - Simple and effective for node classification\n",
    "    - Good baseline model for graph learning tasks\n",
    "    \n",
    "    Parameters chosen for stability:\n",
    "    - hidden_dim=32: Small enough to prevent overfitting on limited training data (140 nodes)\n",
    "    - num_layers=2: Avoids over-smoothing while capturing local graph structure\n",
    "    - dropout=0.5: Regularization to prevent overfitting on small training set\n",
    "    \"\"\"\n",
    "    def __init__(self, num_features, hidden_dim, num_classes, num_layers=2, dropout=0.5):\n",
    "        super(GCNModel, self).__init__()\n",
    "        self.num_layers = num_layers\n",
    "        self.dropout = dropout\n",
    "        \n",
    "        # Create a list of GCN layers - ModuleList ensures proper parameter registration\n",
    "        self.convs = nn.ModuleList()\n",
    "        \n",
    "        # First layer: input features -> hidden dimension\n",
    "        self.convs.append(GCNConv(num_features, hidden_dim))\n",
    "        \n",
    "        # Hidden layers: hidden -> hidden (if num_layers > 2)\n",
    "        for _ in range(num_layers - 2):\n",
    "            self.convs.append(GCNConv(hidden_dim, hidden_dim))\n",
    "        \n",
    "        # Final layer: hidden -> number of classes (no activation, will use log_softmax)\n",
    "        self.convs.append(GCNConv(hidden_dim, num_classes))\n",
    "        \n",
    "        logger.info(f\"GCN Model initialized with {num_features} input features, {hidden_dim} hidden dim, {num_classes} classes\")\n",
    "        \n",
    "    def forward(self, x, edge_index, batch=None):\n",
    "        \"\"\"\n",
    "        Forward pass through GCN layers\n",
    "        \n",
    "        Args:\n",
    "            x: Node feature matrix [num_nodes, num_features]\n",
    "            edge_index: Graph connectivity [2, num_edges] \n",
    "            batch: Batch assignment (unused for single graph)\n",
    "            \n",
    "        Returns:\n",
    "            Log probabilities for each node [num_nodes, num_classes]\n",
    "        \"\"\"\n",
    "        # Process through all layers except the last one\n",
    "        for i, conv in enumerate(self.convs[:-1]):\n",
    "            x = conv(x, edge_index)  # Graph convolution\n",
    "            x = F.relu(x)  # Non-linear activation\n",
    "            x = F.dropout(x, p=self.dropout, training=self.training)  # Regularization\n",
    "            \n",
    "        # Final layer without activation (will apply log_softmax)\n",
    "        x = self.convs[-1](x, edge_index)\n",
    "        \n",
    "        # Return log probabilities for stable numerical computation\n",
    "        return F.log_softmax(x, dim=1)\n",
    "\n",
    "class GraphSAGEModel(nn.Module):\n",
    "    \"\"\"\n",
    "    GraphSAGE (Sample and Aggregate) implementation\n",
    "    \n",
    "    GraphSAGE Architecture Rationale:\n",
    "    - Uses sampling and aggregation instead of spectral methods\n",
    "    - More scalable to large graphs than GCN\n",
    "    - Better at handling heterogeneous neighborhoods\n",
    "    \n",
    "    Key differences from GCN:\n",
    "    - Samples fixed-size neighborhoods for scalability\n",
    "    - Uses mean aggregation by default\n",
    "    - More parameters due to separate aggregation and update functions\n",
    "    \"\"\"\n",
    "    def __init__(self, num_features, hidden_dim, num_classes, num_layers=2, dropout=0.5):\n",
    "        super(GraphSAGEModel, self).__init__()\n",
    "        self.num_layers = num_layers\n",
    "        self.dropout = dropout\n",
    "        \n",
    "        # SAGEConv layers - each layer samples and aggregates from neighbors\n",
    "        self.convs = nn.ModuleList()\n",
    "        self.convs.append(SAGEConv(num_features, hidden_dim))\n",
    "        \n",
    "        # Hidden layers maintain consistent dimensionality\n",
    "        for _ in range(num_layers - 2):\n",
    "            self.convs.append(SAGEConv(hidden_dim, hidden_dim))\n",
    "        \n",
    "        # Output layer projects to class space\n",
    "        self.convs.append(SAGEConv(hidden_dim, num_classes))\n",
    "        \n",
    "        logger.info(f\"GraphSAGE Model initialized with {num_features} input features, {hidden_dim} hidden dim, {num_classes} classes\")\n",
    "        \n",
    "    def forward(self, x, edge_index, batch=None):\n",
    "        \"\"\"\n",
    "        Forward pass through GraphSAGE layers\n",
