File size: 200,370 Bytes
3e7f4dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 |
{
"cells": [
{
"cell_type": "markdown",
"id": "aed6a806-1aaa-41de-ade2-77d488a1326d",
"metadata": {},
"source": [
"# PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)\n",
"\n",
"## Simple Explanation of Bayesian Networks\n",
"\n",
"Bayesian Networks are probabilistic graphical models that represent relationships between variables using directed graphs (like flowcharts with arrows). Think of them as \"smart decision trees\" that capture how different factors influence each other using probability. Each node represents a variable (like \"Rain,\" \"Traffic,\" or \"Late to Work\"), and arrows show direct influences. The network uses Bayes' theorem to calculate the probability of events given evidence. For example, if you know it's raining, the network can predict how likely you are to be late to work by considering intermediate factors like traffic. They're powerful for reasoning under uncertainty, making predictions, and understanding cause-and-effect relationships in complex systems.\n",
"\n",
"## Detailed Learning Roadmap\n",
"\n",
"### 1. **Graph Theory Foundations**\n",
" - **Directed Acyclic Graphs (DAGs)**: Learn about nodes, edges, and why cycles aren't allowed\n",
" - **Example**: Family tree showing parent-child relationships (parents → children, no loops)\n",
"\n",
"### 2. **Probability Fundamentals**\n",
" - **Joint, Marginal, and Conditional Probability**: Understanding P(A,B), P(A), and P(A|B)\n",
" - **Example**: P(Rain, Traffic) vs P(Rain) vs P(Traffic|Rain)\n",
"\n",
"### 3. **Conditional Independence**\n",
" - **D-separation rules**: When variables are independent given evidence\n",
" - **Example**: \"Wet grass\" depends on \"Rain\" and \"Sprinkler,\" but Rain and Sprinkler are independent\n",
"\n",
"### 4. **Network Construction**\n",
" - **Structure Learning**: Building the graph from data or expert knowledge\n",
" - **Example**: Medical diagnosis network connecting symptoms to diseases\n",
"\n",
"### 5. **Parameter Learning**\n",
" - **Conditional Probability Tables (CPTs)**: Learning probabilities for each node\n",
" - **Example**: P(Fever=High|Disease=Flu) = 0.8\n",
"\n",
"### 6. **Inference Methods**\n",
" - **Exact Inference**: Variable elimination, junction tree algorithms\n",
" - **Example**: Calculating P(Disease|Symptoms) using all available evidence\n",
"\n",
"### 7. **Approximate Inference**\n",
" - **Sampling Methods**: Monte Carlo, Gibbs sampling\n",
" - **Example**: Estimating probabilities when exact calculation is too complex\n",
"\n",
"### 8. **Dynamic Bayesian Networks**\n",
" - **Temporal Modeling**: Adding time dimension to capture sequences\n",
" - **Example**: Stock price prediction considering previous days' data\n",
"\n",
"## FORMULA MEMORY AIDS SECTION\n",
"\n",
"### 1. Bayes' Theorem\n",
"**FORMULA**: P(A|B) = P(B|A) × P(A) / P(B)\n",
"\n",
"**REAL-LIFE ANALOGY**: \"Medical Test Accuracy\"\n",
"- P(A|B) = Probability you have the disease given a positive test (what you want to know)\n",
"- P(B|A) = Test accuracy - probability of positive test given you have disease (95%)\n",
"- P(A) = How common the disease is in population (1 in 1000 people)\n",
"- P(B) = How often anyone tests positive (including false positives)\n",
"\n",
"**MEMORY TRICK**: \"Bayes flips the question! From 'test accuracy' to 'do I really have it?'\"\n",
"\n",
"### 2. Chain Rule of Probability\n",
"**FORMULA**: P(X₁, X₂, ..., Xₙ) = ∏ᵢ P(Xᵢ|Parents(Xᵢ))\n",
"\n",
"**REAL-LIFE ANALOGY**: \"Recipe Steps Dependencies\"\n",
"- X₁ = \"Buy ingredients\" (depends on nothing: P(X₁))\n",
"- X₂ = \"Preheat oven\" (depends on having ingredients: P(X₂|X₁))\n",
"- X₃ = \"Bake cake\" (depends on oven being hot: P(X₃|X₂))\n",
"- Total probability = P(X₁) × P(X₂|X₁) × P(X₃|X₂)\n",
"\n",
"**MEMORY TRICK**: \"Chain rule = Chain of cooking steps - each step depends on previous ones!\"\n",
"\n",
"### 3. Conditional Independence\n",
"**FORMULA**: P(X|Y,Z) = P(X|Z) if X ⊥ Y | Z\n",
"\n",
"**REAL-LIFE ANALOGY**: \"Weather and Clothing Choice\"\n",
"- X = \"Wearing jacket\" \n",
"- Y = \"Season (Winter/Summer)\"\n",
"- Z = \"Today's temperature\"\n",
"- Given today's temperature, the season doesn't matter for jacket choice\n",
"\n",
"**MEMORY TRICK**: \"Given the 'middleman' (Z), the other factor (Y) becomes irrelevant!\"\n",
"\n",
"## Step-by-Step Numerical Example\n",
"\n",
"Let's build a simple medical diagnosis network:\n",
"\n",
"**Variables**: \n",
"- Flu (F): Yes/No\n",
"- Fever (Fv): High/Normal \n",
"- Cough (C): Yes/No\n",
"\n",
"**Network Structure**: Flu → Fever, Flu → Cough\n",
"\n",
"**Step 1: Prior Probabilities**\n",
"- P(Flu = Yes) = 0.1\n",
"- P(Flu = No) = 0.9\n",
"\n",
"**Step 2: Conditional Probability Tables**\n",
"- P(Fever = High | Flu = Yes) = 0.8\n",
"- P(Fever = High | Flu = No) = 0.1\n",
"- P(Cough = Yes | Flu = Yes) = 0.7\n",
"- P(Cough = Yes | Flu = No) = 0.2\n",
"\n",
"**Step 3: Calculate Joint Probability**\n",
"P(Flu=Yes, Fever=High, Cough=Yes) = P(Flu=Yes) × P(Fever=High|Flu=Yes) × P(Cough=Yes|Flu=Yes)\n",
"= 0.1 × 0.8 × 0.7 = 0.056\n",
"\n",
"**Step 4: Inference with Evidence**\n",
"Given evidence (Fever=High, Cough=Yes), calculate P(Flu=Yes|Evidence):\n",
"\n",
"P(Flu=Yes|Fv=High,C=Yes) = P(Fv=High,C=Yes|Flu=Yes) × P(Flu=Yes) / P(Fv=High,C=Yes)\n",
"\n",
"Numerator = 0.8 × 0.7 × 0.1 = 0.056\n",
"Denominator = 0.056 + P(Fv=High,C=Yes|Flu=No) × P(Flu=No)\n",
"= 0.056 + (0.1 × 0.2 × 0.9) = 0.056 + 0.018 = 0.074\n",
"\n",
"Result: P(Flu=Yes|Evidence) = 0.056/0.074 = 0.757 (75.7%)\n",
"\n",
"## Real-World AI Use Case\n",
"\n",
"**Medical Diagnosis Systems**: IBM Watson for Oncology uses Bayesian Networks to assist doctors in cancer diagnosis and treatment recommendations. The network incorporates patient symptoms, medical history, test results, and treatment outcomes to calculate probabilities of different diagnoses and suggest optimal treatment plans. It processes thousands of medical papers and patient cases to update its probability estimates continuously.\n",
"\n",
"## Tips for Mastering Bayesian Networks\n",
"\n",
"1. **Practice Sources**: \n",
" - Kevin Murphy's \"Machine Learning: A Probabilistic Perspective\"\n",
" - Online courses: Stanford CS228 (Probabilistic Graphical Models)\n",
" - Kaggle datasets for hands-on practice\n",
"\n",
"2. **Programming Practice**:\n",
" - Start with pgmpy library in Python\n",
" - Work through medical diagnosis examples\n",
" - Build weather prediction networks\n",
"\n",
"3. **Problem-Solving Strategy**:\n",
" - Always draw the network first\n",
" - Identify independence assumptions\n",
" - Work through small examples by hand before coding\n",
" - Practice different inference scenarios\n",
"\n",
"4. **Common Pitfalls to Avoid**:\n",
" - Don't create cycles in your graphs\n",
" - Remember that correlation doesn't imply causation\n",
" - Be careful about the direction of arrows (causality)\n",
" - Test your independence assumptions with data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ef70f8f5-c8b7-4646-81bc-8a5d6c7c34dd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pgmpy in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (1.0.0)\n",
"Requirement already satisfied: pandas in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (2.3.1)\n",
"Requirement already satisfied: numpy in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (2.3.2)\n",
"Requirement already satisfied: matplotlib in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (3.10.3)\n",
"Requirement already satisfied: seaborn in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (0.13.2)\n",
"Requirement already satisfied: scikit-learn in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (1.7.1)\n",
"Requirement already satisfied: networkx in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (3.5)\n",
"Requirement already satisfied: scipy in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (1.16.1)\n",
"Requirement already satisfied: torch in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (2.7.1)\n",
"Requirement already satisfied: statsmodels in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (0.14.5)\n",
"Requirement already satisfied: tqdm in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (4.67.1)\n",
"Requirement already satisfied: joblib in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (1.5.1)\n",
"Requirement already satisfied: opt-einsum in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (3.4.0)\n",
"Requirement already satisfied: pyro-ppl in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (1.9.1)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\n",
"Requirement already satisfied: pytz>=2020.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pandas) (2025.2)\n",
"Requirement already satisfied: tzdata>=2022.7 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pandas) (2025.2)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (1.3.3)\n",
"Requirement already satisfied: cycler>=0.10 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (0.12.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (4.59.0)\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (1.4.8)\n",
"Requirement already satisfied: packaging>=20.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (25.0)\n",
"Requirement already satisfied: pillow>=8 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (11.3.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (3.2.3)\n",
"Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from scikit-learn) (3.6.0)\n",
"Requirement already satisfied: six>=1.5 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n",
"Requirement already satisfied: pyro-api>=0.1.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pyro-ppl->pgmpy) (0.1.2)\n",
"Requirement already satisfied: filelock in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (3.18.0)\n",
"Requirement already satisfied: typing-extensions>=4.10.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (4.14.1)\n",
"Requirement already satisfied: sympy>=1.13.3 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (1.14.0)\n",
"Requirement already satisfied: jinja2 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (3.1.6)\n",
"Requirement already satisfied: fsspec in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (2025.7.0)\n",
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from sympy>=1.13.3->torch->pgmpy) (1.3.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from jinja2->torch->pgmpy) (3.0.2)\n",
"Requirement already satisfied: patsy>=0.5.6 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from statsmodels->pgmpy) (1.0.1)\n"
]
}
],
"source": [
"# Installation commands for Google Colab and local Mac\n",
"!pip install pgmpy pandas numpy matplotlib seaborn scikit-learn"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a814731a-bf98-4282-91e3-3d734a911fb8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:__main__:Starting Bayesian Network implementation\n",
"INFO:__main__:Loading and preparing Iris dataset for Bayesian Network\n",
"INFO:__main__:Original dataset shape: (150, 5)\n",
"INFO:__main__:Features: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'species']\n",
"INFO:__main__:Discretized sepal length (cm) -> Sepal_Length: 3 bins\n",
"INFO:__main__:Discretized sepal width (cm) -> Sepal_Width: 3 bins\n",
"INFO:__main__:Discretized petal length (cm) -> Petal_Length: 3 bins\n",