    "        \n",
    "        GraphSAGE Process:\n",
    "        1. Sample neighbors for each node\n",
    "        2. Aggregate neighbor features (mean by default)\n",
    "        3. Concatenate with node's own features\n",
    "        4. Apply linear transformation\n",
    "        \"\"\"\n",
    "        # Apply GraphSAGE convolutions with ReLU and dropout\n",
    "        for i, conv in enumerate(self.convs[:-1]):\n",
    "            x = conv(x, edge_index)  # Sample and aggregate\n",
    "            x = F.relu(x)  # Non-linearity\n",
    "            x = F.dropout(x, p=self.dropout, training=self.training)  # Regularization\n",
    "            \n",
    "        # Final layer without activation\n",
    "        x = self.convs[-1](x, edge_index)\n",
    "        return F.log_softmax(x, dim=1)\n",
    "\n",
    "class GATModel(nn.Module):\n",
    "    \"\"\"\n",
    "    Graph Attention Network (GAT) implementation\n",
    "    \n",
    "    GAT Architecture Rationale:\n",
    "    - Uses attention mechanism to weight neighbor contributions\n",
    "    - Multi-head attention for learning diverse relationship types\n",
    "    - More sophisticated than GCN/GraphSAGE but potentially more powerful\n",
    "    \n",
    "    Attention Benefits:\n",
    "    - Learns which neighbors are most important dynamically\n",
    "    - Provides interpretability through attention weights\n",
    "    - Handles heterogeneous graphs better\n",
    "    \n",
    "    Multi-head Attention:\n",
    "    - heads=8: Allows learning multiple types of relationships\n",
    "    - Concatenated in hidden layers, averaged in final layer\n",
    "    \"\"\"\n",
    "    def __init__(self, num_features, hidden_dim, num_classes, num_layers=2, dropout=0.5, heads=8):\n",
    "        super(GATModel, self).__init__()\n",
    "        self.num_layers = num_layers\n",
    "        self.dropout = dropout\n",
    "        \n",
    "        self.convs = nn.ModuleList()\n",
    "        \n",
    "        # First layer: input -> hidden with multi-head attention\n",
    "        self.convs.append(GATConv(num_features, hidden_dim, heads=heads, dropout=dropout))\n",
    "        \n",
    "        # Hidden layers: concatenated heads -> hidden with multi-head attention  \n",
    "        for _ in range(num_layers - 2):\n",
    "            # Input dimension is hidden_dim * heads due to concatenation\n",
    "            self.convs.append(GATConv(hidden_dim * heads, hidden_dim, heads=heads, dropout=dropout))\n",
    "        \n",
    "        # Final layer: single head for classification (averages attention)\n",
    "        self.convs.append(GATConv(hidden_dim * heads, num_classes, heads=1, dropout=dropout))\n",
    "        \n",
    "        logger.info(f\"GAT Model initialized with {num_features} input features, {hidden_dim} hidden dim, {num_classes} classes, {heads} attention heads\")\n",
    "        \n",
    "    def forward(self, x, edge_index, batch=None):\n",
    "        \"\"\"\n",
    "        Forward pass through GAT layers\n",
    "        \n",
    "        GAT Process:\n",
    "        1. Compute attention coefficients for each edge\n",
    "        2. Apply softmax to normalize attention weights\n",
    "        3. Weight neighbor features by attention coefficients\n",
    "        4. Aggregate weighted features\n",
    "        \"\"\"\n",
    "        # Process through attention layers\n",
    "        for i, conv in enumerate(self.convs[:-1]):\n",
    "            x = conv(x, edge_index)  # Multi-head attention\n",
    "            x = F.relu(x)  # Activation after attention\n",
    "            x = F.dropout(x, p=self.dropout, training=self.training)\n",
    "            \n",
    "        # Final attention layer (single head)\n",
    "        x = self.convs[-1](x, edge_index)\n",
    "        return F.log_softmax(x, dim=1)\n",
    "\n",
    "def load_and_explore_data():\n",
    "    \"\"\"\n",
    "    Load and analyze the Cora citation network dataset\n",
    "    \n",
    "    Cora Dataset Details:\n",
    "    - Citation network of machine learning papers\n",
    "    - 2708 nodes (papers), 10556 edges (citations)\n",
    "    - 7 classes (research areas): Neural Networks, Rule Learning, etc.\n",
    "    - 1433 features per node (bag-of-words from paper abstracts)\n",
    "    - Semi-supervised learning setup: 140 training, 500 validation, 1000 test nodes\n",
    "    \n",
    "    Data Split Analysis:\n",
    "    - Very small training set (5.2%) creates challenging learning scenario\n",
    "    - Large test set (36.9%) provides reliable evaluation\n",
    "    - Imbalanced split tests model's ability to generalize from limited data\n",
    "    \"\"\"\n",
    "    logger.info(\"Loading Cora dataset...\")\n",
    "    \n",
    "    # Load Cora dataset with feature normalization\n",
    "    # NormalizeFeatures: scales node features to unit norm for stable training\n",
    "    dataset = Planetoid(root='/tmp/Cora', name='Cora', transform=NormalizeFeatures())\n",
    "    data = dataset[0]  # Single graph in dataset\n",
    "    \n",
    "    # Log comprehensive dataset statistics\n",
    "    logger.info(f\"Dataset: {dataset}\")\n",
    "    logger.info(f\"Number of graphs: {len(dataset)}\")\n",
    "    logger.info(f\"Number of features: {dataset.num_features}\")\n",
    "    logger.info(f\"Number of classes: {dataset.num_classes}\")\n",
    "    logger.info(f\"Number of nodes: {data.num_nodes}\")\n",
    "    logger.info(f\"Number of edges: {data.num_edges}\")\n",
    "    logger.info(f\"Average node degree: {data.num_edges / data.num_nodes:.2f}\")\n",
    "    logger.info(f\"Training nodes: {data.train_mask.sum()}\")\n",
    "    logger.info(f\"Validation nodes: {data.val_mask.sum()}\")\n",
    "    logger.info(f\"Test nodes: {data.test_mask.sum()}\")\n",
    "    \n",
    "    # Calculate and log data split ratios\n",
    "    train_ratio = data.train_mask.sum() / data.num_nodes\n",
    "    val_ratio = data.val_mask.sum() / data.num_nodes\n",
    "    test_ratio = data.test_mask.sum() / data.num_nodes\n",
    "    logger.info(f\"Data split ratios - Train: {train_ratio:.3f}, Val: {val_ratio:.3f}, Test: {test_ratio:.3f}\")\n",
    "    \n",
    "    return dataset, data\n",
    "\n",
    "def create_graph_visualization(data, save_path='graph_visualization.png'):\n",
    "    \"\"\"\n",
    "    Create and save a visualization of the graph structure\n",
    "    \n",
    "    Visualization Strategy:\n",
    "    - Spring layout: positions nodes to minimize edge crossings\n",
    "    - Color-coded by node classes for pattern recognition\n",
    "    - Small node size due to large number of nodes (2708)\n",
    "    - High-resolution PNG for clear visualization\n",
    "    \n",
    "    Spring Layout Parameters:\n",
    "    - k=0.5: Controls node spacing (smaller = more compact)\n",
    "    - iterations=50: Layout optimization steps (more = better but slower)\n",
    "    \"\"\"\n",
    "    logger.info(\"Creating graph visualization...\")\n",
    "    \n",
    "    # Convert PyTorch tensors to numpy for NetworkX compatibility\n",
    "    # Must move to CPU first due to MPS device limitations\n",
    "    edge_index = data.edge_index.cpu().numpy()\n",
    "    node_labels = data.y.cpu().numpy()\n",
    "    \n",
    "    # Create NetworkX graph from edge list\n",
    "    G = nx.Graph()\n",
    "    G.add_edges_from(edge_index.T)  # Transpose to get (source, target) pairs\n",
    "    \n",
    "    # Create matplotlib figure with explicit axes for colorbar compatibility\n",
    "    fig, ax = plt.subplots(figsize=(12, 8))\n",
    "    \n",
    "    # Compute spring layout positions for aesthetic node placement\n",
    "    pos = nx.spring_layout(G, k=0.5, iterations=50)\n",
    "    \n",
    "    # Draw graph with color-coded nodes\n",
    "    nx.draw(G, pos, node_color=node_labels, node_size=20, \n",
    "            with_labels=False, cmap='Set3', alpha=0.7, ax=ax)\n",
    "    \n",
    "    ax.set_title(\"Cora Citation Network Visualization\")\n",
    "    \n",
    "    # Create colorbar with proper normalization\n",
    "    # ScalarMappable maps node class indices to colors\n",
    "    sm = plt.cm.ScalarMappable(cmap='Set3', norm=plt.Normalize(vmin=node_labels.min(), vmax=node_labels.max()))\n",
    "    sm.set_array([])  # Required for colorbar creation\n",
    "    plt.colorbar(sm, ax=ax, label='Node Classes')\n",
    "    \n",
    "    # Save high-resolution image\n",
    "    plt.savefig(save_path, dpi=300, bbox_inches='tight')\n",
    "    plt.close()  # Free memory\n",
    "    \n",
    "    logger.info(f\"Graph visualization saved to {save_path}\")\n",
    "\n",
    "def train_model(model, data, optimizer, criterion, device):\n",
    "    \"\"\"\n",
    "    Execute one training epoch\n",
    "    \n",
    "    Training Process:\n",
    "    1. Set model to training mode (enables dropout)\n",
    "    2. Zero gradients from previous step\n",
    "    3. Forward pass through model\n",
    "    4. Compute loss only on training nodes\n",