"INFO:__main__:Discretized petal width (cm) -> Petal_Width: 3 bins\n",
"INFO:__main__:Final processed dataset shape: (150, 5)\n",
"INFO:__main__:Species distribution: {0: 50, 1: 50, 2: 50}\n",
"INFO:__main__:Creating Bayesian Network structure\n",
"INFO:__main__:Network nodes: ['Species', 'Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']\n",
"INFO:__main__:Network edges: [('Species', 'Sepal_Length'), ('Species', 'Sepal_Width'), ('Species', 'Petal_Length'), ('Species', 'Petal_Width'), ('Petal_Length', 'Petal_Width')]\n",
"INFO:__main__:Network structure created successfully (DAG validation will occur after parameter learning)\n",
"INFO:__main__:Learning network parameters using Maximum Likelihood Estimation\n",
"INFO:pgmpy: Datatype (N=numerical, C=Categorical Unordered, O=Categorical Ordered) inferred from data: \n",
" {'Sepal_Length': 'N', 'Sepal_Width': 'N', 'Petal_Length': 'N', 'Petal_Width': 'N', 'Species': 'N'}\n",
"INFO:__main__:Model validation passed - all CPDs are properly defined\n",
"INFO:__main__:Learned Conditional Probability Distributions:\n",
"INFO:__main__:CPD for Species:\n",
"INFO:__main__: Variables: ['Species']\n",
"INFO:__main__: Cardinality: [3]\n",
"INFO:__main__: Values shape: (3,)\n",
"INFO:__main__: Sample values: [0.33333333 0.33333333 0.33333333]\n",
"INFO:__main__:CPD for Sepal_Length:\n",
"INFO:__main__: Variables: ['Sepal_Length', 'Species']\n",
"INFO:__main__: Cardinality: [3 3]\n",
"INFO:__main__: Values shape: (3, 3)\n",
"INFO:__main__: Sample values: [0.8 0.1 0.02 0.2 0.62]\n",
"INFO:__main__:CPD for Sepal_Width:\n",
"INFO:__main__: Variables: ['Sepal_Width', 'Species']\n",
"INFO:__main__: Cardinality: [3 3]\n",
"INFO:__main__: Values shape: (3, 3)\n",
"INFO:__main__: Sample values: [0.02 0.54 0.38 0.22 0.36]\n",
"INFO:__main__:CPD for Petal_Length:\n",
"INFO:__main__: Variables: ['Petal_Length', 'Species']\n",
"INFO:__main__: Cardinality: [3 3]\n",
"INFO:__main__: Values shape: (3, 3)\n",
"INFO:__main__: Sample values: [1. 0. 0. 0. 0.92]\n",
"INFO:__main__:CPD for Petal_Width:\n",
"INFO:__main__: Variables: ['Petal_Width', 'Petal_Length', 'Species']\n",
"INFO:__main__: Cardinality: [3 3 3]\n",
"INFO:__main__: Values shape: (3, 3, 3)\n",
"INFO:__main__:Performing probabilistic inference\n",
"INFO:__main__:Inference scenario: large_petals\n",
"INFO:__main__:Evidence: {'Petal_Length': 2, 'Petal_Width': 2}\n",
"INFO:__main__:Results for large_petals:\n",
"INFO:__main__: P(Species=Setosa|Evidence) = 0.0000\n",
"INFO:__main__: P(Species=Versicolor|Evidence) = 0.0435\n",
"INFO:__main__: P(Species=Virginica|Evidence) = 0.9565\n",
"INFO:__main__:Inference scenario: small_petals\n",
"INFO:__main__:Evidence: {'Petal_Length': 0, 'Petal_Width': 0}\n",
"INFO:__main__:Results for small_petals:\n",
"INFO:__main__: P(Species=Setosa|Evidence) = 1.0000\n",
"INFO:__main__: P(Species=Versicolor|Evidence) = 0.0000\n",
"INFO:__main__: P(Species=Virginica|Evidence) = 0.0000\n",
"INFO:__main__:Inference scenario: medium_sepals\n",
"INFO:__main__:Evidence: {'Sepal_Length': 1, 'Sepal_Width': 1}\n",
"INFO:__main__:Results for medium_sepals:\n",
"INFO:__main__: P(Species=Setosa|Evidence) = 0.1244\n",
"INFO:__main__: P(Species=Versicolor|Evidence) = 0.6312\n",
"INFO:__main__: P(Species=Virginica|Evidence) = 0.2443\n",
"INFO:__main__:Inference scenario: mixed_features\n",
"INFO:__main__:Evidence: {'Sepal_Length': 2, 'Petal_Length': 0}\n",
"INFO:__main__:Results for mixed_features:\n",
"INFO:__main__: P(Species=Setosa|Evidence) = nan\n",
"INFO:__main__: P(Species=Versicolor|Evidence) = nan\n",
"INFO:__main__: P(Species=Virginica|Evidence) = nan\n",
"INFO:__main__:Evaluating model performance\n",
"INFO:__main__:Training data shape: (105, 5)\n",
"INFO:__main__:Test data shape: (45, 5)\n",
"INFO:pgmpy: Datatype (N=numerical, C=Categorical Unordered, O=Categorical Ordered) inferred from data: \n",
" {'Sepal_Length': 'N', 'Sepal_Width': 'N', 'Petal_Length': 'N', 'Petal_Width': 'N', 'Species': 'N'}\n",
"INFO:__main__:Model accuracy on test data: 0.8444 (38/45)\n",
"INFO:__main__:Sample predictions:\n",
"INFO:__main__: ✓ Actual: 2, Predicted: 2, Confidence: 0.989\n",
"INFO:__main__: ✓ Actual: 1, Predicted: 1, Confidence: 1.000\n",
"INFO:__main__: ✗ Actual: 2, Predicted: 1, Confidence: 0.530\n",
"INFO:__main__: ✗ Actual: 1, Predicted: 2, Confidence: 0.947\n",
"INFO:__main__: ✓ Actual: 2, Predicted: 2, Confidence: 0.913\n",
"INFO:__main__:Creating visualizations\n",
"INFO:__main__:Saved visualization as 'bayesian_network_analysis.png'\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAASmCAYAAADBBeLHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4FFUXxvE3ISQhQEIPvfcuoBQLgiiiogj2QhHxQxBFRAUbYsOKqIBYKHYUu6Kg0gQEQZqigNJ7qEloSSDs95wbN2RDFgICm/L/Pc+Y7Mzs7J2ZLN45c+bcII/H4xEAAAAAAAAAADhK8NGzAAAAAAAAAACAIYgOAAAAAAAAAIAfBNEBAAAAAAAAAPCDIDoAAAAAAAAAAH4QRAcAAAAAAAAAwA+C6AAAAAAAAAAA+EEQHQAAAAAAAAAAPwiiAwAAAAAAAADgB0F0AAAAAAAAAAD8IIgOIEsKCgrS448/rqxs+vTprp3283SzY2GflZa9vuuuu3QmjBs3zn3e2rVrdaZVrFhRXbt2PeOfCwAAAJyOfrBty7Zp20aKCy+80E0AkFURRAdyqT/++EPXXHONKlSooPDwcJUpU0YXX3yxXnvtNeVG3o6sd8qbN6+KFSumFi1a6KGHHtL69etP2Wc988wz+vLLL5UVZeW2neobEt4pIiJC5cuXV/v27TV27FglJiae9La/++67LHXzJzecTwAAskMANqNpwIABp+Uzf/nlF9cfiY2NVVa1atUq/e9//1PlypXdtUhkZKTOPfdcvfLKKzpw4IByig8//FDDhg1TVmLJKfb3Z8c8o2P9zz//pP6Nvvjiiye8/c2bN7u/v8WLF5+iFgNA1hAS6AYAOPOsY92qVSsXOOzRo4dKliypDRs2aO7cua7j2qdPn0A30XXoQkLO/D9RN954oy677DIdPnxYu3fv1vz5813H147L6NGjdcMNN6Sue8EFF7h2hoaGnnBg025gdOjQIdPveeSRR07bhVZm2nbrrbe6fQ8LC9OZtmLFCgUHn/p7vq+//roKFCjgguabNm3S5MmTddttt7nz/e2336pcuXInFUQfMWJElgmkn8zfGgAAOPWeeOIJVapUyWde3bp1T1tff/DgwS5YWqhQIWU1EydO1LXXXuv6lZ07d3bHISkpSbNmzdL999+vP//8U2+++aZyShB96dKl6tu3r898S2Sy6whL3AkEu87av3+/vvnmG1133XU+yz744AN3YyMhIeGktm1BdPv7s6dJGzZsmOn3/fDDDyf1eQBwphBEB3Khp59+WlFRUS5AnL5jvW3bNmUF1nELhEaNGumWW27xmbdu3Tpdcskl6tKli2rVqqUGDRq4+RbYPd3t3Ldvn/Lnz+86uoG4qeCVJ08eNwXC6QrcW3DZnjbweuyxx9xFg13M2YWd3VQCAAA4Fdq1a6cmTZooO/P2S/+LNWvWuMQMCyJPnTpVpUqVSl3Wu3dvrVy50gXZ/yuPx+OCwPny5Ttqmc23JJjTkaSRWZblHajrHW//2jL/P/roo6OC6Bb4v/zyy/XZZ5+dkbZYMN+eDD3RxCQAONMo5wLkQvb4ZJ06dTLMTClRokSGdbctuFijRg3X2WvcuLF+/vnno95r2byWyRsdHe06ZvYZY8aMybDjapm61atXd9uzznPHjh1du9J+bvps3sxu30rS2DLrjBUuXNhdsFhn8GRZJ98exbUMmeeff/6YNdHt8cdOnTq57H7bt7Jly7oLhbi4uNT9sguQd955J/UxSW+9b2+Zkb/++ks33XSTa/t5553nsywjxzs3tn3LBEkv/TaP1TZ/tSBHjhzpjrWdj9KlS7uLn/SPDlttQ8swsv2yJyDsvFj5oLTH8kRqonvbMnv2bPXr10/Fixd3F3RXX321tm/frv/i5ptv1u23365ff/1VP/74Y+r8mTNnusC6Pb1h+2pZ6vfee6/PI7DWRstCN2kf1fayx2GtPFDRokXdBZ2dq08//fSoNtjn2nm376dlytu5tZJCaVn2/KBBg1S1atXU9jzwwAM+pWiOdT4BAEDW8v333+v88893fZqCBQu6IKZlZKf1+++/u/+Xe0ugWH/T+sY7d+706d9ZNrexzHdvH8D6cMeqw52+732sfql5//33XV/G+jRFihRx/V17svV4rP+3d+9e94Rn2gC6l/Vt7rnnntTXhw4d0pNPPqkqVaq4Po/1C61flL78ns2/4oor3JOF1ve3dr3xxhup/fXx48e7JzutD2p90fj4ePc+6/NdeumlLsHI5rds2dL1MY/nq6++cufI+r/WLmuftTM5OdmnD2w3BCwhx3sevH1yf+fCbix4/w6sL3jVVVdp2bJlPut4z43dcPA+bWDt79atmwtIZ5adV/u7S9t3tyQru56xZent2rVL/fv3V7169Vwf1crB2M2hJUuWpK5jx/vss892v1t7vPvt3U/vdcGCBQvcU712zL393PQ10S2Byf7O0+9/27Zt3d+jZbwDwJlEJjqQC1lQeM6cOe7Rwsw8Rjpjxgx9/PHHuvvuu10n0QKn1tmcN29e6vtjYmLUrFmz1KC7BTatU9a9e3fXSfU+wmgdS+vgTpkyxXW2rZO8Z88eFzi09lgHNCOZ3f5bb73l2mlZxrZtC9jbBYd1kDPqDGZW8+bNXdvSBlbTsyC7deqsU28lcezCxgL/VhrEOqfWuX3vvfdckPacc87RHXfc4d6Xfp8tWFutWjVXisOyaP7rucmszLQtfQfeHtVs06aN7rzzTld2xUqkWOfbLj7SPp5qpXGsXXazxLJdLHj84IMPuk64db5Phh1j60BbMNkuRKwMi/1t2PH4L6x0jT1CbI+U2jgBZsKECe6ixPbTguB2fO1mzcaNG90yY3U9rTNvfyN2LNOzkkBXXnmlC9Tb34pdzNm5tr8PuwgzdrFs34/69eu7x77tnNoFUtqLOSs1ZNuxR57tPNnTETbGwcsvv6y///47tQb6iZ5PAABw+lhCxY4dO3zmeZ+Is/9nW8DQ+pHPPfec63NYn8qC1osWLUoNvFofY/Xq1S44af1Mb9kT+2lP0Fk/2fpa1h+wDGPrG3g/w/rOJ5NskFG/1J5qffTRR12fzvoatl3rF1lQ1Np7rBIyVj7EbgJYYkFm2PYtIcD69vfdd5/r0w8ZMsQFVr/44gufda0vaqUZrU9mJSstEcHLAtyW6WxBYOur2+8WsLZ+qN0MsP6kZabb+DitW7d2CRTWh/LHgsIWSLaEDvtp27KnGu265IUXXnDrPPzww+68W3/RzoWxdf356aefXHvs+Fg/25I17LhaxvjChQuPSoqx4283Sux42PK3337bJUTZ31Bm2N9Kz5499fnnn7ubMcYSj2rWrOmezk3P/vasn2l/E/a5dn1mNyrsxoPdbLEbCtYvtT6sHQvrf9oNAZP2fNtNH9tPuxa0J4AtQSoj1ne242rfDbt2tadi7fOsj27fGfs8ADijPABynR9++MGTJ08eNzVv3tzzwAMPeCZPnuxJSko6al37Z8Km3377LXXeunXrPOHh4Z6rr746dV737t09pUqV8uzYscPn/TfccIMnKirKs3//fvd6zJgxbntDhw496rMOHz7s87mDBg064e1fddVVnjp16pzwMVmzZo37zBdeeMHvOrZtWycuLs69njZtmnttP82iRYvc6wkTJhzzs/Lnz+/p0qXLUfNtf+39N954o99lJ3Nu7LMqVKiQqW36a9vYsWPdunaczLZt2zyhoaGeSy65xJOcnJy63vDhw916dp69WrZs6ea9++67qfMSExM9JUuW9HTq1MlzPNb2tG3ytqVNmzY+fzP33nuv+5uOjY095va8+719+/YMl+/evdstT3sMvX9faQ0ZMsQTFBTkjrlX7969jzqm/rZh37e6det6WrdunTrv5ZdfPmbbzHvvvecJDg72zJw502f+qFGj3Htnz5593PMJAADODG+/JaPJ7Nmzx1OoUCFPjx49fN63detW18dNOz+j/shHH33ktvXzzz+nzrP+bNp+W/r+rrUpvfR9b3/90rVr17r+1tNPP+0z/48//vCEhIQcNT8t60PbNq1PnRmLFy92699+++0+8/v37+/mT5061ae/aPMmTZrks663v165cmWf42d9yGrVqnnatm3r05+0dSpVquS5+OKL/faDveul97///c8TERHhSUhISJ13+eWXZ9gPz+hcNGzY0FOiRAnPzp07U+ctWbLE9fs6d+581Lm57bbbfLZpfdeiRYt6jsf6htZHNNdcc43noosucr9bn97654MHD87w2sj2K22/37sfYWFhnieeeCJ13vz58/3+nXmvC6zfmtEym9Kya1Rb/6mnnvKsXr3aU6BAAU+HDh2Ou48AcDpQzgXIhSy71u7mWzarPX5nj1Va5os93vj1119nmIVtGRpeVtLCHi20xyUts9z63VYzr3379u53y7LxTrZdy8Cw7Ahj61lGTEaDl/orV3Ii27fMF8v2sGzoU82bOWKZ8xmxTHNjx+VEHqVMzzJCMut45+Z0sUwZy6a2JwDS1pO0rB97tDN9LUs7dmlrzVv2j2X3WEbLybLslrR/M5bpYvtsj8ye6vOctp6mlUixvz3LqLG/R8u4yoy027DMfPu7tTZ7/3aNN3PLHhG2jPOMWOa7ZflYllDa74JlTZlp06ad8D4DAIDTy0q+WSZ52snYT3ti0TKo0/5/3bJumzZt6vP/9bR9CXva0tazJzVN2v7EqZS+X2pZy9ZHsSzotO21zHjLWD9WP8RbQsXK1WR2wHZj2d5pWUa6Sd/ftOxouzbIiGUzpz1+ixcvTi1bYpnR3v2wft5FF13kyiP664uZtNuyPqO91/p1dg2wfPlynagtW7a4Nll5FiuP42VPJ9q1m/dYHOvc2OfbvniPc2bY/lsJlq1bt7qsb/vp7+lde0LS2++3Prd9lrf04In8/dl27GmKzLBxqezJAstut8x5K+9i2egAEAiUcwFyKatVZ51gC4RaIN0eh7THDO1RSevA1a5dO3Vd6xCnZ/XMrZNoj29aZ8o6//Y4qU0Z8Q5YanXPraN1IoNk2mdkdvtWIsQCvBagtZqK1vGyjqA9BvlfWf3GY3X8reNunfyhQ4e6OuXWkbUbFRY89gbYM8O2k1nHOzd2QXM6eAPVaR+T9QbH7RHU9IFsqw2f/iaJlWKxUjsny24YpN+eN0B9qs/z+vXr3WOpdpMp/fa99e6Px8q2PPXUU+77lb52udf111/vHsW1R5cHDBjgLuLsgsG+l96LFrvgs0eY7bHsjGSVwYEBAMAR1jfNaGBR+/+68d4MT8+SE9LWpLZSelYSLv3/7zPbHzlR6ful1l5LIsioD2rSlvPzty/+ElLSs/6k9X+sT5+W9W8t8SB9f/NYfeiM9sMbXPfHjqm3f5meldCxGusWeE4ftD6Zc+Gvb20secISZNIP7HqsvnDav5tjueyyy1yf18ohWh/VrhHteKcfB8nYTQUrsWLlI22A2LQJO1buMLMscetEBhG1cYUswcTaZ+Vm0o/hBQBnCkF0IJezDox1lmyy4KtlBVimq9UFzCxvloYFi/11RC2L4mSdyPatk2n1EC1gOWnSJJfBbh09C4DaRcd/YTXbrdN2rE7pSy+95DJIrKNn9fqsVrnVKbQ6lRZIzoy0mS2ngr8M/9OZqZ6eZVNl5Hg138/0Nr3n2Xgv2Ow4WQaQXbjaTRrLALcLGKt3b+f6WFlKXlZX026oWK1Q+3u0gbTsItPqbqYd9NbOvWU+WRaXZVfZ37Bd1NiFtf092T7b51ktebtZkxEbZBQAAGQP3n6E1XjOKPkhbeKJZX//8ssvbuDQhg0buixge7+NO5OZ/sjJ9AnT90vtc2w7NjZRRn2xY9X8tj601bH29rUyy1+7j9fWYy3zHi+rX27HMiP+9sWSe6wOuO2PZUjbmDOWIW3Z2NZXzMy5OBVORV/YssItYcPqztsTomkHl03P6uJbLXyrn2415i1j3m5y2JOpJ7LPJ3qtY099em8a2ThA9tQGAAQCQXQAqbzZMfY4YUaZGmnZgEU2mro3G9YyGKwDboNMHot1Mm1AoIMHDx4zUyUt+4zMbt9YgNMyem2yTHvrGNoASAMHDnQd3JNh5W8siz5tSRJ/LMBpk2Wn2IWOZcGPGjXKZSGfyIVAZmTm3FhWinX208uo7Elm22aD0xq7YWGZ5152vC0zJTPnKavyDgrqfRzYOut2TO3ionPnzqnrZTTIrL/jZzdz7G/PsojsYsXLgujp2cWIZaDbZIFyu2CxgakssG7H1b5D9vSILT/e+TqVf2sAAODU8w76bYkax+o/WXbxlClTXFKIJYccqy/o7///3kzl9P3CEymFZ+21IK1ldlsCzomyAdTtyVLrW1tZwuP1Ny04a/toiTJeNqCl7YO3P/pfjrsFwk+032rlT6yUiT3VawkSXtYHPhV96/SsPIyVw0ybhX4q2VO7Y8aMcX1QG+zTn08//VStWrXS6NGjfebbufAOYHuq+5+WfW9JXvaUtJVStDKkV199tUsAA4AzjZroQC5kwbiMMhS8tfbSP0Zondy0de42bNjgMq2tVIplQNjUqVMnFyjMKLPEyop42XpWM3D48OGZzpo4ke1bhzZ9pr11umzbFrg/GXZhYRnHti3L/PHHHuU8dOiQzzwLpluHNG35DusAZxTUPhnHOzfeiwR7rDRt6RS7UWIlfNLLbNvsYsOOx6uvvupz3qxTbZ91+eWXKzuyrHArp2IXdRakNt7jmHY/7Xd7nDU978VN+mNo27ALirSZXvaY7JdffumznmW7p+fNjvL+DVkWmmXBv/XWW0ete+DAAXexcTr+1gAAwKlnN+0tkGs3zTPqq3r7uRn1R8ywYcMy3R+xz7Fgpz31lpY9JZdZlpxibbFgfvq22Ov0ffH0HnjgAdc+K11nwfD0LGnF28eyUiMZ7aP3abz/0t+0MYWsj2ylQryl/PxdX6SX0bmwRJKMjqPta2bKu9hTitbns6SNtOfNrn3saUTvsTgdLDBumeV2fXasUpC23+nPuT3BbP3SzPz9nQzL7LeyinZc7LxXrFjRPZmc9toKAM4UMtGBXMgG9bSa2XYX30pTWKfPMqatbIR1TNIP9FK3bl3XwbfSJJZF6+0gpi2P8uyzz7rgvA2AZINLWuDaAoIW4LUa5d7goGXyvvvuu652+Lx581zdcAv62Tq9evVyg2JmJLPbt+Cxdf4s+zs6OtrVjrYOoXWyMzOIkW3v/fffd1kv1vGzAUoteG8BUMtQPlZZGquJeNddd+naa691mTkWULf3eG8CpO20W5utI2iPtFomj+3XycjMubGMEuuA2vm29ezcv/76666N6QcBymzbLMvdMvvtc+wRYitVYpkz9vmWGZKZjP1As2wae0zX/v6t829Z4rNnz1aDBg3cBYGXfUfsIqt///5uPbsAtb+JjGqvewd5teNs58XOvR1/+/uzY2rHyrJ97JFUG2DMSsakvblhjwTbha2tbxlJtp4dUysFdN5557l1br31Vn3yySduMCn7TtjfugXnLUvJ5tt+eJ8qOZV/awAA4NSzfoX1y+z/740aNXL9ButnWeDQSrvZ/+etL2vrWdazZeJasN3qSltwNaPsZ29/xJ5ks+3Z05/t27dPDV5bv9p+Wn/B+h32xF1mWZ/Inq60fqAlBHTo0MH1sa0dlqBhA79bn+lY77ekBXti1LLL7drA+rPe6xHrg1nyirE+mQVMLXPdW0LFrh8soGqfa8Hfk2VJLpY40a5dO9WpU8dd/9gxtb6e9a/seH/zzTcZvtcyoi2r39pmfT7vdUJGCUF2Luway659rI9sfU87Fxmx0jLWHkvm6N69u0uOeO2119zYSscqs/Jf2bGwJ2gz8xSB9VXtWNkxsKc1bRyotE+les+x1ay3J3Htb8P+7qz/eSLjPnmvrawfbGVG7bvhfYrzwgsvdGVl7LsAAGeUB0Cu8/3333tuu+02T82aNT0FChTwhIaGeqpWrerp06ePJyYmxmdd+2eid+/envfff99TrVo1T1hYmOess87yTJs27ajt2ntt3XLlynny5s3rKVmypOeiiy7yvPnmmz7r7d+/3/Pwww97KlWqlLreNddc41m1apXP5w4aNOiEt//GG294LrjgAk/RokVdW6tUqeK5//77PXFxccc8JmvWrHGf6Z1CQkI8RYoU8TRt2tQzcOBAz7p16456jx0DW9d7LFavXu2Oq31meHi4e3+rVq08P/30k8/7li9f7tqYL18+9/4uXbq4+ba/9nr79u1HfZZ32cmemx9++MFTt25dd65r1Kjh3pPRNv21bezYse61Hae0hg8f7v6O7HxER0d77rzzTs/u3bt91mnZsqWnTp06R7XJtl2hQgXP8dg63nakbcv8+fOPeT788e63d7JzVbZsWc8VV1zhGTNmjCchIeGo9/z111+eNm3auO9LsWLFPD169PAsWbLEvd/a43Xo0CH3PSpevLgnKCjI5/iOHj069TzZMbP3pT8HU6ZM8Vx11VWe0qVLu3NlP2+88UbP33//7dOepKQkz3PPPeeOq22vcOHCnsaNG3sGDx7s87fu73wCAIAzw1+/JT3rv7Rt29YTFRXl+ibWn+zatavnt99+S11n48aNnquvvtpTqFAht961117r2bx5c4b95ieffNJTpkwZT3BwsE8fzvrh3bt3d+8vWLCg57rrrvNs27btqG0cq19qPvvsM895553nyZ8/v5usb2P90hUrVmTquFjfxvpTFStWdH0ea8u5557ree2113z6YgcPHnT9G+91g10HWN88fX/N+ouXX355hsfV9mPChAkZtmPRokWejh07pl472HbsmFifzCujfvDs2bM9zZo1c30s66898MADnsmTJx/VF927d6/npptucufMlnn7vt5rj7T9SGPXDXYcbLuRkZGe9u3bu35oWv7Ojb/+enrWH7Rzdize9r3wwgup8+yY33fffZ5SpUq59lk758yZ4/r6NqX11VdfeWrXru2uqdLup7/rAu8y73bi4+PdsWrUqJH7G0jr3nvvdX/X9tkAcCYF2X/ObNgeQHZimRW9e/fOsPwKAAAAAAAAkNNREx0AAAAAAAAAAD8IogMAAAAAAAAA4AdBdAAAAAAAAAAA/CCIDuCYbNgE6qEDAAAAAADkfD///LPat2+v0qVLu3Hyvvzyy+O+Z/r06WrUqJHCwsJUtWpVjRs3TjkNQXQAAAAAAAAAgPbt26cGDRpoxIgRmVp/zZo1uvzyy9WqVSstXrxYffv21e23367JkycrJwnyWJopAAAAAAAAAAD/skz0L774Qh06dPC7zoMPPqiJEydq6dKlqfNuuOEGxcbGatKkScopQpTLHD58WJs3b1bBggXdHwIAAAByPssb2bNnj3ssNTiYhzEBAACQeyQmJropLSu9YtN/NWfOHLVp08ZnXtu2bV1Gek6S64LoFkAvV65coJsBAACAANiwYYPKli0b6GYgC5uYt0agm4AM5F+0ONBNQAZKPHpFoJsAP0LC8wa6CUC2Uv2jSTm6/zH/4Rs1ePBgn3mDBg3S448//p+3vXXrVkVHR/vMs9fx8fE6cOCA8uXLp5wg1wXRLQPdewEVGRkZ6OYAAADgDLBOvCVSePuCAAAAQG4xcOBA9evXz2feqchCz01yXRDdW8LFAugE0QEAAHIXyvkBAAAgtzlVpVsyUrJkScXExPjMs9cWd80pWeiGgpAAAAAAAAAAgBPWvHlzTZkyxWfejz/+6ObnJLkuEx0AAAAAAAAAsoqgvFnnacm9e/dq5cqVqa/XrFmjxYsXq0iRIipfvrwrDbNp0ya9++67bnnPnj01fPhwPfDAA7rttts0depUffLJJ5o4caJyEjLRAQAAAAAAAAD67bffdNZZZ7nJWC31s846S4899ph7vWXLFq1fvz51/UqVKrmAuWWfN2jQQC+99JLefvtttW3bVjkJmegAAAAAAAAAECDBIVknE/3CCy+Ux+Pxu3zcuHEZvmfRokXKychEBwAAAAAAAADAD4LoAAAAAAAAAAD4QRAdAAAAAAAAAAA/qIkOAAAAAAAAAAESlJc856yOMwQAAAAAAAAAgB9kogMAAAAAAABAgASHBAW6CTgOMtEBAAAAAAAAAPCDTHQAAAAAAAAACJCgvGSiZ3VkogMAAAAAAAAA4AdBdAAAAAAAAAAA/KCcCwAAAAAAAAAECAOLZn1kogMAAAAAAAAAkB2C6I8//riCgoJ8ppo1a6YuT0hIUO/evVW0aFEVKFBAnTp1UkxMTEDbDAAAAAAAAAD/ZWDR0zkhhwXRTZ06dbRly5bUadasWanL7r33Xn3zzTeaMGGCZsyYoc2bN6tjx44BbS8AAAAAAAAAIOfKcjXRQ0JCVLJkyaPmx8XFafTo0frwww/VunVrN2/s2LGqVauW5s6dq2bNmgWgtQAAAAAAAACAnCzLBdH/+ecflS5dWuHh4WrevLmGDBmi8uXLa8GCBTp48KDatGmTuq6VerFlc+bM8RtET0xMdJNXfHy8AmH79u0B+2zgWCIjI1W8eHFlZXx/kFXx/QFy9vcHAAAAALJcEL1p06YaN26catSo4Uq5DB48WOeff76WLl2qrVu3KjQ0VIUKFfJ5T3R0tFvmjwXhbTuBDmDc0u127dqzP6DtADJSpGCE3h/7dpYNZPD9QVbG9wfIud8fAAAA4EwJDqFueVaXpYLo7dq1S/29fv36LqheoUIFffLJJ8qXL99JbXPgwIHq169f6mvLxitXrpzOJPtMC2AUb95J+YtEn9HPBo5l364YbZ/zmfsbzapBDL4/yKr4/gA5+/sDAAAAAFkyiJ6eZZ1Xr15dK1eu1MUXX6ykpCTFxsb6ZKPHxMRkWEPdKywszE1ZgQUwIkuUDXQzAB/blT3w/UFWxPcHyPnfHwAAAOB0C8pDJnpWF6wsbO/evVq1apVKlSqlxo0bK2/evJoyZUrq8hUrVmj9+vWudjoAAAAAAAAAADk6E71///5q3769K+GyefNmDRo0SHny5NGNN96oqKgode/e3ZVmKVKkiBuMqk+fPi6A7m9QUQAAAAAAAADIyoLJRM/yslQQfePGjS5gvnPnTlcf87zzztPcuXNTa2W+/PLLCg4OVqdOnZSYmKi2bdtq5MiRgW42AAAAAAAAACCHylJB9PHjxx9zeXh4uEaMGOEmAAAAAAAAAAByVRAdAAAAAAAAAHKToGDKuWR1WXpgUQAAAAAAAAAAAolMdAAAAAAAAAAIkKA85DlndZwhAAAAAAAAAAD8IIgOAAAAAAAAAIAfBNEBAAAAAAAAAPCDmugAAAAAAAAAECDBeYIC3QQcB5noAAAAAAAAAAD4QSY6AAAAAAAAAARIUDCZ6FkdmegAAAAAAAAAAPhBJjoAAAAAAAAABAg10bM+MtEBAAAAAAAAAPCDIDoAAACQiwUFBenLL79UdpdT9gMAAABZD+VcAAAAgADYvn27HnvsMU2cOFExMTEqXLiwGjRo4Oade+65yqqB6i+++EIdOnQIWBsef/xxFyxfvHixcqoi5zVR5fu6K6pRXYWXLqHfOvVSzNdTjv2eC85R7RcHqEDtakrYsEUrh7yuje9+4bNOhTtvUuV+3RVWsrjif1+uP/s+qbj5f6QuDw4LVa0XBqj0dZe537f/MEtL+wxW0radp21fsyOPx6Nvxr+umT99rgP796hKjYa66Y6HFF26gt/3fP/5aC2aO0VbN61VaGiYKtdooI639lXJMhVT1zmYlKgJ77yk32ZN1qFDSardoIXbbmShokdtb++eWD3Z7zrF7tqml9/9WRH5I5XbFW53lYp2uE4hhYooce0qbXn7NSX8s8Lv+kWu6KjCl16pvMVKKHlPnOJ/+Vnb3n9bnoMHM73NvCVLKbpLT0XUqqugvHm1d9F8bX1ruJLjdp/2/c0uoi5uryLtr1GeqMJKXL9a28eNVMKqvzNct+yjzyuidv2j5u9dNE+bn3/M/V79o0kZvnf7B29r97ef+swLCsmrck8OU3jFKlo3oJcS160+JfuUU5zpcxNSLFpFO96kiDoNlKdQYR3avVN7Zk3Vzi/GS8mHTvHeAaceQXQAAAAgADp16qSkpCS98847qly5sgukT5kyRTt3ErDM7fLkj1D87yu0YdxnavLpiOOun69iWZ399Rta/+Z4Le7cX0VbN1e9N55Swpbt2vHjLLdOqWvbqdYLA7W09yDFzluiSnd3UdOJozW9zqVK2r7LrVP7pYdUol1LLbyhrw7G71HdVx5V4wnDNafljad9n7OTyV+O09TvPlTXPk+qWIky+nr8SL36ZC89/srnyhsaluF7/v5zgS689HpVrFpHyYeT9eUHr+mVJ+507wkLz+fW+WTsi/pj4Uzd0f8F5YsooI/eflajnu+nB55556jtvTvicZWtUM0F0SFFnnuhorv11JZRw3Tg7+Uq2r6jKjz2nFbe1VXJcbFHr39+a5W4tYc2D39BB5b/qdDSZVX67gfcspixr2dqm0Fh4aow6HklrF2ldY/1d+8pflM3lX/4Ka158C6726LcrkCzC1T81h7aNvo1JaxcoULtOqjMgKe19r7blRwfd9T6m4c+4QLfXnkKRqrCsyO1d+7M1Hmrevr+e5S/YRNF33Gv9s5L+bcurWI3dVfy7p1SxSqnfN+yu0Ccm9AyZe1uvGLeflUHYzYrtFxFRfe4x32XdnzwtnK7IGqiZ3mUcwEAAADOsNjYWM2cOVPPPfecWrVqpQoVKuicc87RwIEDdeWVV6auc/vtt6t48eKKjIxU69attWTJEp+M7IYNG+qNN95QuXLlFBERoeuuu05xcUcufufPn6+LL75YxYoVU1RUlFq2bKmFCxeetv16++23VatWLYWHh6tmzZoaOXJk6rK1a9e6TPbPP//c7bO11zLv58yZ47ONt956K3V/rr76ag0dOlSFChVyy8aNG6fBgwe742Dbssnmee3YscO9x95brVo1ff3118qOtk/+WX8PGqaYr37K1PoV7rhBB9Zs1LIHntPe5au1buQH2vrZZFW6p2vqOpX6dtOG0Z9o4zufa++yVfqj1yAl709Qua6d3PKQyAIq162T/rr/We2cPlfxC//UktsfUpEWjVSoaYPTtq/ZMQt9yrcf6LJreqjhOa1UtmJ1devzpGJ3b9fiedP8vu+eR0eqReurVLp8VZWrWENd73pCu3Zs0bpVf7nlB/bt0eypX+jarvepZr1zVKFKbXXtPVirVizR6r9/99nWjEmfuAz4i6/qctr3N7soeuU1iv3xO8VNnaykjetc4PtwYqIKXXRphutH1KyjA8uXKn7mVB3cHqN9SxYofuY05atWI9PbtG3kLR6tza8+r8T1a9y0+dXnFF6luvLXO+uM7XtWVvjyjoqfOknxM35U0qb1LmDrSUpU5IVtM1z/8L69LovfO0XUO0uHExO059efU9dJu9ymAo2b68BfS3Rw21afbUU0aKKI+o1cFjSyxrnZv2SBYt4Yqv1/LHTz9i2Yq93ffqYCZ2fNp++A9AiiAwAAAGdYgQIF3GRlSRITEzNc59prr9W2bdv0/fffa8GCBWrUqJEuuugi7dqVkjVsVq5cqU8++UTffPONJk2apEWLFqlXr16py/fs2aMuXbpo1qxZmjt3rgssX3bZZW7+qfbBBx+4UjRPP/20li1bpmeeeUaPPvqoy7RP6+GHH1b//v1dOZbq1avrxhtv1KFDKY9xz549Wz179tQ999zjltsNANue1/XXX6/77rtPderU0ZYtW9xk87wswG43En7//Xe3nzfffLPP8cqpCjVrqB1TfW9GbP9xlgo3a+h+tzITUY3qaMeUX46s4PFox9RfVKhZSrDPSscEh4b6rLNvxWrtX7cpdTuQdsRsUnzsDtWq3zR1Xr78BVWpWj2tXnHkJtfxHNi/1/3MXzDK/Vy3epmSDx3y2W7JspVUpFgpn+1u3rBK3054U936POVuIsHuAIW4wPW+JWluEHo82vf7QkXUqJ3hW/Yv/9O9J/zfoHne6FIq0Pgc7V0wL9PbDMobmjI7TfkXT1KSW8/Ku+R6eUIUXqma9i1d5HsMly5Svmq1MrWJqAvbas+cGfL4+f9knqhCyn/WOYqbNvmo+ZbhvHXkC+7GB7LOuUkvOCK/Du879X2S7CgoOPi0TvjvOIoAAADAGRYSEuIyqC3AbFnWVgP9oYcecsFfY0HvefPmacKECWrSpIkLfr/44otu3U8/PVLzNSEhQe+++67LSL/gggv02muvafz48dq6NSXry7LXb7nlFpcVbhnib775pvbv368ZM2ac8n0aNGiQXnrpJXXs2FGVKlVyP++9916XKZ+WBdAvv/xyF0C3oPe6devczQBj7W/Xrp1bx5bbDQF77ZUvXz5388GOX8mSJd1k87y6du3qgvJVq1Z1Qfy9e/e645jThUUXU2LMDp959jpvVEEFh4cptFhhBYeEKDFdbfPEmJ0KK1ksZRsliyk5MUmH4nyDGVYPPSy6+BnYi+zBAugmfZ3yyKgiiovNXCmmw4cP65OxL6hKzYYqU75q6nZDQvIeVds8stCR7R48mKTRLw9Up873qkjxUqdoj7K/kIJRCsqTR4fS1SE/FLvb1TLPiGWgb/9onCo9/YpqTZisaqPe176lS7Tjsw8zvc0Df/+lwwkHVKJzDwWFhrmSFNFd/+feF1L46Dr2uU2eyEh3LNKX07HXVg/7eOwmRlj5SoqflnGdbRN5QRt3DvbOn+0zv2TP+xQ35Tslrv7nP+xBzhXIc5OW3bwq1PZKd66A7IAgOgAAABCgmuibN292JUcuvfRSTZ8+3WWbW3DdypVYALho0aKpWes2rVmzRqtWrUrdRvny5VWmTJnU182bN3cBuhUrUga+szrrPXr0cEF4K+diZWFsu+vXrz+l+7Jv3z7Xru7du/u096mnnvJpr6lf/8jAZKVKpQQCLePeWLutrE1a6V8fS9pt58+f3+2vd9sZsacA4uPjfaaDnsOZ/jzkfL/+PFF339w8dUo+BYPfffTWEG1ev1I9+j13Qu/74v1XXXZ6s5aX/+c25HY2sGGxTjdpy5uvavV9PbXh2cdUsHFTFbv2lkxvw+pGb3zhCRU8u7lqfvStan7wtYLzF9CBVX/Lw78j/1nkhZe6Ejn+Bro0US3bKn72VJ+nAQq1vUrB4RHa9eXHZ6iluc/Jnpu07EaT1WC3mupxU/0H44GshIFFAQAAgACx2uFWssQmK31iNdAto9sysC3AbIH19Lz1wTPDSrnYQKWvvPKKq7seFhbmAu02oOmpZIF5bz3zpk2PlKMwefLk8XmdN++Rgcm85Sgs8H8qpN22d/vH2vaQIUNcNnxaNwYV0c15UrKzswvLOrds9LTs9cG4PTqckKikHbt1+NAhhZXwzY4Niy6qxK0pmdX2M09YqEKiCvpko4eWKKrEmO3KrRqcfaEr1eJ16GDKdyc+dqeiCh/J0I+P26VyFatnKoD+x4Kf1f/JMSpcNDp1fmShYjp06KD274v3yUaPj92lqH+z3lcsnadN61dq4bUptfI9Shm48r6urdSuU3ddecORUk65yaE9cfIkJyskyjeDNqRQYR2KzbicU4mbuil2xo+K/SklA9YCgsHh+VTqznu149MPMr1Nq6W+8s5b3SCLtv7h/ftUfcwExcdsUW6XHB/vjomV9UjLXifH+mb4pxcUFqaCLVpq54R3/a6Tr0YdhZYpp82vPnPUDZLw6jVV7b1vfOaXf/o1F9SNef0l5XaBOjepn1O4iMo++pwS/v5LMW+/cpJ7kfMEBVOiK6sjiA4AAABkEbVr13Z10i0j3UqyWNmSihUr+l3fMsotm7106dLutdU9Dw4OVo0aNVJrjNvgnlYf3GzYsMENvnmqRUdHuzasXr3a1SE/WdZuGww1rfSvQ0NDlZycrFPBBnLt16+fz7ypRRoru4mdu1jF213gM6/YRS20e+5i97tlAsYt/FPFWjdXzNdTUlYIClLRVs21buT77mXcwqU6nJTk1tn6xQ9uXv7qlRRRoUzqdnKj8Hz53ZR2YFELeC//Y57KVaqZWt98zT9/qGXba/1ux943/u1ntXjeVPUb/LaKRR95gsRUqFxLeUJCtPz3eWrUvI2bt3XTWjf4aOUaKQO79rz/JSUlHak/vHblUr074nH1f2qMipcsp1zr0CGXEZu//lnaM+/f0hFBQW5wz13ff+k3EKjDKTchvCyo6H3viW4zeU+8+xlRr6ELRO6Zl2b8gdwq+ZAS1vyjiLoNte+3f8dsCApSRJ2Giv3BN8CdXsGmFygoJK/iZ031u05kq0uVsPpvJa1f4zN/2zuvK/iTd3wynss+9Iy2vPqMElamPKWV6wXo3KSeDwugr1mpraOGulrsQHZBEB0AAAA4wyw73AYOve2221wJkoIFC+q3337T888/r6uuukpt2rRxGeMdOnRw86w+uAXLJ06cqKuvvtrVSfdmslu2udVLt1Ikd999txtY02qFGyvj8t5777n1bfn999/vU0P8ZFhJGRv0My37HMvots+3sjFWnsZKpdg+7d69+6hAtT99+vRxtd2HDh2q9u3ba+rUqW5g1bQDKNpNBW8bypYt646dZdifDHtf+vfmDQp8xcs8+SOUv2r51NcRlcoqskFNJe2KU8KGLarxVD+Fl4nWkm4PuuXr3hyvCr1uVs0h92vDuM9UrFUzlbq2neZf+b/UbawZNlYNxjyn2AVLFTf/d1W8u4tC8ufThnc+d8sPxe/VhrGfqdYLA3RwV5wO7tmrusMe0e45CxX7a+YHzMzp7G/xoitu1nefvqUSpcqrWIky+uqjESpUuLgantMqdb2hj9+hs85prVaX3eBef/TWM5o383v1GjDMBeXjdqfczMoXUUChYeFucNJzW1+tCeNeUv4CUQqPyK/xo59V5Rr1Vbl6Spmi9IHyvfEpGaOlylY6qpZ6brPz609V+u4HXSmVA/8sV9ErOik4PFyxU1IGNbRlh3bt0Lb3R7vXe+fPUZErr3GBvAN/L1NoqTIuO33P/Dn2aEymtmmiWrdV0sb1OhQfq4gadRTdvbd2ffOZkjZvDNCRyFp2T/xcJe/s72qTWwC7ULurFRwWrvgZKTfqbNmh3Tu1Y/xYn/dFtmqrvb/9osN7Mx5wMjhfhAo2PV/bP3jzqGWHdvo+OXM4IcH9PBizxf0NIHDnJiWA/rwO7timHe+/pTyRKQMrm+R04w/kRsF5yETP6giiAwAAAGeY1Qu3sicvv/yyqxl+8OBBlStXztUvtwFGLVD33Xff6eGHH1a3bt20fft2Fxi3ALNlfXvZAJo2gKdlmu/atUtXXHGFyzz3Gj16tO644w6X2W7bt8E2bdDO/yKjgPjMmTNdKZqIiAi98MILLlhvNcnr1aunvn37ZnrbNsDqqFGjXED+kUceUdu2bd3gpMOHD/epJf/555+rVatWio2N1dixY92AojlJVOO6aj7lvdTXtV98yP3c8O7n+r37QIWVKq585Y4MLHlg7UYXMK/90kBV7NNZCRu36o//PaIdP85KXWfLhO8VWryIqg+6W2Eliyt+yTLNu+J2N3Co11/3PaNahw+r0SevKjgsVDt+mKWlfXzL3UBq26GrkhIO6P1RT2r/vj2qWvMs3f3oSOUNPXJDZsfWDdq750hQaMbkCe7nS4/d7rOtLr0Hq0Xrq9zv13Xr7x7nH/Xifa5sTO2GLXRTj5Rzj2OLnz3dBeSK39BVIYULK3HNKq1/YkBqYC5v8RI+Ga/bJ7zvng6wwHlIkWJKjo/Vnt/mpgbZM7NNE1amnKJvuV15ChRU0vYYVwpm19dHBn/O7fbO/Vk7IqNU9Jpb3YCVietWa9Ozj6QOaBlSrIQ7D2nlLVVWETXrauMzA/1ut2DzllKQtGf20SXPkHXPTUS9Ru6GlU2VR37gs+zvGy89ZfsGnC5BnvTfihzOMnAsOyYuLs4NNHQm2IXRDbf1VMXLeymyRNkz8plAZsRv26i1E0dq/JhRqlKlirIivj/Iqvj+ANnr+xOIPuDp9vjjj7vSL+mzwnMau7GwfPlyF6g/EybmTSmFg6wl/6Kc/XeeXZV49IpANwF+hIT7jhEB4NiqfxTYAU6XXOpblu1UazDp59O6/dyATHQAAAAAWYaVprGBVi2T3Uq5vPPOOz7Z9QAAAMCZFviCfwAAAAACzkq9WJmZjKZ27dqdsXbMmzfPBdGtFIyVdnn11VddqRgAAAAgUMhEBwAAALJpORebTpWePXu6QUkz8l8HIz0Rn3zyyRn7LAAAACAzCKIDAAAAUJEiRdwEAACAMysomGIhWR1nCAAAAAAAAAAAP8hEBwAAAAAAAIAACQoOCnQTcBxkogMAAAAAAAAA4AdBdAAAAAAAAAAA/KCcCwAAAAAAAAAESHAeyrlkdWSiAwAAAAAAAABSjRgxQhUrVlR4eLiaNm2qefPmHXP9YcOGqUaNGsqXL5/KlSune++9VwkJCcopyEQHAAAAAAAAgADJagOLfvzxx+rXr59GjRrlAujDhg1T27ZttWLFCpUoUeKo9T/88EMNGDBAY8aMUYsWLfT333+ra9euCgoK0tChQ5UTkIkOAAAAAAAAAHAs8N2jRw9169ZNtWvXdsH0iIgIFyTPyC+//KJzzz1XN910k8tev+SSS3TjjTceN3s9OyGIDgAAAAAAAAABEhQcfFqnE5GUlKQFCxaoTZs2qfOCg4Pd6zlz5mT4Hss+t/d4g+arV6/Wd999p8suu+w/Hpmsg3IuAAAAAAAAAJBDJSYmuimtsLAwN6W3Y8cOJScnKzo62md+dHS0li9fnuH2LQPd3nfeeefJ4/Ho0KFD6tmzpx566CHlFGSiAwAAAAAAAEAONWTIEEVFRflMNu9UmT59up555hmNHDlSCxcu1Oeff66JEyfqySefVE5BJjoAAAAAAAAA5FADBw50A4WmlVEWuilWrJjy5MmjmJgYn/kxMTEqWbJkhu959NFHdeutt+r22293r+vVq6d9+/bpjjvu0MMPP+zKwWR32X8PAAAAAAAAACCbCgoOOq2TBcwjIyN9Jn9B9NDQUDVu3FhTpkxJnXf48GH3unnz5hm+Z//+/UcFyi0Qb6y8S05AJjoAAAAAAAAAwLGs9S5duqhJkyY655xzNGzYMJdZ3q1bN7e8c+fOKlOmTGpJmPbt22vo0KE666yz1LRpU61cudJlp9t8bzA9uyOIDgAAAAAAAAABYtniWcn111+v7du367HHHtPWrVvVsGFDTZo0KXWw0fXr1/tknj/yyCMKCgpyPzdt2qTixYu7APrTTz+tnIIgOgAAAAAAAAAg1V133eUmfwOJphUSEqJBgwa5KaeiJjoAAAAAAAAAAH4QRAcAAAAAAAAAwA/KuQAAAAAAAABAgGS1mug4GpnoAAAAAAAAAAD4QSY6AAAAAAAAAARIUDB5zlkdQXQAAAAAAAAACJDgPJRzyeq4zQEAAAAAAAAAgB8E0QEAAAAAAAAA8IMgOgAAAAAAAAAAflATHQAAAAAAAAACJCiYmuhZHZnoAAAAAAAAAAD4QSY6AAAAAAAAAARIUDB5zlkdZwgAAAAAAAAAAD8IogMAAAAAAAAA4AdBdAAAAAAAAAAA/KAmOgAAAAAAAAAESFBwUKCbgOMgEx0AAAAAAAAAAD/IRAcAAAAAAACAACETPesjEx0AAAAAAAAAAD/IRAcAAAAAAACAAAkKJs85q+MMAQAAAAAAAADgB0F0AAAAAAAAAAD8oJwLAAAAAAAAAAQIA4tmfQTRAQAAAOBf+RctDnQTkIF9ZzUMdBOQgdnfrwh0E+BHvjBPoJuADBxIJFCaVVUPdAOQ5RFEBwAAAAAAAIAAYWDRrI8zBAAAAAAAAACAHwTRAQAAAAAAAADwgyA6AAAAAAAAAAB+UBMdAAAAAAAAAAIliEFnszoy0QEAAAAAAAAA8INMdAAAAAAAAAAIkKBgMtGzOjLRAQAAAAAAAADwg0x0AAAAAAAAAAiQoGDynLM6zhAAAAAAAAAAAH4QRAcAAAAAAAAAwA+C6AAAAAAAAAAA+EFNdAAAAAAAAAAIkKDgoEA3Adk5E/3ZZ59VUFCQ+vbtmzovISFBvXv3VtGiRVWgQAF16tRJMTExAW0nAAAAAAAAAJzswKKnc8J/l2WP4vz58/XGG2+ofv36PvPvvfdeffPNN5owYYJmzJihzZs3q2PHjgFrJwAAAAAAAAAg58qSQfS9e/fq5ptv1ltvvaXChQunzo+Li9Po0aM1dOhQtW7dWo0bN9bYsWP1yy+/aO7cuQFtMwAAAAAAAAAg58mSQXQr13L55ZerTZs2PvMXLFiggwcP+syvWbOmypcvrzlz5mS4rcTERMXHx/tMAAAAAAAAAABky4FFx48fr4ULF7pyLult3bpVoaGhKlSokM/86OhotywjQ4YM0eDBg09bewEAAAAAAADgZDGwaNaXpTLRN2zYoHvuuUcffPCBwsPDT8k2Bw4c6MrAeCf7DAAAAAAAAAAAsl0mupVr2bZtmxo1apQ6Lzk5WT///LOGDx+uyZMnKykpSbGxsT7Z6DExMSpZsmSG2wwLC3MTAAAAAAAAAGQ1ZKJnfVkqiH7RRRfpjz/+8JnXrVs3V/f8wQcfVLly5ZQ3b15NmTJFnTp1cstXrFih9evXq3nz5gFqNQAAAAAAAAAgp8pSQfSCBQuqbt26PvPy58+vokWLps7v3r27+vXrpyJFiigyMlJ9+vRxAfRmzZoFqNUAAAAAAAAAcJKCs1TFbWT1IHpmvPzyywoODnaZ6ImJiWrbtq1GjhwZ6GYBAAAAAAAAAHKgLB9Enz59us9rG3B0xIgRbgIAAAAAAAAA4HTiWQEAAAAAAAAAALJrJjoAAAAAAAAA5FRBQUGBbgKOg0x0AAAAAAAAAAD8IBMdAAAAAAAAAAIkKJg856yOMwQAAAAAAAAAgB8E0QEAAAAAAAAA8INyLgAAAAAAAAAQIEHBDCya1ZGJDgAAAAAAAACAH2SiAwAAAAAAAECgMLBolscZAgAAAAAAAACkGjFihCpWrKjw8HA1bdpU8+bNO+b6sbGx6t27t0qVKqWwsDBVr15d3333nXIKMtEBAAAAAAAAIECyWk30jz/+WP369dOoUaNcAH3YsGFq27atVqxYoRIlShy1flJSki6++GK37NNPP1WZMmW0bt06FSpUKCDtPx0IogMAAAAAAAAAnKFDh6pHjx7q1q2bez1q1ChNnDhRY8aM0YABA45a3+bv2rVLv/zyi/LmzevmWRZ7TkI5FwAAAAAAAACAyypfsGCB2rRpkzovODjYvZ4zZ06G7/n666/VvHlzV84lOjpadevW1TPPPKPk5GTlFGSiAwAAAAAAAEAOlZiY6Ka0rG65Tent2LHDBb8tGJ5WdHS0li9fnuH2V69eralTp+rmm292ddBXrlypXr166eDBgxo0aJByAjLRAQAAAAAAACBAgoKCT+s0ZMgQRUVF+Uw271Q5fPiwq4f+5ptvqnHjxrr++uv18MMPuzIwOQWZ6AAAAAAAAACQQw0cONANFJpWRlnoplixYsqTJ49iYmJ85sfExKhkyZIZvqdUqVKuFrq9z6tWrVraunWrKw8TGhqq7I5MdAAAAAB+BQUF6csvvzxt2+/atas6dOhwzHUuvPBC9e3b95jrjBs3ToUKFTrFrQMAADgDgoNO62QB88jISJ/JXxDdAt6WTT5lyhSfTPMpU6a4uucZOffcc10JF1vP6++//3bB9ZwQQDdkogMAAABZ0Pbt2/XYY49p4sSJLvOncOHCatCggZtnFypZTbNmzdSwYUOfx3bt9zvvvFNjx451wXIv+33VqlWaOXOmXnnlFXk8nhP6rIoVK7qg+vEC69mZHZNvxr+umT99rgP796hKjYa66Y6HFF26gt/3fP/5aC2aO0VbN61VaGiYKtdooI639lXJMhVT1zmYlKgJ77yk32ZN1qFDSardoIXbbmShokdtb++eWD3Z7zrF7tqml9/9WRH5I5WbFTmviSrf111RjeoqvHQJ/dapl2K+nnLs91xwjmq/OEAFaldTwoYtWjnkdW189wufdSrceZMq9+uusJLFFf/7cv3Z90nFzf8jdXlwWKhqvTBApa+7zP2+/YdZWtpnsJK27Txt+5pdvzOzJ76qP2ZPUOKBeJWu3EgX3/C4Cpc48vd/LL/+8KZmfvWSGrXqrNbXPOzmHdgXq18mvqa1y2Zpz+4tylegiKrWb6Pz2t+jsHwFU9bZu1sTx/XX9s0rlLAvVhEFiqpK/Yt0/pX9FJavwGnd5+x0bmZ89ZoWzZyghP3xKle1kdrdMkhFo/2fm9+mfaQF0z9S7M5N7nXx0lV1QfveqlrvAvc6dsdGvTbgyKCHaXXqOUy1m1yq/Xt368u37lfMxhXuXOYvWFTVG7ZW646cm0B+Z8yLvWsctb0rug1VzSaXn8I9xH9hWetdunRRkyZNdM4552jYsGHat2+funXr5pZ37txZZcqUSS0JY/294cOH65577lGfPn30zz//uIFF7777buUUBNEBAACALKhTp07u8dd33nlHlStXdoF0ywDauTNrBs5atWqlL77wDQ5OmzZN5cqV0/Tp032C6PbaLsyM1eTE0SZ/OU5Tv/tQXfs8qWIlyujr8SP16pO99PgrnytvaMaZY3//uUAXXnq9Klato+TDyfryg9f0yhN3uveEhedz63wy9kX9sXCm7uj/gvJFFNBHbz+rUc/30wPPvHPU9t4d8bjKVqjmguiQ8uSPUPzvK7Rh3Gdq8umI466fr2JZnf31G1r/5ngt7txfRVs3V703nlLClu3a8eMst06pa9up1gsDtbT3IMXOW6JKd3dR04mjNb3OpUravsutU/ulh1SiXUstvKGvDsbvUd1XHlXjCcM1p+WNp32fs5N5P76lRdPfU7tbn1VUsbKa9c0r+nR4d3V79DuF5M34O+O1Zd3vWjJrvIqX8Q3s7Y3b5qYLOz6ooiWrKn7XJv04/nE376oer7p1goKDVbX+RTqvfV8XMIzdvl5TPhmsH8fH6YpuL53Wfc4ufpn0tuZNeU9X3fasChUrq+lfvaIPX75ddz450e+5iSwcrdad7lOR6AoW7dWSX77Ux8N7q8djn6tEmWqKLFJK97400+c9C3/+RHMmjVbVuue711YHunrDi3Th1fcoomAR7d62Xt9/8IQmvjdIHe/g3ATqO+N16S1DVKl2yrkyYRG5+0ZtVmM1zb0JHVaSpWHDhpo0aVLqYKPr169XcPCRAifW35s8ebLuvfde1a9f3wXYLaD+4IMPKqegnAsAAACQxcTGxros7eeee84FpytUqOCygKye5ZVXXpm6zu23367ixYu7R3Jbt26tJUuWpG7j8ccfdxc8b7zxhruwiYiI0HXXXae4uLjUdebPn6+LL77Y1b60YHbLli21cOHCk2qztXPFihXuQstrxowZGjBggAuae61Zs0br1q1z62dUzsWynCy7qUCBAu4R4Jdeeumo0i72frtIs1IzNqVlF3BWg9Pef+mll2rLli3KjtmBU779QJdd00MNz2mlshWrq1ufJxW7e7sWz5vm9333PDpSLVpfpdLlq6pcxRrqetcT2rVji9at+sstP7Bvj2ZP/ULXdr1PNeudowpVaqtr78FatWKJVv/9u8+2Zkz6xGXAX3xVys0OSNsn/6y/Bw1TzFc/ZWr9CnfcoANrNmrZA89p7/LVWjfyA239bLIq3XPkhlKlvt20YfQn2vjO59q7bJX+6DVIyfsTVK5rJ7c8JLKAynXrpL/uf1Y7p89V/MI/teT2h1SkRSMVatrgtO1rdvzOLJz2rppdeqeqNmij4mVq6rIuz7vA3colxz5fSQn79N24+9X2pqcUFuF7U6946eq6qsdrqlKvtQoVL6/yNZq7YPnqpVN1OPmQWyc8IkoNL7hJJSvUU1TRMqpQs7kann+TNq387bTuc3Y6N/N+elfnX9FTNc66SNHlauiq257TnthtWr7I/7mxjPFq9Vu6bPWiJSupdcd7FRoWoU2rU/4/FxycRwWiivtMyxf+pNpnt1NoeH63Tr78UWrS6kaVrlhPhYqWUaVazdXkwhu14Z8Fyu0C+Z1JGzTPH1U8dTpe4D6nsxtyp3M6GXfddZfrcyUmJurXX39V06ZNU5dZ385K6aVlpV7mzp2rhIQE98ThQw895FMjPbsjiA4AAABkMRYAtslqkduFS0auvfZabdu2Td9//70WLFigRo0a6aKLLtKuXSnZq8ZqU37yySf65ptvXPbQokWL1KtXr9Tle/bscRnhs2bNchc91apV02WXXebmnygrMWMDSln2ufnrr7904MABde/e3WXPW/Dc2PLw8HC/NTXvv/9+F3z/6quv9MMPP7iLtLSB/c8//1xly5bVE0884QLkaYPk+/fv14svvqj33ntPP//8s8uS6t+/v7KbHTGbFB+7Q7XqH7lYzZe/oCpVq6fVK47cKDmeA/v3up/5C6YEOdatXqbkQ4d8tluybCUVKVbKZ7ubN6zStxPeVLc+Tx11kwKZV6hZQ+2YOsdn3vYfZ6lws4bu96C8eRXVqI52TPnlyAoej3ZM/UWFmp3lXlrpmODQUJ919q1Yrf3rNqVuB1Lczo3aF79dFWq0SJ1npSNKVWygzWsWHfO9P33yhCrXaakKNY+891gSD+xVaHgBBefJ+MH+vbEx+nvJjypb7ewT3Iucycqu7I3brkq1jhzf8IiCKlO5vjatWpypbRw+nKyl8ybqYNJ+la2S8d/9lrVLFbNhmRqel3IDKiN7YmO0fOGPKl+dc5MVvjNTPh6sEQ801fvPX6M/fvn0hEu7AWca5VwAAACALCYkJMRl9/To0cPVFbcAuWWJ33DDDe4RWQt6z5s3zwXRvYNCWfDYgu6ffvqp7rjjDjfPMoHeffdd90itee2113T55Ze77O6SJUu67PW03nzzTTc4pwWxr7jiihNqc/78+V22vAW9b7zxRvfzvPPOc+1r0aKFe12pUiX30wLoGQ1mtXfvXo0ePVrvv/++uyFgrJyNBc29ihQp4rKaChYs6PYhrYMHD7rjVaVKldQMKgu2ZzcWQDfp65RHRhVRXGzmyvnYwF6fjH1BVWo2VJnyVVO3GxKS96ja5pGFjmz34MEkjX55oDp1vldFipfS9piNp2ivcp+w6GJKjEk5l172Om9UQQWHhylv4SgFh4QoMV1t88SYncpfo3LKNkoWU3Jikg7F+d7YsnroYdHFz8BeZA8WDDQRkb7fmYiCRbUv3vccpLX8t4natuEv3fLAp5n6nP17d2nO9yNV/9zrj1r27Zh+Wvn7FB06mKAq9Vqp7c1Pn/B+5EQWQDf5052b/JHFtDfO/7kxVst87JAbdehgostCv7bXcFcbPSOLZn2mYqWquHrr6X3+Zj+tWDxVh5ISVK1BK7Xv+pRyu0B/Z8694m6Vr95MIaH5XP30nz4erIOJ+1199dwqyAYARZZGEB0AAADIojXRLeBtZV0sS9wyzp9//nm9/fbbruSJBZyLFvW9+LXMb3t81qt8+fKpAXRjwWsLrlrZFQtAW531Rx55xAW2LSCfnJzssrktg/tkWKmVCRMmuN9tm/ba2A0Ae22DUdlPuzmQEWu71YFP+7iwBc1r1Dh6ALKMWMkabwDdWDkY2y9/LMs/faZ/UtJhNyjnmfTrzxP1wRtHgjp3PfTaf97mR28N0eb1K3X/076PWh/PF++/6rLTm7VkcDdkXX/N+1o/fjQo9XXHXm+c8Dbid2/R1E+f1rV9xmSqjIRl034+8n8qWqqKWlx+11HLW3UaqOaX9dbubWs186uhmvbZEDdIY27zx9xvXM1xrxvvPjLY9IkqVrKS7njsCyUe2KO/FkzW12MGqPMD7x0VSD+YlKClv36r86+4M8PtXHL9QF3Q/i7tjFmrqZ8P1Q8fP6vLbjnSxtwgq31nmrfrnfp7dLnaOph0QPN/Gp2rg+jI+giiAwAAAFmUlT2xmuU2Pfroo64G+qBBg1xJFgsQp6017mWZ5JllpVys1Morr7zi6q5bdrgF2i2QfTKszvnTTz+tTZs2ubZ5S6lYEN1qs1uQfMOGDUdlwJ8qVk4mLStFcqzHw4cMGaLBgwf7zOty50Pq2usRnUkNzr7QlWrxOnQw5fjHx+5UVOEj2cbxcbtUrmL1TAXQ/1jws/o/OUaFi6YMAGYiCxXToUMHtX9fvE82enzsLkX9m/W+Yuk8bVq/UguvTamJ61HK8buvayu169RdV95wpBwQjs2yzi0bPS17fTBujw4nJCppx24dPnRIYSV8b4aFRRdV4taUTFD7mScsVCFRBX2y0UNLFFViTEomaW5UtX5rV3bCK/lQyndmf/xOFYgqkTp//56dKlG2ZobbiFn/p1v+7rMdU+d5Didr48r5WjTjA937yh+u7rZJStirz0bc7mptd7hjhPLk8f23xnjrOhctWcXVSR//8s1q3q6XT3tyg+oNW6lMpfqprw/9e272xe9UwUJHjoVlO5csV+uY28oTEpoysKjdFK1Y15Vssfrql3f2fcJo2YLJLpBev8WR8TXS8tZML1aqsquT/s5zN7uAe9r25HRZ8TuTlrVt7vcj3f//QvKGKlcKouJ2VkcQHQAAAMgmateu7Uq2WHkXG8DTyr5UrFjR7/qWUb5582aVLl3avbaM9uDg4NTM7tmzZ2vkyJGuDrqxAPeOHcd+vP5YrGxLaGio26aVkmncuLGbf/bZZ2v79u0aM2ZMatmXjFgWuQXCbfAqy6I3u3fv1t9//+0C8V72GZY1/1/ZQK39+vXzmTd35WGdaeH58rvJywL/FvBe/sc8latUM7W++Zp//lDLttf63Y69b/zbz2rxvKnqN/htFYs+8hSCqVC5lvKEhGj57/PUqHkbN2/rprVu8NHKNVKCKz3vf0lJSUey89euXKp3Rzyu/k+NUfGS5U75vudksXMXq3i7C3zmFbuohXbPTakD7Tl4UHEL/1Sx1s0V8/WUlBWCglS0VXOtG/m+exm3cKkOJyW5dbZ+8YObl796JUVUKJO6ndzI6ivblPZvP39kca1bMUcl/g3MWhbslrVL1PD8GzPcRoUazdTl4W985k16b6CKRlfW2Zf0SA0G2nY+HdHdBXSv7vl6pjJwvTfvvIHK3CQsvICb0h4LC2CvWTZHJcsfOTebVv+uxhdmfG788XgOpwbl01o881MXvM9fsEimtpEbz01W/85s37jM3XzKtQF0ZAsE0QEAAIAsxrLDbeDQ2267zdVAt/rfv/32myvnctVVV6lNmzYuY7xDhw5uXvXq1V2wfOLEibr66qvVpEmT1Ex2yza3eunx8fG6++67dd1116XWEreBRG0QTlvfltugnvny5Tvpdtt7mzVr5mqv20CjVrvcG/ROOz99xriXDaZqA5FaO6xUTYkSJfTwww+7wH9aduPABg61GvGWPV+smG+2b2bZe9PXZg8NPaBAswz6i664Wd99+pZKlCqvYiXK6KuPRqhQ4eJqeE6r1PWGPn6HzjqntVpddoN7/dFbz2jezO/Va8AwF5SP251yQyRfRAGFhoW7wUnPbX21Jox7SfkLRCk8Ir/Gj35WlWvUV+XqKZmj6QPle+N3u5+lylY6qpZ6bpMnf4TyV025uWMiKpVVZIOaStoVp4QNW1TjqX4KLxOtJd0edMvXvTleFXrdrJpD7teGcZ+pWKtmKnVtO82/8n+p21gzbKwajHlOsQuWKm7+76p4dxeF5M+nDe987pYfit+rDWM/U60XBujgrjgd3LNXdYc9ot1zFir218wPMpvT2XfGykDMnfS6CpeooKiiZTX721dchm3VBik3jMwnr3RR1QYXq9GFt7iAYvHSvk925A2LUHiBQqnzXTBw+G2u1MTlXV5Q0oG9bjL5ChZxQcPVS2do354dKlmhnqvbvWPLSs344nmVqdzItSO3s3NzTpvOmjVxlIpEV1ShYmU0/ctXXRZ4zbOOnJv3Xuyqmo3a6OzWt7jXUz57SVXrXaCoIqWUmLDPlWtZu2Kebu77ts/2d8Ws07p/ftON97x51Gf/8/sMl/FeulLKudm+eaV+mvCCq5teqFjuPjeB/M6s+mOqezKhVKUGCgkJ07rlszV38hs6+6LbzvBRAE4MQXQAAAAgi7FgstUFf/nll10JFBsws1y5cq6W+EMPPeQufr/77jsXYLY645blbYHxCy64QNHRR8p3VK1aVR07dnSZ5rt27XKDhVqWuJcN4mmDkFpmu23/mWeeSS3BcrKspIsFuL310L0sk3zatGlu+bG88MILrt57+/bt3c2D++67T3FxcT7r2GCh//vf/1zmutU0P1bJluyqbYeuSko4oPdHPan9+/aoas2zdPejI5U3Tb32HVs3aO+elCC3mTE5pR79S4/d7rOtLr0Hq0Xrq9zv13Xr7wYvG/Xife6x+doNW+imHg+dsf3KzqIa11XzKe+lvq79Yspx2/Du5/q9+0CFlSqufOVKpS4/sHajC5jXfmmgKvbprISNW/XH/x7Rjh9npa6zZcL3Ci1eRNUH3a2wksUVv2SZ5l1xuxs41Ouv+55RrcOH1eiTVxUcFqodP8zS0j6+ZYggnXNxDxe4++HDx5R4IF5lqjRWp95v+2TBxu7YoAP7jnxnjidmw58uM9e8/fjFPst6PDHFBR5DQsP0x+wJmv7ZEJfdXLBwKVVrcLHOuSRlgGdILS69XQcTD2jiu48pYX+8yldrrJv6vuVzbnZvX6/9af49279nl74a/aAbmDQsX0FFl63hAuiV65zrs+3Fsz9TZOGSqlLbd76xfy8XzZzgaqDbuYksUlI1z7pE516W8bgcuU2gvjPBwSFa/PMHmvbZM1YzTIWKl1erjgNU/9zrTuHeAadekCcn9jiPwTJsoqKiXEc8MvLMZFLYhc8Nt/VUxct7KbJE7r7biawlfttGrZ04UuPHjPIZhCsr4fuDrIrvD5C9vj+B6AMG2uOPP+5KvyxenHtLPpyM6UsDn4mOo+07q2Ggm4AMbP5+RaCbAD/yheWqUE+2cSAxKNBNgB89jiTgB0T80L6ndfuR/Yad1u3nBlStBwAAAAAAAADAD4LoAAAAAI7LSr1YmZmMpnbt2gW6eQAAANmXjf9yOif8Z9REBwAAAHJoORebTpWePXu6QUkz8l8GIwUAAACyOoLoAAAAAI6rSJEibgIAAAByG/L5AQAAAAAAAADwg0x0AAAAAAAAAAiQoKCgQDcBx0EmOgAAAAAAAAAAfpCJDgAAAAAAAACBEkyec1ZHEB0AAAAAAAAAAiQomHIuWR23OQAAAAAAAAAA8IMgOgAAAAAAAAAAfhBEBwAAAAAAAADAD2qiAwAAAAAAAECgBJHnnNVxhgAAAAAAAAAA8INMdAAAAAAAAAAIlOCgQLcAx0EmOgAAAAAAAAAAfhBEBwAAAAAAAADAD4LoAAAAAAAAAAD4QU10AAAAAAAAAAiQoCDynLM6zhAAAAAAAAAAAH6QiQ4AAAAAAAAAgRIcFOgW4DjIRAcAAAAAAAAAwA8y0QEAAAAAAAAgQIKCyXPO6jhDAAAAAAAAAAD4QRAdAAAAAAAAAAA/KOcCAAAAAAAAAIESxMCiWR2Z6AAAAAAAAAAA+EEmOgAAAAAAAAAECgOLZnmcIQAAAAAAAAAA/CCIDgAAAAAAAACAHwTRAQAAAAAAAADwg5roAAAAAAAAABAoQUGBbgGOg0x0AAAAAAAAAAD8IBMdAAAAAAAAAAIkKJg856yOMwQAAAAAAAAAgB9kogMAAAAAAABAoASR55zVcYYAAAAAAAAAAPCDIDoAAAAAAAAAAH4QRAcAAAAAAAAAwA9qogMAAAAAAABAoAQHBboFOA6C6AAAAAAAAAAQIEEMLJrlcYYAAAAAAAAAAPCDIDoAAAAAAAAAAH5QzgUAAAAA/lXi0SsC3QRkYPb3KwLdBGSgdLsagW4C/MhXJizQTUAGkg8cDnQT4E/M0kC3AFkcQXQAAAAAAAAACBQGFs3yKOcCAAAAAAAAAIAfZKIDAAAAAAAAQKAEkeec1XGGAAAAAAAAAADwg0x0AAAAAAAAAAiUIGqiZ3VkogMAAAAAAAAAUo0YMUIVK1ZUeHi4mjZtqnnz5mXqfePHj1dQUJA6dOignIQgOgAAAAAAAADA+fjjj9WvXz8NGjRICxcuVIMGDdS2bVtt27btmO9bu3at+vfvr/PPP185DUF0AAAAAAAAAIAzdOhQ9ejRQ926dVPt2rU1atQoRUREaMyYMX7fk5ycrJtvvlmDBw9W5cqVldNkqSD666+/rvr16ysyMtJNzZs31/fff5+6PCEhQb1791bRokVVoEABderUSTExMQFtMwAAAAAAAACctODg0zolJiYqPj7eZ7J5GUlKStKCBQvUpk2bNM0Ldq/nzJnjdxeeeOIJlShRQt27d1dOlKWC6GXLltWzzz7rTtRvv/2m1q1b66qrrtKff/7plt9777365ptvNGHCBM2YMUObN29Wx44dA91sAAAAAAAAAMiShgwZoqioKJ/J5mVkx44dLqs8OjraZ350dLS2bt2a4XtmzZql0aNH66233lJOFaIspH379j6vn376aZedPnfuXBdgt5Px4YcfuuC6GTt2rGrVquWWN2vWLECtBgAAAAAAAICTFHR685wHDhzoapynFRYWdkq2vWfPHt16660ugF6sWDHlVFkqiJ6W3fGwjPN9+/a5si6WnX7w4EGfRwlq1qyp8uXLu0cJCKIDAAAAAAAAgI4KmGc2aG6B8Dx58hxVQjsmJkYlS5Y8av1Vq1a5AUXTJkcfPnzY/QwJCdGKFStUpUoVZXdZLoj+xx9/uKC51T+3uudffPGFK2C/ePFihYaGqlChQpl+lMBYfZ+0NX6s5g8AAAAAAAAAwJfFXxs3bqwpU6aoQ4cOqUHxKVOm6K677jpqfUtytnhuWo888ojLUH/llVdUrlw55QRZLoheo0YNFzCPi4vTp59+qi5durj65yfL6vvYqLAAAAAAAAAAkOUEBykrsdIvFpNt0qSJzjnnHA0bNsxVC+nWrZtb3rlzZ5UpU8bFXcPDw1W3bl2f93uToNPPz85CsuLdjqpVq7rf7a7H/Pnz3V2L66+/3o0OGxsb65ON7u9RAn81fywTPafcAQEAAAAAAACAU8nisNu3b9djjz3mKoA0bNhQkyZNSh1sdP369QoOPr113LOaLBdET88eF7ByLBZQz5s3r3t0oFOnTm6Z1dSxk2blX05FzR8AAAAAAAAAyEkDi54MK92SUfkWM336dB3LuHHjlNNkqSC6ZY23a9fODRZqdXM+/PBDd1ImT56sqKgode/e3WWVFylSRJGRkerTp48LoDOoKAAAAAAAAAAgxwfRt23b5mrqbNmyxQXN69ev7wLoF198sVv+8ssvu0cFLBPdstPbtm2rkSNHBrrZAAAAAAAAAHBygrJWTXRk8SD66NGjj7ncCtWPGDHCTQAAAAAAAAAAnG5Zr+AOAAAAAAAAAABZBEF0AAAAAAAAAACyQzkXAAAAAAAAAMhVgslzzuo4QwAAAAAAAAAA+EEmOgAAAAAAAAAESlBQoFuA4yATHQAAAAAAAAAAPwiiAwAAAAAAAADgB0F0AAAAAAAAAAD8oCY6AAAAAAAAAARKEHnOWR1BdAAAAAAAAAAIlGCC6FndKTlDlStX1s6dO4+aHxsb65YBAAAAAAAAAJBrM9HXrl2r5OTko+YnJiZq06ZNp+IjAAAAAAAAACDnCQoKdAtwOoPoX3/9dervkydPVlRUVOprC6pPmTJFFStW/C8fAQAAAAAAAABA9gyid+jQwf0MCgpSly5dfJblzZvXBdBfeuml/9ZCAAAAAAAAAACyYxD98OHD7melSpU0f/58FStW7FS1CwAAAAAAAACAnFETfc2aNadiMwAAAAAAAACQuwQFB7oFOBNBdGP1z23atm1baoa615gxY07VxwAAAAAAAAAAkL2C6IMHD9YTTzyhJk2aqFSpUq5GOgAAAAAAAADgOIil5o4g+qhRozRu3Djdeuutp2JzAAAAAAAAAABkCaek4E5SUpJatGhxKjYFAAAAAAAAAEDOCqLffvvt+vDDD0/FpgAAAAAAAAAAyFnlXBISEvTmm2/qp59+Uv369ZU3b16f5UOHDj0VHwMAAADgFJo+fbpatWql3bt3q1ChQsqucsp+AACAXCr4lOQ5I6sH0X///Xc1bNjQ/b506VKfZQwyCgAAABxf165d9c4777jfLSmlfPny6ty5sx566CGFhBy7227jE/Xt21exsbE5PlB94YUXumuPYcOGKScr3O4qFe1wnUIKFVHi2lXa8vZrSvhnhd/1i1zRUYUvvVJ5i5VQ8p44xf/ys7a9/7Y8Bw9mept5S5ZSdJeeiqhVV0F582rvovna+tZwJcftPu37m514PB7Nnviq/pg9QYkH4lW6ciNdfMPjKlyiYqbe/+sPb2rmVy+pUavOan3Nw27egX2x+mXia1q7bJb27N6ifAWKqGr9Njqv/T0Ky1cwZZ29uzVxXH9t37xCCftiFVGgqKrUv0jnX9lPYfkKKDcrcl4TVb6vu6Ia1VV46RL6rVMvxXw95djvueAc1X5xgArUrqaEDVu0csjr2vjuFz7rVLjzJlXu111hJYsr/vfl+rPvk4qb/0fq8uCwUNV6YYBKX3eZ+337D7O0tM9gJW3bedr2Nbspc+v1Kv+/rgotXkx7l/2tvwcN0Z4lvnEjr6CQEFXo1V2lOl2p0JIltH/1Wq16dph2zZid4foV7rxNVR7sqw1j3tc/TzzvsyyyUX1V6X+3IhvWkyc5WXv/WqHFnXvqcGLiadnP7KhstxtUsVc3hZYo5o7P8oeeUfwi/+em0t23q9T1VynMzs2qtfrnyaHaOc333Niyao/2U9HW5ylPvnDtX7tef93zqOKX/OmW13nlKZW+oYPPe3ZMnaVFN/Y8jXsKZKEg+rRp007FZgAAAIBc7dJLL9XYsWOVmJio7777Tr1793YB9YEDBwa6aTiDIs+9UNHdemrLqGE68PdyFW3fURUee04r7+qq5Lijb5REnt9aJW7toc3DX9CB5X8qtHRZlb77AbcsZuzrmdpmUFi4Kgx6XglrV2ndY/3de4rf1E3lH35Kax68yyLHZ/goZF3zfnxLi6a/p3a3PquoYmU165tX9Onw7ur26HcKyRt2zPduWfe7lswar+JlavjM3xu3zU0XdnxQRUtWVfyuTfpx/ONu3lU9XnXrBAUHq2r9i3Re+74uyB67fb2mfDJYP46P0xXdXlJulid/hOJ/X6EN4z5Tk09HHHf9fBXL6uyv39D6N8drcef+Ktq6ueq98ZQStmzXjh9nuXVKXdtOtV4YqKW9Byl23hJVuruLmk4crel1LlXS9l1undovPaQS7Vpq4Q19dTB+j+q+8qgaTxiuOS1vPO37nB2UuKKtqj1yv1Y88qTiFv2hcrfdoobvjtLc1lfq4M6UY5hW5f53qWSHy7V8wGDtW7VGRVueq3pvvKwFnTpr75/LfdYtWL+OSt90rfYsO/rmogXQG457XeteH+2C9hZEL1Crujyew6d1f7OT6KsuVY3BD2jZA08obuHvKn/HrWo0/g3NPre9Du44+txUGdBHpa65Qsvue1z7Vq5R0QvPVYOxr2j+Fbdoz9KUcxMSFamzv3lPu2bP06Kbeipp525FVKqgg7HxPtvaMWWm/rznkdTXh5OO3OzNzTwkIWd5PCsAAAAAZBFhYWEqWbKkKlSooDvvvFNt2rTR119/7YLq/fv3V5kyZZQ/f341bdrUZYYb+9mtWzfFxcW5p0Btevzxx92y9957T02aNFHBggXddm+66SZt27bttLT9WG30ZstbBvvkyZNVq1YtFShQwN002LJlS+o6hw4d0t133+3WK1q0qB588EF16dJFHTp0SM3WnzFjhl555ZXUfV27dm3q+xcsWOD2NyIiQi1atNCKFf4zt7Oyoldeo9gfv1Pc1MlK2rjOBb4te7LQRZdmuH5EzTo6sHyp4mdO1cHtMdq3ZIHiZ05Tvmo1Mr1N20be4tHa/OrzSly/xk2bX31O4VWqK3+9s87YvmeHLPSF095Vs0vvVNUGbVS8TE1d1uV5F+xeueSnY743KWGfvht3v9re9JTCIqJ8lhUvXV1X9XhNVeq1VqHi5VW+RnMXLF+9dKoOJx9y64RHRKnhBTepZIV6iipaRhVqNlfD82/SppW/KbfbPvln/T1omGK+OvY58Kpwxw06sGajlj3wnPYuX611Iz/Q1s8mq9I9XVPXqdS3mzaM/kQb3/lce5et0h+9Bil5f4LKde3klodEFlC5bp301/3Pauf0uYpf+KeW3P6QirRopEJNG5y2fc1Oyt3eWZvHf6YtE77S/pWrteLhJ3X4wAGVvs43E9mr5NVXaO2It7Vz+iwlbNikTe9/op3TZqn87Z191ssTkU91hg3R8gGP61Ccb4DWVHv0AW0Y96HWvT5G+/5Z5TLat038QR6Ctakq9Oysje9/qs3jv9S+v1dr2f1PKPlAgsrceHWG65e+tr3WvPKWC4AfWLdRG9/52P1e4c4j35mKfW5Twuat+qvvoy6jPWH9Ju2a8YsOrNvgs63DSUlK2r4zdcroHOZKQcGnd8J/dkqOoj3W2bp1a78TAAAAgBOXL18+JSUl6a677tKcOXM0fvx4V0rx2muvdQHof/75xwWLrbRJZGSkC0jbZMFsc/DgQT355JNasmSJvvzySxdwtkD06XCsNnrt379fL774ogvu//zzz1q/fn1qW81zzz2nDz74wGXjz549W/Hx8a7dXhY8b968uXr06JG6r+XKlUtd/vDDD+ull17Sb7/95krg3Hbbbcp2QkJc4HrfkoVH5nk82vf7QkXUqJ3hW/Yv/9O9J/zfoHne6FIq0Pgc7V0wL9PbDMobmjI7TfkXT1KSW8/KuyBF3M6N2he/XRVqtEidZ+VWSlVsoM1rFh3zvT998oQq12mpCjWPvPdYEg/sVWh4AQXnyfgB8r2xMfp7yY8qW+3sE9wLFGrWUDumzvGZt/3HWSrcLKVMrZUzimpURzum/HJkBY9HO6b+okLNUm4qWemY4NBQn3X2rVit/es2pW4nNwvKG6KCdWtp1+y5R2Z6PNo1+1dFNsr4JoMdz8OJST7zDickKOps3xt51Z98WDumzdTu2b8etY28RYso6qz6LtO98Wfv6rz503TWx2MU1YSbgT7npn5t7ZqZ7tz8PFdRTTI+N0EZnptEFTrnyHEtfkkrV7al/lsvqeWfM9T0pwkqc0vKTae0Crc42y1vMfsb1XzuUeUt7HtTEcjR5Vy89dC9rLO+ePFiVx/dMkcAAAAAnFi265QpU1zW9o033uiCyhZwLl26tFtugedJkya5+c8884yioqJcVrZlm6eVNohcuXJlvfrqqzr77LO1d+9elwl+qljbjtdG73XCqFGjVKVKldTA+xNPPJG6nddee82Vrrn66pRMuOHDh7uyNl62n6GhoS7TPP2+mqefflotW7Z0vw8YMECXX365EhISFB4eruwipGCUgvLk0aF0dcgPxe5WWJkjNwzSsgz0kMgoVXr6FRuUytWu3TXpa+347MNMb/PA33/pcMIBlejcQ9veH+22E33r7e59IYWLnrb9zW4sgG4iIn2PSUTBotoXv8Pv+5b/NlHbNvylWx74NFOfs3/vLs35fqTqn3v9Ucu+HdNPK3+fokMHE1SlXiu1vfnpE96P3C4supgSY3zPl73OG1VQweFhLqgXHBKixHS1zRNjdip/jcop2yhZTMmJSToUt8dnHauHHhZdXLld3sKF3TFM2uF7DC3zOKJKpQzfs/PnX1Tu9lsVO2+By14ufG5TFb/0IgUF50ldp0T7S1WwTi39dlXGJXPylS/rflbqe6dWPvOS9vy1QiU7ttdZH7ylX9t21IG165XbhRb599xsP/rc5K/m59xMn60K/+us2Dm/af/aDSpyfjOVuOwi9/8Ir3wVyqpsl+u1/o13XdZ65Fl1VeOpga5cy5ZPvnbr7Jg2W9u++0kH1m9SvorlVHXgPTrro1Gad9nN0mHK7SAXBNFffvnlDOfbY6TWQQcAAABwfN9++60Lbluw+fDhw678yjXXXONKoVSvXv2o8ilW8uRYrLyJ9cktE90GBLVtGgt2166dcVbzyfjjjz+UnJx83DZa8NsbQDelSpVKLS9j5WhiYmJ0zjnnpC7PkyePGjdunNru46lfv77Pto1t3wZpzYi1z6a0kpIPKzRP9nrsOaJOAxXrdJO2vPmqDvy9TKGlSqtk9946dO0t2jHh/UxtIzk+ThtfeEKlevZVkcuvdlmJcTOn6sCqv3N1HeG/5n2tHz8alPq6Y683Tngb8bu3aOqnT+vaPmOOWzPdm4H++cj/qWipKmpx+V1HLW/VaaCaX9Zbu7et1cyvhmraZ0PcwKZAdvfP4OdU89lBajblK3cz2cqGWCmYUv+WfwkrFa3qjz2oRbfecVRWdKp/60pv+vBT916z8s/lKtKiqdvO6udTxhjAiVnxyLOq/dLjLnvcnZu1G1wpmNJpyr/YuA2Wib7ymVfca6uVXqBmNZXtcl1qED3my+9T19+77B/t/etvnTdvkoqce7Z2zTz6yQIgxwXR/bnllltcJ9ge2QQAAABw/DKJr7/+usu2toxuK0ny8ccfu2CyBcTtZ1rHyibft2+f2rZt6yYrkVK8eHEXPLfXViLmVLLEmcy00QZJTcuy5+1i/FRJu33btjlWAH7IkCEaPHiwz7xeNSqqd62UTNNAOLQnzg2CFxJV2Gd+SKHCOhR79GBvpsRN3RQ740fF/pSStW/1zIPD86nUnfdqx6cfZHqbVkt95Z23Kk/BSLf+4f37VH3MBMXHHKlbn9tUrd/alWrxSj6U8t3ZH79TBaJKpM7fv2enSpStmeE2Ytb/6Za/+2zH1Hmew8nauHK+Fs34QPe+8oeC/820TUrYq89G3K7Q8PzqcMcI5cnj+50x+aOKu6loySquTvr4l29W83a9fNqDY7Osc8tGT8teH4zb40pUJO3YrcOHDimshO+NyrDookrcmpLBbj/zhIUqJKqgTzZ6aImiSoxJeWIhNztoN24PHVJoMd9jGFq8qJK2Z/zUxsFdu/XHHX0VbMe1UCElxWxTlQF9dWD9Rre8YL3a7v1nf/tx6nsso7rQOY1VpvMNml69iZK2pWzbaqGntW/VaoWXTrm5mtsl7fr33BQ/+twk/nv80ju4c7eWdL3HnZu8hQspces2VX3kXnejw8v+7vf9ne64/71aJS5v47ct9v6kHbuUr2J5KbcH0albnruD6FYTMTs9OgkAAAAEkg3IWbVqVZ95Z511lsvytozq888/P8P3WdDd1klr+fLl2rlzp5599tnUuuFWK/x0yEwbj8dKtURHR2v+/Pm64IIL3Dzb5sKFC33KR2a0ryfLSsf069fPZ97qW65SQB06pIRVfyt//bO0Z97slHlBQW5wz13fH6kPn1ZQWJh02PdmhAXBve890W0m70kZ5C2iXkPliSqkPfPS1IXOZawmuU1edtMnf2RxrVsxRyXK1UrNHN+ydokanp9xeYkKNZqpy8Pf+Myb9N5AFY2urLMv6ZEaQLftfDqiu/KEhOrqnq9nKmvdexPKG9xH5sTOXazi7VL+nfEqdlEL7Z67OHVsgLiFf6pY6+aK+XpKygpBQSraqrnWjUx5uiNu4VI3QKKts/WLH9y8/NUrKaJCmdTt5Gaeg4e0Z+kyFW7RVDt+mJYyMyjIvd707kfHfK9lmVsA3UpTFb+0jRsU1FgN9F8vOXIzytR64QntX7VG60aNdeVAEjZuUuLWGEVUruizXkSlCq4kCf49N7//pSLnN9X276emzAwKcq83jDn+ubEAup2b6CsuVszXk1OXxc5fpIgq6Y57lQpK2Oj/Rqw9XZC3SCElbePGE7K+UxJE79ix41H/I7dBfqyT/uijj56KjwAAAAByJSuRcvPNN6tz585u0EwLWG/fvt3VTLfyJVb3u2LFii4b3OY1aNDAlU2xEiYWcLY64z179nTjFdkgo6eidEvBggV9Mr7tM4/Xxszo06ePyw63Gwk1a9Z0bbcyNN6scmP7+uuvv7pBUi3LvUiRIie9L2FhYW5KKyuUctn59acqffeDrpTKgX+Wq+gVnRQcHq7YKSnBClt2aNeOlNrl9iTA/DkqcuU1Sliz8t9yLmVcdvqe+XNSa8web5smqnVbJW1cr0PxsYqoUUfR3Xtr1zefKWnzkUzD3M7+Fhu16qy5k15X4RIVFFW0rGZ/+4rLAq/a4Ei25SevdFHVBher0YW3uCB88dK+pY7yhkUovECh1PkugD78Nh1MOqDLu7ygpAN73WTyFSziAu2rl87Qvj07VLJCPYWGRWjHlpWa8cXzKlO5kWtHbpYnf4TyVz1StimiUllFNqippF1xStiwRTWe6qfwMtFa0u1Bt3zdm+NVodfNqjnkfm0Y95mKtWqmUte20/wr/5e6jTXDxqrBmOcUu2Cp4ub/rop3d1FI/nza8M7nbvmh+L3aMPYz1XphgA7uitPBPXtVd9gj2j1noWJ/XRKAo5D1bHj7XdV66Snt+eMvxS/+Q+W636I8Efm0eULKzbtaLz2txJiY1BIrkQ3rKSy6hPb8tVxhJaNdXXMrEbL+jbFuefK+/dr390qfz0g+cEAHY+N85q978x1V7nun9i77W3v/Wq6Sna50ddiX3nnfGd3/rGzdqHdV59WnFb/4T8UvWqryd/x7bsannJs6rz3jguUrnx7mXkc2qqfwktHa86edmxKqfH8vKThIa4ePSd3m+jfe09nfvqeK9/RQzFeTFNWonsreeo3+6p/yxJdtv3L/Xto28UeX8R5RsZyqPdpP+9esd7XScztPmr4OcnAQ3bJG0goODlaNGjXcIEGXXHLJqfgIAAAAINeywTmfeuop3Xfffdq0aZOKFSumZs2a6YorrnDLW7Ro4QLl119/vcs+HzRokKuFbrXUH3roITegaKNGjVyZxSuvvPI/tcWbJe5l5VsOHTp03DZmxoMPPqitW7e6YLxt94477nDlZ9KWiLEBS7t06eJquh84cEBr1qxRThM/e7ryREap+A1dFVK4sBLXrNL6JwYo+d+BQfMWL+Fqlnttn/C+S2SywHlIkWJKjo/Vnt/mpgbZM7NNY4OMRt9yu/IUKKik7TGuFMyurzM3EGZucs7FPVyw+4cPH1PigXiVqdJYnXq/7ZM5Hrtjgw7s8x3I9VhiNvzpstnN249f7LOsxxNTXJA8JDRMf8yeoOmfDXGZ5wULl1K1BhfrnEvuUG4X1biumk95L/V17Rcfcj83vPu5fu8+UGGliitfuSOlPA6s3egC5rVfGqiKfTorYeNW/fG/R7Tjx1mp62yZ8L1CixdR9UF3K6xkccUvWaZ5V9zuBg71+uu+Z1Tr8GE1+uRVV+Zixw+ztLSPb4mo3Gzbt5OVt0hhVb63l0KLF9OeZSu0pMudOrgjpYxUeJmSVtsodX07hpX736Xw8mVdwHzntFn6696HdCjed/DW49k45n1Xaqfao/crb6Eo7V22Qotv+V9qWRjIBblDixZWlQfuUliJYi44vvDGnqmDjYaXKeUz0GeesDBVGdDHDR5q52bHlJn6s/dAn3MTv3iplnTrq6oP36PK/Xq6wUNXPPqctn420S33HD6sArWrq/T1VyokMtIF6XfO+EWrnhsuT9LBABwF4MQEeU5lEcJsID4+3gX9beCiyMjIM/KZq1at0g239VTFy3spskTuzhBA1hK/baPWThyp8WNG+QzylZXw/UFWxfcHyF7fn0D0AfHfWT3zWrVq6brrrjslWfSZ8dfVF52Rz8GJmd3735IayFJKt6sR6CbAj3xljl8OCGde8oHcO1BzVndxzNKAfv7+GeNP6/YjWt5wWrefG5zSmug2kNCyZcvc73Xq1HGPcQIAAABAZqxbt04//PCDWrZsqcTERA0fPtxlmt90002BbhoAAABysVMSRLcBhG644QZNnz5dhQoVcvNiY2PVqlUrjR8/XsWLFz8VHwMAAADgNGnXrp1mzpyZ4TIrCWPT6WZlIa0EjZVssQdm69atq59++sllowMAAORYQYEfkwVnIIhuAwDt2bNHf/75Z2oH96+//nK1Cu+++2599NGxR/cFAAAAEFhvv/22qzGekf8yeOeJKFeunGbPZnAxAAAA5MAg+qRJk47KELGBfkaMGMHAogAAAEA2UKZMmUA3AQAAIHcKCgp0C3AcwadqwJ+8efMeNd/m2TIAAAAAAAAAAHJtEL1169a65557tHnz5tR5mzZt0r333quLLmJ0ewAAAAAAAADIUHDw6Z3wn52Sozh8+HDFx8erYsWKqlKlipsqVark5r322mun4iMAAAAAAAAAAMieNdFtAKCFCxe6uujLly9386w+eps2bU7F5gEAAAAAAAAACIj/lIk+depUN4CoZZwHBQXp4osvVp8+fdx09tlnq06dOpo5c+apay0AAAAAAAAA5CCeoKDTOiHAQfRhw4apR48eioyMPGpZVFSU/ve//2no0KH/5SMAAAAAAAAAAMieQfQlS5bo0ksv9bv8kksu0YIFC/7LRwAAAAAAAABAzhUUfHon/Gf/6SjGxMQob968fpeHhIRo+/bt/+UjAAAAAAAAAADInkH0MmXKaOnSpX6X//777ypVqtR/+QgAAAAAAAAAALJnEP2yyy7To48+qoSEhKOWHThwQIMGDdIVV1zxXz4CAAAAAAAAAICACfkvb37kkUf0+eefq3r16rrrrrtUo0YNN3/58uUaMWKEkpOT9fDDD5+qtgIAAAAAAABAjuKhbnnODqJHR0frl19+0Z133qmBAwfK4/G4+UFBQWrbtq0LpNs6AAAAAAAAAADkuiC6qVChgr777jvt3r1bK1eudIH0atWqqXDhwqemhQAAAAAAAACQUwUFBboFON1BdC8Lmp999tmnanMAAAAAAAAAAOScIDoAAAAAAAAA4MRQEz3r4wwBAAAAAAAAAOAHQXQAAAAAAAAAQKoRI0aoYsWKCg8PV9OmTTVv3jy/67711ls6//zzXblvm9q0aXPM9bMjgugAAAAAAAAAAOfjjz9Wv379NGjQIC1cuFANGjRQ27ZttW3btgzXnz59um688UZNmzZNc+bMUbly5XTJJZdo06ZNyikIogMAAAAAAABAoAQFnd7pBA0dOlQ9evRQt27dVLt2bY0aNUoREREaM2ZMhut/8MEH6tWrlxo2bKiaNWvq7bff1uHDhzVlyhTlFATRAQAAAAAAACBQbGDR0zmdgKSkJC1YsMCVZPEKDg52ry3LPDP279+vgwcPqkiRIsopQgLdAAAAAAAAAADA6ZGYmOimtMLCwtyU3o4dO5ScnKzo6Gif+dHR0Vq+fHmmPu/BBx9U6dKlfQLx2R2Z6AAAAAAAAACQQw0ZMkRRUVE+k807HZ599lmNHz9eX3zxhRuUNKcgEx0AAAAAAAAAcqiBAwe6gULTyigL3RQrVkx58uRRTEyMz/yYmBiVLFnymJ/z4osvuiD6Tz/9pPr16ysnIRMdAAAAAAAAAALEExR0WicLmEdGRvpM/oLooaGhaty4sc+goIf/HSS0efPmfvfh+eef15NPPqlJkyapSZMmymnIRAcAAAAAAAAAOJa13qVLFxcMP+ecczRs2DDt27dP3bp1c8s7d+6sMmXKpJaEee655/TYY4/pww8/VMWKFbV161Y3v0CBAm7KCQiiAwAAAAAAAECgBGWtYiHXX3+9tm/f7gLjFhBv2LChyzD3Dja6fv16BQcfafPrr7+upKQkXXPNNT7bGTRokB5//HHlBATRAQAAAAAAAACp7rrrLjdlZPr06T6v165dq5yOIDoAAAAAAAAABIhHQYFuAo4jaz0rAAAAAAAAAABAFkIQHQAAAAAAAAAAPwiiAwAAAAAAAADgBzXRAQAAAAAAACBAPEHkOWd1nCEAAAAAAAAAAPwgEx0AAAAAAAAAAoVM9CyPMwQAAAAAAAAAgB8E0QEAAAAAAAAA8INyLgAAAAAAAAAQIJ6goEA3AcdBJjoAAAAAAAAAAH6QiQ4AAAAAAAAAAeJhYNEsjyA6AAAAAPwrJDxvoJuADOQL8wS6CchAvjJhgW4C/DiwKTHQTUAGwqJDA90EACeJIDoAAAAAAAAABAo10bM8nhUAAAAAAAAAAMAPgugAAAAAAAAAAPhBEB0AAAAAAAAAgOwQRB8yZIjOPvtsFSxYUCVKlFCHDh20YsUKn3USEhLUu3dvFS1aVAUKFFCnTp0UExMTsDYDAAAAAAAAwMnyBAWf1gn/XZY6ijNmzHAB8rlz5+rHH3/UwYMHdckll2jfvn2p69x777365ptvNGHCBLf+5s2b1bFjx4C2GwAAAAAAAACQM4UoC5k0aZLP63HjxrmM9AULFuiCCy5QXFycRo8erQ8//FCtW7d264wdO1a1atVygfdmzZoFqOUAAAAAAAAAcOI8Cgp0E5CdMtHTs6C5KVKkiPtpwXTLTm/Tpk3qOjVr1lT58uU1Z86cgLUTAAAAAAAAAJAzZalM9LQOHz6svn376txzz1XdunXdvK1btyo0NFSFChXyWTc6Ototy0hiYqKbvOLj409zywEAAAAAAAAgc6hbnvVl2TNktdGXLl2q8ePH/+fBSqOiolKncuXKnbI2AgAAAAAAAABytiwZRL/rrrv07bffatq0aSpbtmzq/JIlSyopKUmxsbE+68fExLhlGRk4cKArC+OdNmzYcNrbDwAAAAAAAADIGbJUEN3j8bgA+hdffKGpU6eqUqVKPssbN26svHnzasqUKanzVqxYofXr16t58+YZbjMsLEyRkZE+EwAAAAAAAABkCUFBp3dCzqqJbiVcPvzwQ3311VcqWLBgap1zK8OSL18+97N79+7q16+fG2zUAuJ9+vRxAfRmzZoFuvkAAAAAAAAAgBwmSwXRX3/9dffzwgsv9Jk/duxYde3a1f3+8ssvKzg4WJ06dXIDhrZt21YjR44MSHsBAAAAAAAA4L/wZK1iIcjqQXQr53I84eHhGjFihJsAAAAAAAAAADiduM0BAAAAAAAAAIAfBNEBAAAAAAAAAMgO5VwAAAAAAAAAIDfxBAUFugk4DjLRAQAAAAAAAADwg0x0AAAAAAAAAAgQTxB5zlkdZwgAAAAAAAAAAD/IRAcAAAAAAACAAPGImuhZHZnoAAAAAAAAAAD4QRAdAAAAAAAAAAA/CKIDAAAAAAAAAOAHNdEBAAAAAAAAIEA8QeQ5Z3WcIQAAAAAAAAAA/CATHQAAAAAAAAACxBMUFOgm4DjIRAcAAAAAAAAAwA+C6AAAAAAAAAAA+EE5FwAAAAAAAAAIEI8o55LVkYkOAAAAAAAAAIAfZKIDAAAAAAAAQIB4gshzzuo4QwAAAAAAAAAA+EEmOgAAAAAAAAAECDXRsz4y0QEAAAAAAAAA8IMgOgAAAAAAAAAAfhBEBwAAAAAAAADAD2qiAwAAAAAAAECAeILIc87qOEMAAAAAAAAAAPhBJjoAAAAAAAAABIhHQYFuAo6DTHQAAAAAR5k+fbqCgoIUGxt72j6jYsWKGjZs2DHXsTZ8+eWXx1yna9eu6tChwyluHQAAAJCCTHQAAAAgi7Mg8TvvvON+z5s3r8qXL6/OnTvroYceUkjIsbv048aNU9++fU9bMHzv3r0qXLiw3nvvPd1www2p8+33jz/+WGvWrHHBci/7/dZbb9WTTz6p+fPnK3/+/Jn+rLVr16pSpUpatGiRGjZsqJws6uL2KtL+GuWJKqzE9au1fdxIJaz6O8N1yz76vCJq1z9q/t5F87T5+cfc79U/mpThe7d/8LZ2f/upz7ygkLwq9+QwhVesonUDeilx3epTsk85hcfj0YyvXtOimROUsD9e5ao2UrtbBqlo9JG/8/R+m/aRFkz/SLE7N7nXxUtX1QXte6tqvQvc69gdG/XagDYZvrdTz2Gq3eRS7d+7W1++db9iNq7QgX2xyl+wqKo3bK3WHfspLF8B5XZlbr1e5f/XVaHFi2nvsr/196Ah2rNkaYbrBoWEqEKv7irV6UqFliyh/avXatWzw7RrxuwM169w522q8mBfbRjzvv554nmfZZGN6qtK/7sV2bCePMnJ2vvXCi3u3FOHExOV2xU5r4kq39ddUY3qKrx0Cf3WqZdivp5y7PdccI5qvzhABWpXU8KGLVo55HVtfPcLn3Uq3HmTKvfrrrCSxRX/+3L92fdJxc3/I3V5cFioar0wQKWvu8z9vv2HWVraZ7CStu08bfuaHZXtcoMq9PR+Z1ZoxaNDFL/Y/3em4l23q9Q1Vyrs3+/Mymde1s7pvt8ZW1b1oXtVtNV5ypMvXAfWbtCf/R7Rnt//csuLt7tIZW+5TgXr11Zo4UKae8k17jsDZAcE0QEAAIBs4NJLL9XYsWOVmJio7777Tr1793YB9YEDBwa0XQUKFFCTJk1c5nraILq9LleunPtpNwGMBdTXrVun1q1bu9fFixcPWLuzsgLNLlDxW3to2+jXlLByhQq166AyA57W2vtuV3J83FHrbx76hAt8e+UpGKkKz47U3rkzU+et6nmjz3vyN2yi6Dvu1d55s47aXrGbuit5906pYpVTvm85wS+T3ta8Ke/pqtueVaFiZTX9q1f04cu3684nJyokb1iG74ksHK3Wne5TkegKFoXXkl++1MfDe6vHY5+rRJlqiixSSve+dOR8mYU/f6I5k0arat3z3eugoGBVb3iRLrz6HkUULKLd29br+w+e0MT3BqnjHS8pNytxRVtVe+R+rXjkScUt+kPlbrtFDd8dpbmtr9TBnbuOWr9y/7tUssPlWj5gsPatWqOiLc9VvTde1oJOnbX3z+U+6xasX0elb7pWe5YdHeizAHrDca9r3eujXdDegugFalWXx3P4tO5vdpEnf4Tif1+hDeM+U5NPRxx3/XwVy+rsr9/Q+jfHa3Hn/iraurnqvfGUErZs144fU/6tKnVtO9V6YaCW9h6k2HlLVOnuLmo6cbSm17lUSdtTznXtlx5SiXYttfCGvjoYv0d1X3lUjScM15yWvv8O5mbR7duq+mP3a9nAJxW/6HeVu/1WnfX+G/qlZfsMvzNVHuijkh0v17IHBmv/yjUq0rKF6r89TL9ddav2/PudCYmKVJMv3tXuX+Zr8a13KmnnbkVUKq9DcfGp28kTkU+x8xcp5tvJqv3C4DO6z1kdA4tmfZwhAAAAIBsICwtTyZIlVaFCBd15551q06aNvv76axdU79+/v8qUKeOyups2beoC18Z+duvWTXFxca4sik2PP/64W2aZ4xb8LliwoNvuTTfdpG3btp1U21q1apX6mWbZsmVKSEhw7Uw73363/WjevHmG5Vz++ecfXXDBBQoPD1ft2rX1448/+nyOZaGbs846y+3LhRde6LP8xRdfVKlSpVS0aFF3k+HgwYPKjgpf3lHxUycpfsaPStq03gXTPUmJirywbYbrH963V8lxu1OniHpn6XBigvb8+nPqOmmX21SgcXMd+GuJDm7b6rOtiAZNFFG/kctQR8ZZ6PN+elfnX9FTNc66SNHlauiq257TnthtWr7oJ7/vs4zxavVbumz1oiUrqXXHexUaFqFNq5e45cHBeVQgqrjPtHzhT6p9djuFhqc8rZEvf5SatLpRpSvWU6GiZVSpVnM1ufBGbfhngXK7crd31ubxn2nLhK+0f+VqrXj4SR0+cEClr8u4zFPJq6/Q2hFva+f0WUrYsEmb3v9EO6fNUvnbO/usZwG/OsOGaPmAx30CgV7VHn1AG8Z9qHWvj9G+f1a57NxtE3+QJyl7/ttzqm2f/LP+HjRMMV/5/26kVeGOG3RgzUYte+A57V2+WutGfqCtn01WpXtSbsSaSn27acPoT7Txnc+1d9kq/dFrkJL3J6hc105ueUhkAZXr1kl/3f+sdk6fq/iFf2rJ7Q+pSItGKtS0wWnb1+ym/B2dtemjz7Tlky+175/VWj7gCSUnHFDpG67OcP1SHa/Q2tfe1s6pM3Vg/UZteu8T93v5/3VJXadir9uUsHmr/rrvUZfRbt+tXT/P0YF1G1PX2frZt1ozbJR2zZx7RvYT/82IESNcX836ZU2bNtW8efOOuf6ECRNUs2ZNt369evVc0kdOQhAdAAAAyIby5cunpKQk3XXXXZozZ47Gjx+v33//Xddee63LWreAdIsWLVyQOjIyUlu2bHGTBdyNBZitpMqSJUtczXErleLNGD+ZIPqKFSvc9s20adN03nnnuYzztEF0m28BdLu4Su/w4cPq2LGjQkND9euvv2rUqFF68MEHfdbxXrz99NNP7rM+//xzn22vWrXK/bTSN1bGxqZsJ0+IwitV076li47M83jc63zVamVqE1EXttWeOTPk8VNOIk9UIeU/6xzFTZt81PzoHvdo68gXKEXhh5Vd2Ru3XZVqtUidFx5RUGUq19emVYsztY3Dh5O1dN5EHUzar7JVMi5LtGXtUsVsWKaG56UEBjOyJzZGyxf+qPLVz1ZuFpQ3RAXr1tKu2WmCch6Pds3+VZGNMg6aBoeG6nBiks+8wwkJijr7LJ951Z98WDumzdTu2b8etY28RYso6qz6Lmu38Wfv6rz503TWx2MU1cR3G8i8Qs0aasfUOT7ztv84S4WbpXxPgvLmVVSjOtox5ZcjK3g82jH1FxVqlnLcrXSMnd+06+xbsVr7121K3U5u574z9Wr7BrLtOzNzrgr5+c4EhYUe9f+F5IREFUrznSl28YWubEu9US/pgsXT1XTSJyp9k/9/w3D0wKKnczpRVpKvX79+GjRokBYuXKgGDRqobdu2fhMufvnlF914443q3r27K7tnY9XYtHRpxiWCsiOC6AAAAEA2y4S1IPLkyZNVv359V+LFMn/OP/98ValSxQXJLYBt8y0gHRUV5bK2LdvcJiu/Ym677Ta1a9dOlStXVrNmzfTqq6/q+++/dzXOT9S5557rPittBnzLli3VuHFj7dixw5VxMTNmzHAB94zYPi1fvlzvvvuuu1CzjPRnnnnGZx1v+RfLNLd9KVKkSOoyq8s+fPhwlwF1xRVX6PLLL9eUKceuvZsV5YmMVFCePEqO861hb6/zFCp83PeHV6musPKVFD8t4xroJvKCNjqccEB75/vWsi3Z8z7FTflOiav/+Q97kLNZAN3kjyzqMz9/ZDHtjdtxzPdaLfNnezfSMz3r67v3Hte1vYa72ugZWTTrMxUrVcXVW0/v8zf7aUivhhrWv6VC8xVQ+65PKTfLW7iwgkNClLTDt9510vadrtZzRnb+/IsrX5GvYnmrk6PC5zVT8UsvUliaElMl2l+qgnVqafXzr2S4jXzly7qflfre6bLgF3e9U3uWLtNZH7yVsl2csLDoYkqM8f0e2eu8UQUVHB6m0GIp5zoxXW3zxJidCiuZcq7tZ3Jikg7F7fFZx+qhh0VTQszkLfLvd2Z7uu/Mjp0KLeH7b5vXrhm/qHyPzspXKeU7U+T85irR7iKFlSju850oc+t12r9mnRbd3FMb3/tENZ4Y4OqoI/sZOnSoevTo4Z5otKcDR40apYiICI0ZMybD9V955RWXxHH//ferVq1aLlGjUaNGrm+WUxBEBwAAALKBb7/91gXALYvbgt/XX3+9rrnmGiUnJ6t69epumXeyYLVlZR/LggUL1L59ezdIqZV0saC3Wb9+/Qm3zS6qzj777NQgun2+lVqxQU8tG97mr1692m3bXxDdSsBYDfXSpUunzvOWfcmMOnXqKE+ePKmvrazL8crTWCmc+Ph4nykpOXvXMo688FIlrl/jdxBSE9WyreJnT5UnTbmbQm2vUnB4hHZ9+fEZamn28Mfcb1zg2zsdTj500tsqVrKS7njsC3V/6GM1vvAGfT1mgLZvXnnUegeTErT012/9ZqFfcv1A9Xj0c11310jt3r5BP3z87Em3Kbf6Z/BzOrB2vZpN+UoX/rNA1Qc/5ErBeGuZh5WKVvXHHtSffQcclbGeKigls3PTh5+691ot9ZVPvuBKupTyU0YGyK5WPPas9q9ZrxbTv1brNQtV46mB2vzxke+MCQoOdjeSVj33qquTvumDT7Xpw89cYB3H5wkKOq3TibAnHa2faKUDvYKDg91re/oxIzY/7frGMtf9rZ8dMbAoAAAAkA1Y8Pn11193Gd8WaLYAtT1qa4Fju9BJG0A23ozzjOzbt89d2Nj0wQcfuAxvC3Dba7twOtn2WXv+/PNPHThwwGUfGQvOW4kVK9diwXarqXk62CCraVn2vX3msQwZMkSDB/sObHZXnSrqUy/j7OAzITk+3g1OaKVV0rLXybG7j/neoLAwFWzRUjsnvOt3nXw16ii0TDltftU3yz+iTgOFV6+pau994zO//NOvuYB7zOu5c+DK6g1bqUyl+qmvDx1K+X7si9+pgoVKpM7fF79DJcsdu9xOnpDQlIFF7SZPxbquZIvVV7+88xM+6y1bMNkF0uu3yDgQ662ZXqxUZVcn/Z3nbtb5V9zp057c5ODu3Tp86JBCi/lm0IYWL6qk7Rk/HXBw1279cUdfBYeFKqRQISXFbFOVAX1drWdjpS7s/Wd/e+SmkmXuFjqnscp0vkHTqzdR0raUbVst9LT2rVqt8NKlTsOe5nyWdW7Z6GnZ64Nxe3Q4IVFJO1LOdVi6bOmw6KJK3JpyPuxnHjuvUQV9stEtwzoxJuVJktzO/v7dd6Z4uu9MsaIuY9/fe36//R73nclbuJASt25T1Yfu9al3nrht+9Hfh39Wq8RlvoFVBIYlDtiUlo1TY1N69hShJWlER0f7zI+OjnZPDWZk69atGa5v83MKMtEBAACAbMAGDa1atarLHLcAuneATbvIsYxrW5Z2snInxoLutk5adgG0c+dOPfvss64MjJVAOdlBRdMG0a0O+4cffujKyXiD+laWxTLTLRvdW/YlI/bo74YNG1Lrqpu5c30HHvO+N/3+nKyBAwe6QVfTTv+rXVkBlXxICWv+UUTdNLV7g4IUUaehDvyz7JhvLdj0AgWF5FX8rKl+14lsdakSVv+tpPUpJXa8tr3zutY92EvrBqRMm5571M3f8uoz2vnxO8qtwsILuMC3d7LyKxbAXrPsSGZd4oG92rT6d5XxU9/cH8vg9Abl01o881MXvM9fsEimtmGSM9hObuE5eMhlvxZukeYGnZVoadFU8QtTBm71x7LMLYAeFBKi4pe20Y4fU56msRrov17SUfMvuy51il+yVDFfTnS/6/Dh/7N3H+BRVF8fx09ooYbeO4g0EWkCNlRQmiJiQ1CKAqKiIlaQLoKKKIoFFUFQEUVFUf+iiAVEqjSVjjSV3kJv2ff5Xd5dd0M2hJJMkv1+nmchOzs7e3dmN7lz5txz7dDf/9jhzVsse7kyIdvMXra0Hfrnv99jSLrdsxdZ/qvrhSwr0PAS2zX7xHwDGj2zZ8GfVuDqoFFKUVGW/6r6tnv2iXkk9iz4w+KOHAlZJ8f5ZS176eKB7UQ69535fanluyz0O5Pvsnq2OwnfGQXQ9Z1RcHzbdz8GHtszf9FJ34cc5crYob/5PqQGShxQib/gm5Yh6chEBwAAANIolXFp27attWvXzoYNG+aC6tu2bXO1wFUvXXXBy5Qp4+qca5lqjSsbXIF4BaRHjBhhXbt2dZM+qXbl2VDZFmUzaZtPPfVUYPnFF1/sAvRffPGFC1qHoyHAej/t27e3oUOHutIqwduRQoUKuQlVp0yZYiVKlHClbXQSeKYSysDKktH7PKNdX39mRe591NUmP7R6heVpeqNliM5qsT9/5x7XY8d27bDtE8aEPC/mqsa2b/6vFrcvtBawX4Zs2S1X3ctt2wdvnfTYsR3bTppkUY5u2WTHdiZe6zuSaITDxY3a2S9fj7R8hctYngLF7afPX3FZ4JVq/Jdt+d4LHaxSzUZW5+o73P1pnw6z86pdYbnzFbXDh/a7ci3rVsy1tt1HhWx/55b1tn7VfLv9oZOP0aolP7uM92Jlq1mW6OyuFMz3E4e6uul5Cpyozx2pNo4aZ5WHDXKBwdhFv1vJu++wjNmz2b8TP3ePVx72jB3essX+ev4Vdz/momoWXbiQ7V263KKLFHZ1zVWKYsObJ75Tx/cfsP0rQ0vtHD940I7u3hOyfP1bY61c93tt37KVtm/pcityUwvLXr6s/XHvIyn6/lOrjDmyW47z/qsPn71sCYupXsmO7NxjhzZusoqDeljW4oVtcccTk0ivf2uClb6vrVUa8phtfPdTK3BVPSt6S1Ob1+KewDbWDh9j1Uc/Z7t/+8P2zFtiZR5sb5lyZLONY09MNH0sdp9tHPOpVR76pB3duceO7t1nFwzvbbtmLbDdcxIPEEeSDW+NsyovPWOxi/+0PYt+t1Kd7rSM2bLZpo9OfGeqDn/GDm3eamuePTEnQEyNahZdpJDt+3OF+79cj3tVv8XWv/Hf36ENb4+z2p+/Z2W6dbItX33rvmfF295ky574b7RNpjwxbqSGtiE5yp8IumvUSPwa7Ti31AfTRKHBEspClwIFCrhkiC1btoQs37JlSyBJIz4tP5310yKC6AAAAEAapglEBw0aZI888oj9888/7sRHE4Vqck1/cFuBctVQV/Z5v379rH///vbuu+9ar1693ISiKr3ywgsvWIsWZz75lwLael1/PfTgEzQtVyZ6uHro/lqbkyZNsrvvvtsF3hX8V9s0SZWfMvC1bODAgda3b1+XRe+vw56e7Js93bbH5Lb8N9/pJhM9vP4v++fZ3oHJRjMVKOQmmA2WuWgJy17pAvt7cPgLFbnqNzCLMts7M/3ts5R0SZNOdvTwQft6XF87dCDWSlWoZW26v22ZMv8XjNi1bYMd2Ptf+Z0De3faF+884SYmjc6WywqXqOgC6OWqXhqy7UUzP7WYvEWsfJXQ5ZI5S7QtnDHR1UBX5nlMviJWqca1dmmzzhbptn71rZsssdzD97nJRPcuW2GL299rR7fvdI9nLV7ELKh2s0pSlHu0m2UtVcIFzHf8+IstfbiXHYtN+AJUOH+Pft+VDqnQ5zHLnCe37Vu2whbdcU+gLEyky13rAqs/7b3A/Sov9HL/bxz3mS25u6dFFy1o2Ur+V/rm4Lq/XcC8yrCeVuaBdnbo7832+z29bfvUXwLrbJr4jWUpmM/O7/egRRcpaLGLl9nc6zqFlCFZ+shgqxwXZzU/fsUd6+3f/WJ/PBBauivSbfnyW8ucP5+Ve/R+i9Z3ZulyW3hn18AEvVmLFzVf3H9/ZzJER1v5xx5wk4ceP3DAdvwww/54KPQ7o4D8kk7d7bye3a1s9652aOM/tqL/87Z50teBdQpec5VVfem/yZCrvfGC+/+vF1+3v158wyKZz3d6dctPV7jSLQlRooUmh1cCRsuWJ0qLxcXFufvdunVL8Dmax0aPd+/ePbBs6tSppzW/TWoX5Yvf+0rnlNGibBUN1YyJiUmR19SkTq3v6mplmt9nMYUiO0MAqUvs1r9t3dev24TRI618+fKWGvH9QWrF9wdIW98fL/qASJtW3v5f0B6px9z7vvG6CUhAsTure90EhHHwn9Dax0gdogsnXNIM3mv09++evv7qNaFl1s6188qXPa31Nc+NRge++eabLrlh+PDh9vHHH7uSgKp1rlGQxYsXD5SE+fXXX908OCoVqJGQEyZMsMGDB9uCBQvsggsusPSATHQAAAAAAAAA8IgvlU1bqRGMKhGokX+aHPSiiy5y5fT8k4dqQnqNIvTTyEfNi9O7d2830rFChQr2+eefp5sAuhBEBwAAAJCopk2b2owZMxJ8TCdKugEAACD9UOmWcOVbfkqgnN4tt9zibukVQXQAAAAAiRo1apQdPHgwwcfy5cuX4u0BAAAAUhJBdAAAAACJUs1LAAAAIFIRRAcAAAAAAAAAj/gsyusm4BRSV9V6AAAAAAAAAABSETLRAQAAAAAAAMAjZKKnfgTRAQAAAAAAAMAjBNFTP8q5AAAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAY1EQHAAAAAAAAAI9QEz31IxMdAAAAAAAAAIAwyEQHAAAAAAAAAI/4fGSip3ZkogMAAAAAAAAAEAZBdAAAAAAAAAAAwiCIDgAAAAAAAABAGNREBwAAAAAAAACP+Iya6KkdmegAAAAAAAAAAIRBJjoAAAAAAAAAeIRM9NSPTHQAAAAAAAAAAMIgEx0AAAAAAAAAPEImeupHJjoAAAAAAAAAAGEQRAcAAAAAAAAAIAzKuQAAAAAAAACAR3w+yrmkdmSiAwAAAAAAAAAQBpnoAAAAAAAAAOCROCYWTfXIRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQAAAAAAAACAMKiJDgAAAAAAAAAe8VETPdUjEx0AAAAAAAAAgDDIRAcAAAAAAAAAj/h8ZKKndmSiAwAAAAAAAAAQBpnoAAAAAAAAAOARaqKnfmSiAwAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAY1EQHAAAAAAAAAI/4fNRET+0IogMAAAAAAACAR5hYNPWjnAsAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAApIWa6NOnT7ehQ4fab7/9Zps2bbJJkyZZy5YtA4/7fD7r16+fvf3227Z792679NJL7Y033rAKFSp42m4AAAAAQPI5eJhasanR8YNxXjcBYUQXzuJ1E5CAw1uOeN0EpFJMLJr6papM9P3791v16tXttddeS/Dx559/3l555RUbOXKkzZkzx3LkyGGNGze2Q4cOpXhbAQAAAAAAAADpX6rKRG/atKm7JURZ6MOHD7fevXvbDTfc4JaNGzfOChcubJ9//rm1bt06hVsLAAAAAAAAAGeHcT2pX6rKRE/M2rVrbfPmzdaoUaPAsty5c1vdunVt1qxZYZ93+PBhi42NDbkBAAAAAAAAAJCugugKoIsyz4Ppvv+xhAwZMsQF2/23kiVLJntbAQAAAAAAACCpNdGT84YICqKfqZ49e9qePXsCt40bN3rdJAAAAAAAAABAGpFmguhFihRx/2/ZsiVkue77H0tIdHS0xcTEhNwAAAAAAAAAAEhXQfSyZcu6YPm0adMCy1TffM6cOVa/fn1P2wYAAAAAAAAASJ8yWSqyb98+W716dchkoosWLbJ8+fJZqVKlrHv37jZo0CCrUKGCC6r36dPHihUrZi1btvS03QAAAAAAAABwJnxG3fLULlUF0efPn29XXXVV4H6PHj3c/+3bt7d3333XHn/8cdu/f7916dLFdu/ebZdddplNmTLFsmbN6mGrAQAAAAAAAADpVaoKol955ZXm8/nCPh4VFWUDBw50NwAAAAAAAABI63w+MtFTuzRTEx0AAAAAAAAAgJRGEB0AAAAAAAAAgLRQzgUAAAAAAAAAIgkTi6Z+ZKIDAAAAAAAAABAGmegAAAAAAAAA4JE4n9ctwKmQiQ4AAAAAAAAAOC07d+60tm3bWkxMjOXJk8fuvvtu27dvX6LrP/DAA1axYkXLli2blSpVyh588EHbs2ePpXZkogMAAAAAAACAR9JqTfS2bdvapk2bbOrUqXb06FHr2LGjdenSxcaPH5/g+v/++6+7vfDCC1alShVbv369de3a1S375JNPLDUjiA4AAAAAAAAASLJly5bZlClTbN68eVa7dm23bMSIEdasWTMXJC9WrNhJz7ngggvs008/DdwvX768PfPMM3bHHXfYsWPHLFOm1BuqppwLAAAAAAAAAKRThw8fttjY2JCblp2NWbNmuRIu/gC6NGrUyDJkyGBz5sxJ8nZUykXlYFJzAF0IogMAAAAAAABAOjVkyBDLnTt3yE3LzsbmzZutUKFCIcsUCM+XL597LCm2b99uTz/9tCsBk9oRRAcAAAAAAAAAj/h8Ucl669mzp8v4Dr5pWUKefPJJi4qKSvS2fPnys37PyoZv3ry5q43ev39/S+1Sd548AAAAAAAAAOCMRUdHu1tSPPLII9ahQ4dE1ylXrpwVKVLEtm7dGrJcdc137tzpHkvM3r17rUmTJpYrVy6bNGmSZc6c2VI7gugAAAAAAAAA4BGfz1KNggULutup1K9f33bv3m2//fab1apVyy374YcfLC4uzurWrZtoBnrjxo1dUH/y5MmWNWtWSwso5wIAAAAAAAAASLLKlSu7bPLOnTvb3LlzbebMmdatWzdr3bq1FStWzK3zzz//WKVKldzj/gD6tddea/v377d33nnH3Vf9dN2OHz9uqRmZ6AAAAAAAAACA0/LBBx+4wHnDhg0tQ4YMdtNNN9krr7wSePzo0aO2YsUKO3DggLu/YMECmzNnjvv5vPPOC9nW2rVrrUyZMpZaEUQHAAAAAAAAAJyWfPny2fjx48M+rqC4L6hWzZVXXhlyPy0hiA4AAAAAAAAAHomzKK+bgFMgiA4AAAAAAAAAHvH5CKKndkwsCgAAAAAAAABAGGSiAwAAAAAAAIBH0miZ8IhCJjoAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEFNdAAAAAAAAADwiM+ivG4CToFMdAAAAAAAAAAAwiATHQAAAAAAAAA8EufzugU4FTLRAQAAAAAAAAAIgyA6AAAAAAAAAABhEEQHAAAAAAAAACAMaqIDAAAAAAAAgEd8viivm4BTIBMdAAAAQKoUFRVln3/+udfNAAAAQIQjEx0AAADASbZt22Z9+/a1r7/+2rZs2WJ58+a16tWru2WXXnppirRh06ZN7nUjUe5rrrd8199sGXPntcMb/rJt775uh9asTHDdEn2et+xVLjxp+b6Fc+3f5/u6n8//cEqCz932wSjb9dUnlqlAYcvfqo1lr1rdMubJa8d27bC9v/xgOyZNMDt+7By/u7TN5/PZzK9fsd9nTrTDB2OtWLmadk3r/pa3UJkkPX/Od2/ZjC+GWc2r2tnVNz/llh3cv9t+/XqErVv2i+3dtcmy5cxn513YyC67/iGLzpYr8NwX7q940vau6/iiVard3CJdiY6trcx9HS1LoQK2b+kKW95rsMUu/CPBdaMyZbKyD3ayorfdYNFFCtmBNets1dMv2o4fZ4asp8cq9Olh+a++zDJmy2oH1m2wpQ/1sdjFf7rHq748yIq1bhnynO0//GILb++ajO80bSnRvrWV7trBshQsYPuWrbAVfYZY7KLwx6VMt05W9OYWJ47LX+ts9eCXbMdPJx+X83o9bPmvOnFcDq7baH/26G17lyx1jxds2tBK3HGr5bqwimXJm8dmX3uz+0zghHyX1bZyj9xtuWteYFmLFbL5N91nWyZPS/w5V1xsVV540nJWqWCHNm6y1UPesL/HTQpZp/S9baxcj7stukhBi12y3P7s/rTtmfd74PEM0Vms8tAnrditzdzP2777xf54YIAd2boj2d5rWuLzed0CnApBdAAAAAAnuemmm+zIkSM2duxYK1eunAukT5s2zXbsSLmT3SJFilgkylnvCit4Z2fb+s4IO7R6heVp2tKKP/mMrXukkx2P3XPS+v++ONCiMmUO3M+YK8ZKP/u67Zs9I7BsTdfbQ56T46LaVrjLw7Zv7i/ufpbiJZT6b1tGvWJHt/xrWUqWscKdH7Ko6Ky2/YNRyfp+05q5U9+2hT+9Z03vfNZyFyhhv3z5sn3y6t3Wsc//LFPm6ESfu2n9Elv8ywQrWDw0GL5vz1Z3u7LVE5a/yHkWu/Mfmzqhv1t2Q+dXQtZtcscQK1vl8sD96OwxFukK39DEKg543JY9PtD2LFhipbrcaTUnvGkzL73ejm7fedL65Z98wIrefJ0te6S/7V+91vJfealVH/OyzbvuDtv7x3K3TqbcMVbny/ds58y5trBNVzuyY5dlL1vaju6ODdnW9mkz7M+Hegfuxx05mgLvOG0ofH1jO7/vY7as59MWu3CJlex0p9V4/037tcH1dnRHAsfl8QesSKvmtuzxAXZg9VrL1+ASu3DUcJt/w52298//jkvtSeNs16/zbNGd9/7/cSllx/b8d1wyZs9mu+cttC1ffWtVhg5I0fecFmTMkd1il6ywje9+arU/ee2U62crU8LqTH7TNrw1wRa1e9TyX13fqr05yA5t2mbbp574G1L0lqZWeWhP++P+frZ77mIr+2B7q/v1O/ZT1SZ2ZNuJY11lWC8r1LSBLWjd3Y7G7rULXu5jtSa+arMahP59ilRxRjmX1I5yLgAAAABC7N6922bMmGHPPfecXXXVVVa6dGm7+OKLrWfPntaiRYtAqZU33njDmjZtatmyZXOB9k8++SRkOxs3brRbb73V8uTJY/ny5bMbbrjB1q1bF7LO6NGjrWrVqhYdHW1Fixa1bt26hS3ncqrt/fTTT66dOXLkcOsoY379+vWW1uRt3spif5hisT9PtSP/bHDBdN+RwxZzZeME14/bv8+O79kVuGWvVsPiDh+yvXOmB9YJfly3nLXq28Gli+3o1s3u8QOLf7Mtb75oB35f4Jbt/2227frqU8tZJ2VGHaSlLPQFP46zek3utfOqN7KCxStZs/bPu2D36sXfJ/rcI4f22//efcwatxlk0dlzhzxWsNj5dkPnEVa+2tWWp2ApK1Wxvl12fXf7648fLC7eSAAFzXPkLhi4nSpwHwlKd21nf7//if074XPbv/IvW/bYQDt+8JAVv/3GBNcvdsv1tvblt10A/OD6v+3vsR+5n0vf2yGwTpkH7rJD/262pd37uIz2Qxv+sZ0//2oH128M2VbckSN2ZNuOwC04mBvpSnVpZ/98+Klt+vhz27/qL1v+5EA7fuigFWud8HEp2uo6WzdilO34YYYd3PC3/fPex+7nUve0D6xT5r7/Py6P9HEZ7Yc2/mM7p89yx9Fv86df2drhI23njNkp8j7Tmm3fTreV/Ybbli8S/53lV7pLazu49m9b9vhztm/5X7b+9Q9s86ffWtmH/vu+lO3e0Ta+87H9PfYz27dsjf1+Xz87fuCQlexwk3s8U0xOK9nxJlv62LO246fZFrvgT1vcqZflu6Sm5albPdneK3AuEUQHAAAAECJnzpzupgD24cOHw67Xp08fl7G+ePFia9u2rbVu3dqWLVvmHjt69Kg1btzYcuXK5QLyM2fOdNts0qSJy3AXBeHvv/9+69Kli/3+++82efJkO++88xJ8rVNt79ixY9ayZUtr0KCBLVmyxGbNmuW2q0B8mpIxk2UtW8H2/7Hwv2U+n7ufrULlJG0i95WNbe+sn80X5thlzJ3HctS42Pb8+G2i28mQPYfF7d97eu1P5/bs+Nv2x26z0hUvCSxTuZWiZarbv2uDjlkCvv94oJWr2sBKV/rvuYk5fHCfZcma0zJkDB1APu2jAfba43Xt/edvtt9//cQF9iNZVOZMrmxHSMDU57Od02db7toJB+eismSxuMMnfg/5xR06bHkurhG4X/Daq1zZlgvfHmYN/vzZ6n4/0YrfcSIgGCzvJXXc45fM/NIqPdfHMucNvUAS0celWgLHZcZsy1MzzHGJ1nEJ/b11XMelzn/HpcA1V7qyLdVGDrMrFv1kdad8bMXanHxccO7kqXeRbf9hVsiybVN/sbz1LnI/R2XObLlrVrXt0379bwWfz7b/8KvlqXfi2Kl0TIYsWULW2b/iLzuw/p/AdoDUjnIuAAAAAEJkypTJ3n33XevcubONHDnSatas6YLTCpJfeOF/tbdvueUW69Spk/v56aeftqlTp9qIESPs9ddft48++sji4uJs1KhRgUD2mDFjXIa4MsavvfZaGzRokD3yyCP20EMPBbZZp06dBNt0qu3Vrl3b9uzZY9ddd52VL1/ePV65ctKCzqlJxpgYi8qY0Y7v2R2yXPezFCt5yudnLX++RZcqa1veeinsOjFXNLK4Qwdt37zQOsPBMhcuankat7DtH7x9mu8gfVMAXbLH5A9Znj1Xftsfuz3s85bP/9q2blxqdzweOlojnAP7dtqsb163Cy+9LWT5pdc9aKXOr2eZsmRz9dO//2iAHT18wNVXj1RZ8uW1DJkyuSzwYLqfo0LZBJ+jGtul72lnu2fNtwPrNlq+y+tZoWYN3XfPL1vpElai/W224c1xLms9psYFVnFQT1euZdPHk90623+caVv/970d3PCPZStT0s7r+ZDV+HCkzW3W1iwuziJZ5nDHZfsOy3FewsdFmf6lOrezXXN+c3XO811Wzwo1bWhRGYKOS6kSVvzOW23D2+Ns3Yi3LeaiC6ziwCfNp+PyyYnjgnMrunABO7wl9Peb7mfOncsyZI12F450rA/Hq21+eMsOy1Gx3IltFClgxw8fsWN7Qi/Mqh56dOGCKfAugLNHEB0AAADASZRh3rx5c5f1PXv2bPvmm2/s+eefd0HsDh1ODOGuX79+yHN0f9GiRe5nZaevXr3aZY4HO3TokK1Zs8a2bt1q//77rzVs2DBJ7TnV9hSUV7uUrX7NNddYo0aNXOkXlYgJR1n28TPtjxyPsywZ0+6A3Zgrm9jhDWvDTkIquRs0ttiZP5jvaMK1mzPlze9qsKum+p4fEp6QNFIsnTvZpn7YL3C/1X1vnvY2Yndtsh8+ecZueWB0kkqvKAP9s9fvsfxFy9slzf8rbyT1m94f+LlwySp29MhBm/f9OxEdRD8TK3o/a1WG9XfZ48rkV8BWpWCKBZV/icqQwWWirx78sruvWuk5K1WwEu1vDQTRt3z+TWD9fctW2b6lK+2yuVMs36V1bOeMOR68s7RtRd9nrfLz/e2SnyafOC7rN9q/H30RMnmrOy5L/rQ1z52YK0C10nNUPM8F1gmiIy2L8EFFaQJBdAAAAAAJypo1qwtI66bSLco679evXyCInph9+/ZZrVq17IMPPjjpsYIFC1qGDKcXqD7V9vyZ6Q8++KBNmTLFZa737t3bZcfXq1cvwW0OGTLEBgwInXSuW9Xy9kC1hEvKpITjsbHmO37clVwJpvvHd+9K9LlR0dGW65IGtmPiuLDrZKtY1bIUL2n/vjI4wccz5s1nJfo8Z4dWLrUto04EDyPZeRde7Uq1+B0/dqIEyIHYHZYzd6HA8gN7d1ihEpUS3MaWDX+6x8c92yqwzBd33P5ePc8W/vyBPfzy75bh/zNtjxzaZ5++1smyZM1hLbu8Zhkz/jdhbELUttnfvG7Hjh6xTJmzWCQ6snOXxR07ZlkKho4O0P3DWxMeHXB0xy5b3OEhyxCdxTLnzWOHN2+183o/HFJX+/CWbbZ/5ZqQ56neeqHmjcK2Rc8/sn2nZStTyizCg+hHwx2XAvld9nG45yzpFO+49Ip3XLZus/2r4h2XVX9ZoWbhjwvOjrLOlY0eTPeP7tnryiAd2X7iWEcXCj3W0YXz2+HNJ76D+j9jdBbLlDtXSDZ6lkL53XcNSAvSbooFAAAAgBRVpUoV279/f+C+MtSD6b6/hIpKwKxatcoKFSrk6pwH33Lnzu0yysuUKWPTpk1L0mufant+NWrUcBOg/vrrr3bBBRfY+PHjw25T66kETPDtnionhp575vgxO7R2lWW/IKhGbFSUZa96kR1cdaLefDi56l5hUZkyW+wvP4RdJ+aqJnbor5V2ZMPaBDPQS/Z53g6tXW2bR75IWpwCPFlzWt5CpQO3/EXPsxwxBW39ilkhmeOb1i22YmX/q9scrHTFetb+qS+tXc/PA7fCpS6wKrWvdz/7A+jazsRX77YMmTLbjV3fSFLW+ra/l1nW7LkjNoAuvqPHXI3sfJfX/W9hVJS7v2f+4kSfq7roCtRGZcpkha+7xrZ9+2Pgsd3zFlr28mVC1s9evrQd+ntT2O1FFy1smfPlsSNbCQq64/L7Ust3Wbzjclk9270g6cdFwfFt3/13XPbMX2TZy4UelxzlyiR6XHB2ds9eZPmvDr0YXaDhJbZr9omRZxrVtGfBn1bg6qDRaVFRlv+q+rZ79om5IvYs+MNNwhu8To7zy1r20sUD24l0Pl9Ust5w9giiAwAAAAixY8cOu/rqq+399993k3SuXbvWJk6c6Mq53HDDDYH1tGz06NG2cuVKl6E+d+5c69btRPkJTTRaoEABt75Kwmgbql2uTPG//z6RVdi/f38bNmyYvfLKKy5AvmDBAldTPSGn2p7uKyiuCUXXr19v3333ndtmYnXRo6OjLSYmJuSWGkq57Pr6M8t9VVNXu1x10Avd9YBliM5qsT9/5x4vcu+jVqB1x5OeF3NVY9s3/1eL25fwZKAZsmW3XHUvtz0/TkkwgF6iz/N2dPs22/7+25YxJrdlzJ3X3fAf1eNX6ZTZU96w1Uum2bZ/Vtg34x53WennVf8vE/bjl9vbgp/eDwTiCxY7P+SWOTq7Zc2Zx/3sD6B/8updrr55k7bP2JGD+2z/nm3uFhd33K2z5vcfbMnMibbt35W2a+t6WzR9vM3+9k2r0eAOi3TrR46z4m1vtqK3trAcFcpZ5ef7WMbs2VyJFqk6YrCd91T3wPoxNau54KzqnuepW9NqTBhpliHK1r06OrDOhjffs9y1LrQyD3V29c6LtGpmJe682TaO+dA9ru1X6PuIWydryWIuaH/R2FfswNoNrlY6zDa8Nc6K3X6TFb25hWU/r6xVGtLHMmbLZps++v/jMvwZK//kf3NixNSoZgWbNnR1z/NcXNNqvP+G6rfY+jfG/LfNt8dZ7poXWplundxxKdyymRVve5P9PXZCYJ1MeWIsZ5WKluP8E/Nj5Chfxt2PnxUfqTLmyG4x1Su5m2QvW8L9nLXkifJnFQf1sOpjngusv/6tCZa9bEmrNOQxV+O8dNc2VvSWprb25XcD66wdPsZK3n2rFb+zpeWsVM4ueK2/ZcqRzTaO/cw9fix2n20c86lVHvqk5W9Q12JqVrXqowbbrlkLbPecxC+qAKkF5VwAAAAAhMiZM6fVrVvXXnrpJVdv/OjRo1ayZEk30WivXr0C66kUyoQJE+y+++5ztcc//PBDl60u2bNnt+nTp9sTTzxhrVq1sr1791rx4sVdDXQFq6V9+/auprle59FHH3VB8ptvvjnBNp1qewcPHrTly5fb2LFj3UUAtef++++3e+65x9KafbOn2/aY3Jb/5jstY568dnj9X/bPs70Dk41mKlDI1QsOlrloCcte6QL7e3DPsNvNVb+BWZTZ3pk/nfRY9mo1LUvR4u5W7vXQkjkrb29yzt5benDxNZ1dLfLvxve1wwdjrXj5WnbT/aNCMsd3b99oB/cnXn4n2JaNf7psdhnV/5qQxzoPnGa585ewDBky2aLpH9iPnw4285nlKVjKrmr1pF146a0W6bZ8McWy5M9r5R/vZtGFCrg62Qtu7xqY1DJr8aIhE31mjI628k8+4ILox/cfsO3TZtif9/e0Y7H/XYCKXfSHLe7Y3c576iEr16Ormzx0RZ/nbPOnX7vHfXFxlrPK+VbsthaWKSbGZU7v+PlXW/Pcq26SS5ht+fJby5w/n5V79H6LLljA9i5dbgvv7OomF/UfF1/cf7/LMui4PPaAC6IfP3DAdvwww/54qFfocVn8py3p1N3O69ndynbvaoc2/mMr+j9vmyedOC5S8JqrrOpLgwL3q73xgvv/rxdft79efMMiXe5aF1j9ae8F7ld54cTf9Y3jPrMld/e06KIFLdv/B9Tl4Lq/bV6Le6zKsJ5W5oF2dujvzfb7Pb1t+9RfAutsmviNZSmYz87v96BFFylosYuX2dzrOoWU7ln6yGCrHBdnNT9+xZXs2f7dL/bHA6El1YDULMoXv/eVzsXGxrrhnhqq6e+8JzedeLS+q6uVaX6fxRQqkSKvCSRF7Na/bd3Xr9uE0SOtfPkTV+lTG74/SK34/gBp6/vjRR8wEjJyJ02aZC1b/jfhW3pAwDh1+vnuyJ7gNLUq0/YCr5uAMKIyU74hNTq85cS8Ckh9mh9d4enrT55/YtRRcmlR+0TpMJw5MtEBAAAAAAAAwCNBgzKQSnlf8A8AAAAAAAAAgFSKTHQAAAAApy3CqkICAAAkG7pVqR+Z6AAAAAAAAAAAhEEmOgAAAAAAAAB4xGdMBpzakYkOAAAAAAAAAEAYBNEBAAAAAAAAAAiDci4AAAAAAAAA4JE4JhZN9chEBwAAAAAAAAAgDDLRAQAAAAAAAMAjPjLRUz0y0QEAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDGqiAwAAAAAAAIBHqIme+pGJDgAAAAAAAABAGGSiAwAAAAAAAIBH4nxRXjcBp0AmOgAAAAAAAAAAYZCJDgAAAAAAAAAeoSZ66kcmOgAAAAAAAAAAYRBEBwAAAAAAAAAgDILoAAAAAAAAAACEQU10AAAAAAAAAPAINdFTP4LoAAAAAAAAAOCROILoqR7lXAAAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDGqiAwAAAAAAAIBHfL4or5uAUyATHQAAAAAAAACAMMhEBwAAAAAAAACP+HxetwCnQiY6AAAAAAAAAABhEEQHAAAAAAAAAI/E+ZL3llx27txpbdu2tZiYGMuTJ4/dfffdtm/fviQ91+fzWdOmTS0qKso+//xzS+0IogMAAAAAAAAATkvbtm3tzz//tKlTp9pXX31l06dPty5duiTpucOHD3cB9LSCmugAAAAAAAAAgCRbtmyZTZkyxebNm2e1a9d2y0aMGGHNmjWzF154wYoVKxb2uYsWLbJhw4bZ/PnzrWjRopYWkIkOAAAAAAAAAEiyWbNmuRIu/gC6NGrUyDJkyGBz5swJ+7wDBw5YmzZt7LXXXrMiRYpYWkEmOgAAAAAAAAB4xJeMdcvl8OHD7hYsOjra3c7U5s2brVChQiHLMmXKZPny5XOPhfPwww/bJZdcYjfccIOlJWSiAwAAAAAAAEA6NWTIEMudO3fITcsS8uSTT7pa5Yndli9ffkbtmDx5sv3www+uHnpaQyY6AAAAAAAAAKTTTPSePXtajx49QpaFy0J/5JFHrEOHDolur1y5cq4Uy9atW0OWHzt2zHbu3Bm2TIsC6GvWrHFlYILddNNNdvnll9tPP/1kqRVBdAAAAAAAAABIp06ndEvBggXd7VTq169vu3fvtt9++81q1aoVCJLHxcVZ3bp1w2a5d+rUKWRZtWrV7KWXXrLrr7/eUjOC6AAAAAAAAACAJKtcubI1adLEOnfubCNHjrSjR49at27drHXr1lasWDG3zj///GMNGza0cePG2cUXX+wy1BPKUi9VqpSVLVvWUrM0WxNdM7iWKVPGsmbN6q5uzJ071+smAQAAAAAAAMBpifMl7y25fPDBB1apUiUXKG/WrJlddtll9tZbbwUeV2B9xYoVduDAAUvr0mQm+kcffeTq+OgqhwLoKkbfuHFjd1DizwoLAAAAAAAAADi38uXLZ+PHjw/7uBKgfaco+H6qx1OLNJmJ/uKLL7qhAh07drQqVaq4YHr27Nlt9OjRXjcNAAAAAAAAAJJMceTkvCECM9GPHDniCtZrVlm/DBkyWKNGjWzWrFknrX/48GF389uzZ4/7PzY2NoVabLZ37147fuyY7d60zo4eSvvDF5B+7N+11X029RlNye/E6eD7g9SK7w+Qtr4//tdJK5kuAAAAAFKPKF8aO5P4999/rXjx4vbrr7+6WWD9Hn/8cfv5559tzpw5Iev379/fBgwY4EFLAQAAkNps3LjRSpQo4XUzgGSnRKIhQ4a45KPo6Givm4P/x3FJvTg2qRPHJfXi2CDSpPsgevxM9Li4ONu5c6flz5/foqKiUrTtOHeZZCVLlnQnwTExMV43B0hT+P4AZ4bvTtqnLq8y34sVK+ZGMQKR8Hsrd+7cbiQuv7dSD45L6sWxSZ04LqkXxwaRJs2VcylQoIBlzJjRtmzZErJc94sUKXLS+roaFv+KWJ48eZK9nUh++iXNL2rgzPD9Ac4M3520TSd6AAAAAHC60lwaTpYsWaxWrVo2bdq0kOxy3Q/OTAcAAAAAAAAAIOIy0aVHjx7Wvn17q127tl188cU2fPhw279/v3Xs2NHrpgEAAAAAAAAA0pE0GUS/7bbbbNu2bda3b1/bvHmzXXTRRTZlyhQrXLiw101DClB5nn79+jFxBXAG+P4AZ4bvDoC0ht9bqRPHJfXi2KROHJfUi2ODSJPmJhYFAAAAAAAAACClpLma6AAAAAAAAAAApBSC6AAAAAAAAAAAhEEQHQAAAAAAAACAMAiiAwAAAAAAAAAQBkF0pCmvvfaalSlTxrJmzWp169a1uXPnet0kIE2YPn26XX/99VasWDGLioqyzz//3OsmAWnCkCFDrE6dOpYrVy4rVKiQtWzZ0lasWOF1swAAAAAAKShTSr4YcDY++ugj69Gjh40cOdIF0IcPH26NGzd2wQwFNgCEt3//fqtevbrddddd1qpVK