    "    5. Backpropagate gradients\n",
    "    6. Update model parameters\n",
    "    7. Compute training accuracy for monitoring\n",
    "    \n",
    "    Loss Function Choice:\n",
    "    - NLLLoss: Negative Log-Likelihood Loss\n",
    "    - Works with log_softmax output from models\n",
    "    - Equivalent to CrossEntropyLoss but with log probabilities\n",
    "    \"\"\"\n",
    "    model.train()  # Enable dropout and batch normalization training mode\n",
    "    optimizer.zero_grad()  # Clear gradients from previous iteration\n",
    "    \n",
    "    # Forward pass: compute predictions for all nodes\n",
    "    out = model(data.x, data.edge_index)\n",
    "    \n",
    "    # Compute loss only on training nodes (semi-supervised learning)\n",
    "    loss = criterion(out[data.train_mask], data.y[data.train_mask])\n",
    "    \n",
    "    # Backward pass: compute gradients\n",
    "    loss.backward()\n",
    "    \n",
    "    # Update model parameters\n",
    "    optimizer.step()\n",
    "    \n",
    "    # Compute training accuracy (no gradients needed)\n",
    "    with torch.no_grad():\n",
    "        pred = out[data.train_mask].argmax(dim=1)  # Get predicted classes\n",
    "        train_acc = accuracy_score(data.y[data.train_mask].cpu(), pred.cpu())\n",
    "    \n",
    "    return loss.item(), train_acc\n",
    "\n",
    "def validate_model(model, data, criterion, device):\n",
    "    \"\"\"\n",
    "    Evaluate model on validation set\n",
    "    \n",
    "    Validation Purpose:\n",
    "    - Monitor overfitting during training\n",
    "    - Early stopping criterion\n",
    "    - Hyperparameter selection\n",
    "    \n",
    "    Key Differences from Training:\n",
    "    - eval() mode: disables dropout, fixes batch normalization\n",
    "    - no_grad(): disables gradient computation for efficiency\n",
    "    - Only forward pass, no parameter updates\n",
    "    \"\"\"\n",
    "    model.eval()  # Disable dropout and set batch normalization to eval mode\n",
    "    with torch.no_grad():  # Disable gradient computation for efficiency\n",
    "        # Forward pass on entire graph\n",
    "        out = model(data.x, data.edge_index)\n",
    "        \n",
    "        # Compute validation loss and accuracy\n",
    "        val_loss = criterion(out[data.val_mask], data.y[data.val_mask])\n",
    "        pred = out[data.val_mask].argmax(dim=1)\n",
    "        val_acc = accuracy_score(data.y[data.val_mask].cpu(), pred.cpu())\n",
    "    \n",
    "    return val_loss.item(), val_acc\n",
    "\n",
    "def test_model(model, data, device):\n",
    "    \"\"\"\n",
    "    Comprehensive evaluation on test set\n",
    "    \n",
    "    Test Evaluation Includes:\n",
    "    - Accuracy: Overall classification performance\n",
    "    - Classification report: Per-class precision, recall, F1-score\n",
    "    - Confusion matrix: Detailed error analysis\n",
    "    - Node embeddings: For visualization and analysis\n",
    "    \n",
    "    Why Comprehensive Evaluation:\n",
    "    - Test set is large (1000 nodes) - reliable statistics\n",
    "    - Multiple metrics reveal different aspects of performance\n",
    "    - Embeddings enable understanding of learned representations\n",
    "    \"\"\"\n",
    "    model.eval()\n",
    "    with torch.no_grad():\n",
    "        # Get model outputs for all nodes\n",
    "        out = model(data.x, data.edge_index)\n",
    "        \n",
    "        # Compute test accuracy\n",
    "        pred = out[data.test_mask].argmax(dim=1)\n",
    "        test_acc = accuracy_score(data.y[data.test_mask].cpu(), pred.cpu())\n",
    "        \n",
    "        # Prepare data for detailed evaluation\n",
    "        y_true = data.y[data.test_mask].cpu().numpy()\n",
    "        y_pred = pred.cpu().numpy()\n",
    "        \n",
    "        # Generate comprehensive evaluation metrics\n",
    "        report = classification_report(y_true, y_pred, output_dict=True)\n",
    "        conf_matrix = confusion_matrix(y_true, y_pred)\n",
    "    \n",
    "    return test_acc, report, conf_matrix, out\n",
    "\n",
    "def train_and_evaluate_model(model_class, model_name, data, device, config):\n",
    "    \"\"\"\n",
    "    Complete training pipeline for a single model\n",
    "    \n",
    "    Training Strategy Rationale:\n",
    "    - Adam optimizer: adaptive learning rates, good default choice\n",
    "    - Learning rate 0.001: conservative to ensure stable learning\n",
    "    - Weight decay 5e-4: L2 regularization to prevent overfitting\n",
    "    - Early stopping: prevents overfitting, saves best model\n",
    "    \n",
    "    Hyperparameter Choices Explained:\n",
    "    - hidden_dim=32: Small enough for limited training data (140 nodes)\n",
    "    - dropout=0.5: Strong regularization due to small training set\n",
    "    - patience=20: Allows model time to improve before stopping\n",
    "    \n",
    "    Early Stopping Logic:\n",
    "    - Monitor validation accuracy (primary metric)\n",
    "    - Save model when validation accuracy improves\n",
    "    - Stop training if no improvement for 'patience' epochs\n",
    "    - Load best model for final evaluation\n",
    "    \"\"\"\n",
    "    logger.info(f\"Training {model_name} model...\")\n",
    "    \n",
    "    # Initialize model with appropriate architecture\n",
    "    if model_name == 'GAT':\n",
    "        # GAT requires additional attention heads parameter\n",
    "        model = model_class(\n",
    "            num_features=data.num_features,\n",
    "            hidden_dim=config['hidden_dim'],\n",
    "            num_classes=data.y.max().item() + 1,  # Convert to number of classes\n",
    "            num_layers=config['num_layers'],\n",
    "            dropout=config['dropout'],\n",
    "            heads=config['attention_heads']\n",
    "        ).to(device)\n",
    "    else:\n",
    "        # Standard GCN and GraphSAGE initialization\n",
    "        model = model_class(\n",
    "            num_features=data.num_features,\n",
    "            hidden_dim=config['hidden_dim'],\n",
    "            num_classes=data.y.max().item() + 1,\n",
    "            num_layers=config['num_layers'],\n",
    "            dropout=config['dropout']\n",
    "        ).to(device)\n",
    "    \n",
    "    # Configure optimizer and loss function\n",
    "    # Adam: adaptive learning rate, momentum, good default\n",
    "    # Weight decay: L2 regularization to prevent overfitting\n",
    "    optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'], weight_decay=config['weight_decay'])\n",
    "    criterion = nn.NLLLoss()  # Negative log-likelihood for classification\n",
    "    \n",
    "    # Log model complexity\n",
    "    logger.info(f\"Model parameters: {sum(p.numel() for p in model.parameters()):,}\")\n",
    "    \n",
    "    # Training tracking variables\n",
    "    train_losses, train_accs = [], []\n",
    "    val_losses, val_accs = [], []\n",
    "    best_val_acc = 0\n",
    "    patience_counter = 0\n",
    "    \n",
    "    # Training loop with early stopping\n",
    "    for epoch in range(config['epochs']):\n",
    "        # Train for one epoch\n",
    "        train_loss, train_acc = train_model(model, data, optimizer, criterion, device)\n",
    "        \n",
    "        # Validate current model\n",
    "        val_loss, val_acc = validate_model(model, data, criterion, device)\n",
    "        \n",
    "        # Store metrics for plotting\n",
    "        train_losses.append(train_loss)\n",
    "        train_accs.append(train_acc)\n",
    "        val_losses.append(val_loss)\n",
    "        val_accs.append(val_acc)\n",
    "        \n",
    "        # Early stopping and model saving logic\n",
    "        if val_acc > best_val_acc:\n",
    "            best_val_acc = val_acc\n",
    "            patience_counter = 0\n",
    "            # Save best model state\n",
    "            torch.save(model.state_dict(), f'best_{model_name.lower()}_model.pth')\n",
    "        else:\n",
    "            patience_counter += 1\n",
    "        \n",
    "        # Periodic progress logging (every 20 epochs)\n",
    "        if (epoch + 1) % 20 == 0:\n",
    "            logger.info(f\"Epoch {epoch+1}/{config['epochs']} - \"\n",
    "                       f\"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, \"\n",
    "                       f\"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}\")\n",
    "        \n",
    "        # Early stopping check\n",
    "        if patience_counter >= config['patience']:\n",
    "            logger.info(f\"Early stopping at epoch {epoch+1}\")\n",
    "            break\n",
    "    \n",
    "    # Load best model for final evaluation\n",
    "    model.load_state_dict(torch.load(f'best_{model_name.lower()}_model.pth'))\n",
    "    \n",
    "    # Comprehensive test evaluation\n",
    "    test_acc, report, conf_matrix, embeddings = test_model(model, data, device)\n",
    "    \n",
    "    logger.info(f\"{model_name} Final Test Accuracy: {test_acc:.4f}\")\n",
    "    \n",
    "    # Return complete training results\n",
    "    return {\n",
    "        'model': model,\n",
    "        'train_losses': train_losses,\n",
    "        'train_accs': train_accs,\n",
    "        'val_losses': val_losses,\n",
    "        'val_accs': val_accs,\n",
    "        'test_acc': test_acc,\n",
    "        'classification_report': report,\n",
    "        'confusion_matrix': conf_matrix,\n",
    "        'embeddings': embeddings\n",
    "    }\n",
    "\n",
    "def create_training_plots(results, save_path='training_curves.png'):\n",
    "    \"\"\"\n",
    "    Generate comprehensive training visualization\n",
    "    \n",
    "    Visualization Design:\n",
    "    - 2x3 subplot grid: loss and accuracy for each model\n",
    "    - Separate train/validation curves: monitor overfitting\n",
    "    - Different colors per model: easy comparison\n",
    "    - Grid lines: easier value reading\n",
    "    \n",
    "    Plot Analysis:\n",
    "    - Loss curves: should decrease and converge\n",
    "    - Accuracy curves: should increase and plateau\n",
    "    - Gap between train/val: indicates overfitting\n",
    "    \"\"\"\n",
    "    logger.info(\"Creating training curves...\")\n",
    "    \n",
    "    # Create subplot grid: 2 rows (loss, accuracy) x 3 columns (models)\n",
    "    fig, axes = plt.subplots(2, 3, figsize=(18, 12))\n",
    "    \n",
    "    model_names = list(results.keys())\n",
    "    colors = ['blue', 'red', 'green']  # Distinct colors for each model\n",
    "    \n",
    "    # Plot training curves for each model\n",
    "    for i, (model_name, color) in enumerate(zip(model_names, colors)):\n",
    "        result = results[model_name]\n",
    "        \n",
    "        # Loss curves (top row)\n",
    "        axes[0, i].plot(result['train_losses'], color=color, label='Train Loss')\n",
    "        axes[0, i].plot(result['val_losses'], color=color, linestyle='--', label='Val Loss')\n",
    "        axes[0, i].set_title(f'{model_name} - Loss Curves')\n",
    "        axes[0, i].set_xlabel('Epoch')\n",
    "        axes[0, i].set_ylabel('Loss')\n",
    "        axes[0, i].legend()\n",
    "        axes[0, i].grid(True)  # Add grid for easier reading\n",
    "        \n",
    "        # Accuracy curves (bottom row)\n",
    "        axes[1, i].plot(result['train_accs'], color=color, label='Train Acc')\n",
    "        axes[1, i].plot(result['val_accs'], color=color, linestyle='--', label='Val Acc')\n",
    "        axes[1, i].set_title(f'{model_name} - Accuracy Curves')\n",
    "        axes[1, i].set_xlabel('Epoch')\n",
    "        axes[1, i].set_ylabel('Accuracy')\n",
    "        axes[1, i].legend()\n",
    "        axes[1, i].grid(True)\n",
    "    \n",
    "    # Save high-resolution figure\n",
    "    plt.tight_layout()  # Prevent subplot overlap\n",
    "    plt.savefig(save_path, dpi=300, bbox_inches='tight')\n",
    "    plt.close()  # Free memory\n",
    "    \n",
    "    logger.info(f\"Training curves saved to {save_path}\")\n",
    "\n",
    "def create_embeddings_visualization(results, data, save_path='embeddings_tsne.png'):\n",
    "    \"\"\"\n",
    "    Visualize learned node embeddings using t-SNE\n",
    "    \n",
    "    t-SNE Visualization Purpose:\n",
    "    - Reduce high-dimensional embeddings to 2D for visualization\n",
    "    - Preserve local neighborhood structure\n",
    "    - Reveal clustering patterns learned by models\n",
    "    \n",
    "    t-SNE Parameters:\n",
    "    - n_components=2: 2D visualization\n",
    "    - random_state=42: reproducible results\n",
    "    - perplexity=30: good default for medium-sized datasets\n",
    "    \n",
    "    Interpretation:\n",
    "    - Well-separated clusters: good class separation\n",
    "    - Mixed colors: challenging classification regions\n",
    "    - Tight clusters: strong within-class similarity\n",
    "    \"\"\"\n",
    "    logger.info(\"Creating embeddings visualization...\")\n",
    "    \n",
    "    # Create subplot for each model's embeddings\n",
    "    fig, axes = plt.subplots(1, 3, figsize=(18, 6))\n",
    "    \n",
    "    model_names = list(results.keys())\n",
    "    \n",
    "    for i, model_name in enumerate(model_names):\n",
    "        # Get node embeddings (model outputs) and labels\n",
    "        embeddings = results[model_name]['embeddings'].cpu().numpy()\n",
    "        labels = data.y.cpu().numpy()\n",
    "        \n",
    "        # Apply t-SNE dimensionality reduction\n",
    "        # perplexity=30: considers 30 nearest neighbors for embedding\n",
    "        tsne = TSNE(n_components=2, random_state=42, perplexity=30)\n",
    "        embeddings_2d = tsne.fit_transform(embeddings)\n",
    "        \n",
    "        # Create scatter plot colored by true node classes\n",
    "        scatter = axes[i].scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], \n",
    "                                 c=labels, cmap='Set3', alpha=0.7, s=20)\n",
    "        axes[i].set_title(f'{model_name} - Node Embeddings (t-SNE)')\n",
    "        axes[i].set_xlabel('t-SNE 1')\n",
    "        axes[i].set_ylabel('t-SNE 2')\n",
    "        \n",
    "        # Add colorbar for class labels\n",
    "        plt.colorbar(scatter, ax=axes[i])\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig(save_path, dpi=300, bbox_inches='tight')\n",
    "    plt.close()\n",
    "    \n",
    "    logger.info(f\"Embeddings visualization saved to {save_path}\")\n",
    "\n",
    "def save_results_summary(results, config, save_path='results_summary.json'):\n",
    "    \"\"\"\n",
    "    Save comprehensive experiment results to JSON\n",
    "    \n",
    "    Results Structure:\n",
    "    - Experiment configuration: all hyperparameters used\n",
    "    - Model performance: comprehensive metrics for each model\n",
    "    - Timestamp: when experiment was conducted\n",
    "    \n",
    "    Metrics Saved:\n",
    "    - Test accuracy: primary evaluation metric\n",
    "    - Training/validation accuracy: overfitting analysis\n",
    "    - Precision/recall/F1: detailed performance analysis\n",
    "    \n",
    "    JSON Format Benefits:\n",
    "    - Human readable\n",
    "    - Easy to parse programmatically\n",
    "    - Version control friendly\n",
    "    - Can be loaded into analysis tools\n",
    "    \"\"\"\n",
    "    logger.info(\"Saving results summary...\")\n",
    "    \n",
    "    # Structure comprehensive results dictionary\n",
    "    summary = {\n",
    "        'experiment_config': config,  # All hyperparameters\n",
    "        'model_performance': {},      # Per-model metrics\n",
    "        'timestamp': datetime.now().isoformat()  # When experiment ran\n",
    "    }\n",
    "    \n",
    "    # Extract key metrics for each model\n",
    "    for model_name, result in results.items():\n",
    "        summary['model_performance'][model_name] = {\n",
    "            'test_accuracy': float(result['test_acc']),\n",
    "            'final_train_accuracy': float(result['train_accs'][-1]),\n",
    "            'final_val_accuracy': float(result['val_accs'][-1]),\n",
    "            'best_val_accuracy': float(max(result['val_accs'])),\n",
    "            'precision_macro': float(result['classification_report']['macro avg']['precision']),\n",
    "            'recall_macro': float(result['classification_report']['macro avg']['recall']),\n",
    "            'f1_macro': float(result['classification_report']['macro avg']['f1-score'])\n",
    "        }\n",
    "    \n",
    "    # Save to JSON file with proper formatting\n",
    "    with open(save_path, 'w') as f:\n",
    "        json.dump(summary, f, indent=2)  # indent=2 for readability\n",
    "    \n",
    "    logger.info(f\"Results summary saved to {save_path}\")\n",
    "\n",
    "def main():\n",
    "    \"\"\"\n",
    "    Main training pipeline orchestrating the entire experiment\n",
    "    \n",
    "    Pipeline Steps:\n",
    "    1. Device setup: Use best available accelerator (MPS > CUDA > CPU)\n",
    "    2. Data loading: Load and analyze Cora dataset\n",
    "    3. Visualization: Create graph structure plot\n",
    "    4. Model training: Train all three GNN architectures\n",
    "    5. Evaluation: Compare model performances\n",
    "    6. Artifact saving: Save all models, plots, and results\n",
    "    \n",
    "    Device Selection Logic:\n",
    "    - MPS (Apple Silicon): Fast on M1/M2/M3/M4 Macs\n",
    "    - CUDA (NVIDIA GPU): Standard for deep learning\n",
    "    - CPU: Fallback for compatibility\n",
    "    \n",
    "    Configuration Rationale:\n",
    "    - Conservative hyperparameters for stable learning\n",
    "    - Early stopping to prevent overfitting\n",
    "    - Comprehensive logging for debugging\n",
    "    \"\"\"\n",
    "    logger.info(\"Starting GNN training pipeline...\")\n",
    "    \n",
    "    # Determine best available compute device\n",
    "    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "    logger.info(f\"Using device: {device}\")\n",
    "    \n",
    "    # Check for Apple Silicon acceleration\n",
    "    if torch.backends.mps.is_available():\n",
    "        device = torch.device('mps')\n",
    "        logger.info(\"Using Apple Silicon MPS acceleration\")\n",
    "    \n",
    "    # Load dataset and move to compute device\n",
    "    dataset, data = load_and_explore_data()\n",
    "    data = data.to(device)\n",
    "    \n",
    "    # Create graph visualization for analysis\n",
    "    create_graph_visualization(data)\n",
    "    \n",
    "    # Define training configuration\n",
    "    # These hyperparameters were chosen based on:\n",
    "    # - Small training set (140 nodes) requires regularization\n",
    "    # - Graph size (2708 nodes) allows modest model complexity\n",
    "    # - Citation network characteristics suggest 2-layer models sufficient\n",
    "    config = {\n",
    "        'hidden_dim': 32,        # Small to prevent overfitting\n",
    "        'num_layers': 2,         # Avoid over-smoothing\n",
    "        'dropout': 0.5,          # Strong regularization\n",
    "        'learning_rate': 0.001,  # Conservative learning rate\n",
    "        'weight_decay': 5e-4,    # L2 regularization\n",
    "        'epochs': 200,           # Maximum training epochs\n",
    "        'patience': 20,          # Early stopping patience\n",
    "        'attention_heads': 8     # Multi-head attention for GAT\n",
    "    }\n",
    "    \n",
    "    logger.info(f\"Training configuration: {config}\")\n",
    "    \n",
    "    # Define models to train and compare\n",
    "    models = {\n",
    "        'GCN': GCNModel,         # Spectral graph convolution baseline\n",
    "        'GraphSAGE': GraphSAGEModel,  # Sampling-based approach\n",
    "        'GAT': GATModel          # Attention-based method\n",
    "    }\n",
    "    \n",
    "    # Train each model and collect results\n",
    "    results = {}\n",
    "    \n",
    "    for model_name, model_class in models.items():\n",
    "        logger.info(f\"\\n{'='*50}\")\n",
    "        logger.info(f\"Training {model_name}\")\n",
    "        logger.info(f\"{'='*50}\")\n",
    "\n",
    "    # Train model with comprehensive evaluation\n",
    "    result = train_and_evaluate_model(model_class, model_name, data, device, config)\n",
    "    results[model_name] = result\n",
    "    \n",
    "    # Save complete model for future use\n",
    "    # pickle preserves entire model including architecture\n",
    "    with open(f'{model_name.lower()}_full_model.pkl', 'wb') as f:\n",
    "        pickle.dump(result['model'], f)\n",
    "    \n",
    "    logger.info(f\"{model_name} training completed and saved\")\n",
    "\n",
    "# Generate comprehensive visualizations\n",
    "create_training_plots(results)\n",
    "create_embeddings_visualization(results, data)\n",
    "save_results_summary(results, config)\n",
    "\n",
    "# Final results analysis and comparison\n",
    "logger.info(\"\\n\" + \"=\"*60)\n",
    "logger.info(\"FINAL RESULTS COMPARISON\")\n",
    "logger.info(\"=\"*60)\n",
    "\n",
    "# Display test accuracies for easy comparison\n",
    "for model_name, result in results.items():\n",
    "    logger.info(f\"{model_name:12} - Test Accuracy: {result['test_acc']:.4f}\")\n",
    "\n",
    "# Identify best performing model\n",
    "best_model = max(results.items(), key=lambda x: x[1]['test_acc'])\n",
    "logger.info(f\"\\nBest performing model: {best_model[0]} with accuracy: {best_model[1]['test_acc']:.4f}\")\n",
    "\n",
    "# Summary of saved artifacts\n",
    "logger.info(\"\\nAll training artifacts saved:\")\n",
    "logger.info(\"- Model checkpoints: best_*_model.pth\")     # PyTorch state dicts\n",
    "logger.info(\"- Full models: *_full_model.pkl\")           # Complete model objects\n",
    "logger.info(\"- Training curves: training_curves.png\")    # Loss/accuracy plots\n",
    "logger.info(\"- Embeddings visualization: embeddings_tsne.png\")  # t-SNE plots\n",
    "logger.info(\"- Graph visualization: graph_visualization.png\")   # Network structure\n",
    "logger.info(\"- Results summary: results_summary.json\")   # Comprehensive metrics\n",
    "logger.info(\"- Training logs: gnn_training.log\")         # Complete execution log\n",
    "\n",
    "logger.info(\"\\nGNN training pipeline completed successfully!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "42d83e1f-ef38-427d-8cc2-31bf92d0ec67",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}