6+bA6QZP//8s91///0ukH7s2DHr1auXXXvttbZ06VLLkSOH180DgJPs3r3bJZps3brV4uLiQh5r166dZ+0CAKR9GzdudElZJUqUcPf192b8+PFWpUoV69Kli9fNA5JVlM/n8yXvSwDnhgLnCmK8+uqr7r5OCkqWLGkPPPCAPfnkk143D0gz1OmZNGmSy6gFcHq2bdvmLtwquH7FFVd43RwACPHll19a27Ztbd++fRYTE+P+5vvp5507d3ravki1ZcsWe/TRR23atGnu4kb8U/Djx4971jaccOTIkQQvPJUqVcqzNgGp0eWXX+6C5Xfeeadt3rzZKlasaFWrVrVVq1a52Ezfvn29biKQbMhER5rp1Pz222/Ws2fPwLIMGTJYo0aNbNasWZ62DQAQOfbs2eP+z5cvn9dNAYCTPPLII27U2eDBgy179uxeNwf/r0OHDrZhwwbr06ePFS1aNOTiBrylwJ++M7/++mvIcl3o0HHiAod3tO/ffffdwMWn+Bc4fvjhB8/aFsn++OMPu/jii93PH3/8sV1wwQU2c+ZM++6776xr164E0ZGuEURHmrB9+3b3R7Rw4cIhy3V/+fLlnrULABA5dPLWvXt3u/TSS90JAwCkNv/88489+OCDBNBTmV9++cVmzJhhF110kddNQQIXODJlymRfffUVFzhSmYceesgF0Zs3b+76XRyb1OHo0aMWHR3tfv7++++tRYsW7udKlSrZpk2bPG4dkLwIogMAACSBaqMr+0bBEABIjTRf0Pz5861cuXJeNwVBVIKSKqqp06JFi9yIZwUAkbpMmDDBZTo3a9bM66YgiEq3aJ46XdyYOnWqPf300275v//+a/nz5/e6eUCyIoiONKFAgQKWMWNGV08wmO4XKVLEs3YBACJDt27dXJba9OnTAxMpAUBqMHny5MDPCmo89thjbvLjatWqWebMmUPW9WcMImUNHz7czeH05ptvWpkyZbxuDoJoMkSNekbqkyVLFjvvvPO8bgbiee655+zGG2+0oUOHWvv27a169eqBv0X+Mi9AesXEokhTE4vql/KIESMCw+o10YsCG0wsCiQdE4sCSadukiZJ0nfmp59+sgoVKnjdJAAIoXmCkoL6zikrb968IeUn9u/fb8eOHXOlduJf3GDC15QVGxsb+FkjN3r37u3mEUjowpMm6IU3hg0bZn/99Ze9+uqrlHJJZfS3RN8j/Z7zW7dunfv9VqhQIU/bBiQnMtGRZvTo0cNd6axdu7YLpiujQ53Rjh07et00INXbt2+frV69OnB/7dq1bviqJkfUxSgA4Uu4jB8/3r744gvLlSuXbd682S3PnTu3ZcuWzevmAcBJk+0hddC5ClKnPHnyhARldcG8YcOGIeswsag3WrVqddLkod98840rIRL/Asdnn32Wwq1D8PdDZZDWrFljbdq0cX1kjRxgPg6kd2SiI03RVWgNG1IQQxPzvPLKKy5DHUDilEF71VVXnbRcF6Y0YQ+AhIXLfBozZoybjAwAUpNx48bZbbfdFpj0ze/IkSOuvnC7du08axuQWvz8889JXrdBgwbJ2haEOp0EOfXFkPLWr19vTZo0sQ0bNtjhw4dt5cqVbh4OTQSr+6qXDqRXBNEBAAAAIB3QHEKbNm06aTj9jh073DKyar3BcUm9FAjUxK/xL5orTLJx40ZGbALxqCSoMs/feecdN5Ho4sWLXRBdSVudO3e2VatWed1EINkkrYAeAAAAACBV85egiO/vv/92ZajgjXB5a8raVAkEeKds2bK2bdu2k5arTr0eg3euvvpq271790nLVYtbj8EbM2bMcPMIxP/dpUmT//nnH8/aBaQEaqIDAAAAQBpWo0YNFzzXTbWdM2X67zRPWc6aC0XD75GyVHpSdFxGjRplOXPmDDku06dPt0qVKnnYQoS78KT5hLJmzepJm3CCMptViiq+Q4cOuUAuvJuHI6HRM7pYqwx1ID0jiA4AAAAAaXx4vWjS8MaNG4cEa5UtqAzBm266ycMWRqaXXnopEKhVnWCVdYl/XKgf7I0ePXq4/xVA79OnT8iEiAoQzpkzx83BhZS3ZMmSwM9Lly4NTOruPzZTpkyx4sWLe9Q6XHvttW7i5LfeeivwHdJFp379+lmzZs28bh6QrKiJDgAAAADpwNixY93EomTQpi6a3P2zzz6zvHnzet0UBB0T/ySj9evXDylN4b/A8eijj1qFChU8bGVkypAhQ2B0QELhqmzZstmIESPsrrvu8qB1UMa5Ltbq2Kj+ee3atd3/BQoUcKNr4s/9AKQnBNEBAAAAAEDE6dixo7388ssWExPjdVPw/9avX+8CtJqscu7cuVawYMGQCxwK0gaP6kDKO3bsmE2YMMGNGlAWes2aNa1t27buAgeQnhFEBwAAAIB0QJnOCdV31jJlp5933nnWoUMHFzhEypQLSYoXX3wxWdsCAADOHjXRAQAAACAd6Nu3rz3zzDPWtGlTu/jii90yZXKqhvD999/vJhi99957XRZh586dvW5uurZw4cKQ+wsWLHD7vWLFiu7+ypUrXTZtrVq1PGohpFWrVgkuD77w1KZNm8BxQ/KaPHlyktdt0aJFsrYFocdFf1cyZ858ymPEcUF6RiY6EKHUMZw0aVJgIqrk8M4779hHH31k3333XbK9BlK/n376ydWd3LVrl+XJkyfVbS81uvLKK91kVpq052z079/fPv/8czfRXFKpBmj37t3d7Vxo3bq11alTxx555JFzsj0AQHiaPPSaa66xrl27hix/8803XX/s008/dbWENSHc77//7lk7I40yzdV/Uc16f1109WM0IuDyyy/nb6SHNDJDfSX1Kf0XNHTBY/fu3W4CxcWLF9u6dets2rRpdumll3rd3Iiohx7/nDU4ZBU80kaTjCLljosmeFUpnfjHKJiOD8cF6Vn4Tz+AZLFt2zaXAVSqVCmLjo62IkWKuIk5Zs6cmaLt2LRpk7uanFwOHTrkZrrXLN3BJk6caJUqVXKZHdWqVbP//e9/Z/U6uhBQr149y507t+XKlcuqVq162sE//bFX5zm10TFS5sv555/vOitnE9Q8cuSIm+zl2WefTfDxp59+2goXLmxHjx61c+2SSy5x70XHKK3RCe8NN9xgRYsWtRw5crjA9gcffJDsx0CTj+n+2dKEWDrpOx3z5s2zLl262LnSu3dvlxW5Z8+ec7ZNAEDCvv32W2vUqNFJyxs2bOgek2bNmtlff/3lQesi17Bhw2zIkCEhE4vq50GDBrnH4B2di6m/re+ELjLptmbNGrvjjjusfPnytmzZMmvfvr098cQTXjc1IsTFxQVuuvCnvvc333zjLmropnNH1d/W6BqkHB0P/4Shwcco/o0AOtI7guiABxlCGt6pTBQN49RwKGWd7tixI8U7jAriJ5dPPvnETdATnLHx66+/2u23325333232wfKgtftjz/+OKPXUHDwtttuc/tUQ5V/++03F6xLjkCwFw4fPuwm0lEQsnr16me1LU3Co5OBMWPGnPSYsjveffdda9eunRuid7pOtb/12vq8JVSj1SsKaCeFPrMXXnihO6HSxDnKGNN++uqrr5L1GOTLl89dFDrb9ufMmdPy589/Wu3UZy579ux2rlxwwQXuJPT9998/Z9sEACRMfz++/PLLk5ZrmR6T/fv3J/o3BudebGysS6SJT8v27t3rSZvw38hZJaoEZ9fq5wceeMCN2FD/tVu3bmd8voIzp+OiSV+VcKbzSt30s0Z2PPjgg143D0AkUjkXAClj165dGovm++mnnxJdT+u8/vrrviZNmviyZs3qK1u2rG/ixIkh62zYsMF3yy23+HLnzu3Lmzevr0WLFr61a9eGrPPOO+/4qlSp4suSJYuvSJEivvvvvz/kNSZNmpTk7f3444++OnXq+LJnz+7WueSSS3zr1q0L+x6aN2/ue/TRR0OW3XrrrW55sLp16/ruuece35l46KGHfFdeeeUp1/v88899NWrU8EVHR7t92b9/f9/Ro0fdY6VLl3b7wn/TfT8dg3LlyvkyZ87sO//8833jxo0LPBYXF+fr16+fr2TJkm7/Fi1a1PfAAw8EHte6tWrV8uXMmdNXuHBh3+233+7bsmWL70w1aNDAvd+zsWTJEvceZ8yYEbJcx1bLly1b5u6//fbbvkqVKrn9VbFiRd9rr70WWFefCa07YcIE3xVXXOHWGTNmjPssXHfddb48efK4z4g+d19//XXI9vX59/vll1/ce8qWLZt7zrXXXuvbuXOne+zQoUNuXxYsWNBt/9JLL/XNnTv3pPYGb++TTz4JfNZ1DF944YWQ96hlAwcO9N15552+XLly+dq3b3/G+7FZs2a+jh07JusxiH+8w7X/rbfe8pUoUcLtx5YtW/qGDRvmvp9++oxWr149cF/Pu+GGG3xDhw51vxPy5cvnu++++3xHjhwJea2XXnopcF/7uUuXLr5ChQq541G1alXfl19+6R7bvn27r3Xr1r5ixYq5NlxwwQW+8ePHn/S+BwwY4LvsssvOaJ8BAJJOfxcyZszou/76631PP/20u6lPlylTJt+oUaPcOvobqT4ZUo7+fpcpU8b36aef+jZu3Ohu6ruoX9quXTuvmxfR1A/94osvTlquZXpMVq5cGfgZKUfnwb///vtJyxcvXuwegzd0nvbyyy+ftHzEiBFnfb4KpHZkogMpSFmhuql0iLKME6NSKMqwVh2+tm3burrCGk7oz/zVVXhlEc2YMcOVgtF2mzRpEshQfeONN9wEUirLoJqXynjXxDgJOdX2NAmSMsYbNGjgsnFnzZrltptYZvEvv/xitWvXDlmm58UfYqzX1XI/1fD076dwNz9lN//555+JZobo/Si796GHHrKlS5e6mqDK+FXGur90hSg7WCVH/PdVJkbPUY1Kbf+ee+5xWcg//vije1yZyS+99JLb3qpVq9wxVXma4H2qchw6fnpMtRRVc/FcU2mRU+0v7QNR+1SbevTo0SHb0HtXyRWV2dH2/JOS6fM2ePBg91nUyIlgTz75pNs/WkfHUJ81faanT5/uPm/PPfdcyLEKpvrcGlZepUoVd+z1Wbn++usDw/8ef/xxt3/1mqpJqc+tXmPnzp0Jbk8jEG699Vb3HdFrqw642qzjHOyFF15wGf0aBaHHz5TKkviz+ZLjGIQTv/36nur7ouOgfaoauP7PdWL0GdYwZf2vfaz9FH9f+WlYpso+6bWUSa7vkMrRaCI0f9km1Q/9+uuv3fdEvxfuvPNONzIkmCa307JT/d4DAJwdTRb6888/uxJkKg2mm0YXaZlGAor6NpqzBiln5MiR7u+pyoaULl3a3fSz+tqvv/66182LaOq36Luhfr36pLrpZy3TOYTo+6OSkUhZ6jP36NHDtmzZElimnx977LHAxMlIeTpPS2h+AJ3LaDQ6kK55HcUHIo2yTpTpravnyubu2bOnu5oeTF/Nrl27npSxfe+997qf33vvPZchrGxov8OHD7tM0G+//dbdV2boU089FbYdwZnop9rejh07kpRBHz/jfvr06SHLldEdP0tVWc7KcPVTtvaqVasSvfnt27fPZQX7M8hvu+02l32vTGa/hg0b+gYPHhzymnq/yhxPaF/46dh07tw5ZJky9fV6ooxfZacHZ/AmZt68ee519u7d6zuXmeixsbGn3F8HDhwIrD9y5EiXHe9vh56vzHF/dlr58uVPOkbKYqtfv35IJvrw4cND1qlWrZrL8E9I/MxxZeUruzwhOqb6nHzwwQeBZdrH+jw///zzCW6vTZs2vmuuuSZkO4899pjLTPfT50OZ2mfro48+ctnuf/zxR7Idg3CZ6PHbr897/JEdbdu2PWUmurZ17NixkM+1tpVQJrq+/xkyZPCtWLEiyftIbXrkkUdClul3nI5ZYqNXAABI79TP0d9E3fQzvKc+0aBBg9wIvaioKHfTz88880ygv7R+/Xo3egApS31ojXJU31vnKLrpZ42KDD4nRMrSyNSE9r+W6TEgPcvkdRAfiDTKLm/evLnLTJ09e7abKOX555+3UaNGhWQq169fP+R5uq9sU1F28+rVq0+qZ6msUGWYbt261f7991+X7ZsUp9qeZqZX25QNrGxXZZMr81eTLSbk4MGD7n9NHnq6NGGJf9KSU1GWlTJg/Vm12p/KrlLtPGU4K/NK701ZtMEZusp41ns7cOBA2NrPyrCOP7mirrhr23LLLbfY8OHDrVy5ci6LSJN0KZs6U6ZMgexoZUTr9Xft2uUyemXDhg0uA/tc0TE7nbqmqkn/8MMP28cff2x33XWXy0RT3UfVlleNVO1LZd4ok81PIxHiTwoaf5SB6hJqwlxNAKTPhz7nqiWeEH2Otf8SotdXFn9wdoNqhCvbxD8SIz4t1+SfwfR8HR8da3/WdPw2ny59xjQa4e233w7JRjqXxyAx8du/YsUKu/HGG0OWaT+dql672u7fJ6LvsTL4wx2rEiVKuMltE6L9q9EKei///POPG7mibPP436ts2bK5//WdAwAkL/U51K9Tf9Df//C74oorPGsXTvRdw/WP4A31iZ566il3U+16Ue3tYKVKlfKodZFNo1E1Cnrq1Km2fPlyt6xy5cruXCM1zbUUicdFE7tqroBgimvo3BhIzwiiAx5QcFnBaN1UlqFTp07Wr1+/JJf72LdvnyuhoDISCU0KGDwxzrnYnr/chAKl+oOpoJ8mu1SHpl69eic9RxMZqmOj4HEwlV8JHo4nuq/lfipPcaoJCNXeYJq0UDftR3WAFfBTGxXw1LoDBgywVq1anbSdMwny+5UsWdIFMb///nu3H+677z4bOnSoG+6pQKIuOOimfap9qOC57id1Qsik0vZVaiYx6tBcfvnlgZOCm2++2R1PBXD1vy6IqOSI/9goSFy3bt2QbQQHXf0ngcG07/X+dFFDgfQhQ4bYsGHD3KRM8fkDqiktfptPh46rLpJoeK9/aG9yHIPkan+w+JPH6rsaP8iS1GOlz7wuLOmChUrVqI2aBCr+59xfisf/+wQAkDyUUKAyIevXr3eTVsf/fe8vnYbkp76nyqXp735C/dBgKrsD78UPnsN7+r2lhC7dkDqoxI4C6JoY+eqrr3bLpk2b5s79dE4ApGcE0YFUQJnJqpsd/yQoOFin+zVq1HA/16xZ0wWJlbEdrrNXpkwZ98fsqquuOuXrJ2V7otfXrWfPni4zfvz48QkG0bNkyeLek+onB3d49By1SUE2PwWgg7PuBw4caI8++qidKb1vZcEqq9r/3hTsDlcP3h9UjH9SqSwHZbC3b98+sEz3g7PIFWBUYFU31QRXPWtl9OqkdceOHa52tILtMn/+fEsOLVq0OCngHV/x4sVD7ivT/Morr3QZy7/++qsLhErhwoWtWLFi9tdff7k6/KdL71UXQXTTZ0TB+ISC6MrA0udAFzfi08UQfX60r1UvVJSZrlr1wZ+bhI5VMN3XxZT4wf8z8dNPP9l1113n6rzHH51wro/B6ahYsWKghr9f/PtnS8fq77//tpUrVyaYja79rFEAd9xxh7uvYLzWjT/aQvXSldFeoECBc9o+AEAo/Q3WyCVd1NZII7I1vaNRfP79H39EH1IPJZHo3EN9U43eiH/xiQtPKeuVV15x/W0lO+nnxCjBCylPSUAaeaqR3poDzH8OrjnZ4icbAekNQXQgBSmwqjIW+sOj4JRKQCi4qnIu8ctRTJw40Z0EXXbZZS7TVZPyvfPOO+4xBTgVdNNzFHRWcEoZR8pi0aSMuq9SIjqRUmBcExnt3bvXBbwSCmqeansKYr711lsuWKggq4LSmkwzsT+SykrWxDzBgU9NgKjJSXWVWiVtJkyY4N6/tn0m5Vz0HlUeQqVUFHDdvXu362ypvcryF02SqQCohmEq+1dZ+iqxoqDeoEGDQi44qARIdHS05c2b101Yo+xgXTTQkMEvv/zS7Q9lnosyi9SpVvBUQXtlzyuornYokKhA8IgRI9wx0Gv5Oxiny1/CRxn1utqv+/6LFGdSSsQ/lFsXFXT8FPjXJDB+CmyrQ6qTPZWpUQdJx0ijCpR1EI6Osz5nCrRqXZU+UXA7IQqwK2tZ2fvaP3o/Wl/fDQVZVRZG+1+Td+q46fuh4+yfEC0+lfDRxEPaxyqJolI+r7766jmZqEvt0udHn12VqNm8ebNbrjb7Jxc918cgqfRd1nZefPFFdyHnhx9+cBnv5zJgou+rXkPvXa+jNms4rV5Dn48KFSq4CYR0IUDfG62jk9H4QXSVryKDCACSn/pn+r2cWPIAUoZGmiX0M1IXjQTWiFGNDubCk/c06lPnpgqi6+dwdJwIontH52u66fxU58CnGlELpBteF2UHIokmvHzyySd9NWvWdJP/aTJBTejZu3fvkIkH9dXUhJuaLFGTc5QpU8ZNaBhs06ZNvnbt2vkKFCjg1ilXrpybCHPPnj0hExhq+5qoURNpPvDAA2En00xse5s3b3aTGmobmsxFEw/27dvXd/z48bDv9c8//3QTk+7evTtk+ccff+wm5PRPCvP111+f8f784YcffDfddJOvZMmSbnuFCxf2NWnSxDdjxoyQ9aZMmeImClV7YmJifBdffLHvrbfeCjw+efJk33nnnefLlCmTe29+r7/+utsP2n9q87hx4wKPad9psldtL0eOHL569er5vv/++8DjmpxTx037UpNy6jW0zxcuXBhYR6+liR8To+fEvwW38UxpslVtyz9ZZzBN6nnRRRe5fapJcK+44grfZ599FjKxaPD7kG7durnJfvR+CxYs6Lvzzjt927dvT3AiUNEktTomWj9Pnjy+xo0bBx4/ePCg+6z6P4uahHTu3LmB5ya0PU3Yq4lEdaxKlSrlGzp0aEj7gifLDKYJPDXZZjh6LKFjoOcl5zFIaGLRhNqvz3Hx4sXdZ1vfUf/EWIlNLHrDDTeEbEOvE/x+4r+WJhbu2LGjL3/+/G5CZE3w9NVXXwUe0/Y0UaomCNbvMv0eCX4NHU/9vps1a9YZ7ikAQFJdddVVvm+++cbrZuD/qQ81YMAA3/Tp05M8GT1Slvow8fu1ABJ39OhR39SpU128ITY21i37559/fHv37vW6aUCyitI/XgfyAZx8ZX3SpEnWsmVLS8uUWaxyKso8RihlVqt2vDKHVdYD3tDIAWXfJ3U+gtROE8IqU1yZ36mFhnbq95lq5QMAkpd+32reGo3o0qiv+PNgMKllylL/QvOqaISnsjVVwlClFlVHWJOBn4uyczg7Gj2nUb/+spnwnuYKa9iwoSsbqtGfSF30+0wjUjWCQ6OWVcpRE4pq5K7ujxw50usmAsnm9GYfBIDToBIxDO0KXyZEJ1AE0L3z559/urI1abl23wsvvODKE61evdqVDxo7dmxIHf/UQAEctQ0AkPxUfmvZsmWudKBKnV100UUuOOj/HylL5f/Wrl3r5pvR30LNkaIyhiohqDJoKoV3JvOi4NzRRIhPPvmkrVu3zuum4P+NGzfOnSPlyZPHBdNVglNlSY8dO+Z10/D/JVpVdlYlPHVx0O/GG290JVKB9IxMdCAVSi+Z6ACSl+r2a+JTzXmgDBDVSVedeQBA5GYIJsY/aTe8paD66NGjXWBd894weaV3dDFDI0QVoNU8R/FHb+zcudOztkUyXdRQ0pH6uRrNoaznHDlyuAtQGs2hm0ZzIOVpNLXmQ6pYsaKbF0oJPToP0THTyA59n4D0iolFgVSIa1sAkuLjjz/2ugkAgFSEIHnqvsChgKD/tnXrVleuQpN4w9tMdKQ+ZcqUsY4dO7qbaESHP6g+ePBge+qpp8hM90hcXFyCF/7+/vtvF1QH0jMy0QEAAAAgnXjvvfdcTVoFnWbNmuUC6woUli1b1m644QavmxdxZSn8QfPt27fbJZdc4oLmuqncTvysZwDhL0D98MMPLivdfwFK95HybrvtNlcSU6WpFDRfsmSJFSxY0P19KVWqlI0ZM8brJgLJhiA6AAAAAKQDmsy5b9++1r17d3vmmWfsjz/+cMPsVZtb82YokxMpJ0OGDC6opJrbd999N0HzVGrNmjUu8Kf/X375ZStUqJB988037thVrVrV6+ZFHJVuUdDcn3kefAHqiiuucGVcmHDUO8o4b9y4sRs9v2rVKlcfXf8XKFDApk+f7r4/QHpFEB0AAAAA0gHVo1WpA82rE1yrVsF0TdSnYBRSjkYE+Gs6Hzp0yC677DJ3HBQMrFWrlpsHCd7SsdEEr6q1rQCgJubVd+bZZ5+1+fPn2yeffOJ1EyP24tO9997rap/ru5IxY0avm4UgKqUzYcIEl4WueR1q1qxpbdu2DZloFEiPCKIDAAAAQDqgAMby5ctdCZfgILqyBC+88EI7ePCg102MWEuXLnUBW395l8OHDwcmSXz00Ue9bl7Eql+/vt1yyy3Wo0ePkO/M3LlzrVWrVi7rFimrdevW7rui74guPOmik74nNWrU4MITAE8RRAcAAACAdJKJPmTIEFebNjggOGLECFeuYsGCBV43EWb277//2uuvv+6Oi7I4E5qkDykjZ86c9vvvv7s5A4K/M+vWrbNKlSq5EQTwhi4I+ku6BI/mUFBdIzo0rwC8sWLFCvf7SyM3pHLlytatWzf3nQHSs0xeNwAAAAAAcPaUTXv//fe7YJNypZRN++GHH7rA+qhRo7xuXsTSRIj+YKBuK1eudPXRNTmiMmzhnTx58timTZtcED3YwoULrXjx4p61C+YCsrqprIt/NMf48eNt0KBB1rNnT1dSBCnv008/daMFVAtdIzlk9uzZVq1aNVfi5aabbvK6iUCyIRMdAAAAANKJDz74wPr37+8mSZRixYrZgAED3MSWSFn33XefC5orazNTpkxuQkRl0CpwrokSs2bN6nUTI55K6cyZM8cmTpxo559/vhutsWXLFmvXrp279evXz+smRjQdC//FJ12I0gWo6OhodwGKiZK9Ub58eVf/fODAgSHL9V15//33A397gPSIIDoAAAAApDMHDhxwpUIKFSrkfl60aJEL3CLlKEtTAXPdVP88e/bsXjcJ8Rw5csSN3nj33XddWR1d7ND/bdq0cSWQdB8p6+OPPw4EznUBSqM2VLrF/13S7zEF0uEN/R7ThKLnnXdeyHLNvVG9enX39wZIrwiiAwAAAEA6pjrPNWvWpPZ2Kte8eXNXdqdo0aJeNyXibNy40dVG14UnTWBZoUIFr5sUsbJkyeJKhQRfgNKkyUgdmjVr5ibj7dixY8hyXXRSOZdvv/3Ws7YByY3LqgAAAAAAeGz69Ol28OBBr5sRkUqWLOlufsq0VSBXmepIWbt27bIcOXIkef1nn33Wunbt6urbI/m1aNHCnnjiCfvtt99cWR1/TXSVRFLpsMmTJ4esC6QnZKIDAAAAQDpGJnrakCtXLnesypUr53VTIh7fmbQjJibGlavie5MyMmTIkKT1oqKi+P4g3SETHQAAAAAAAGkOeaEpKy4uzusmAJ4hiA4AAAAAaVjw8PmErF27NsXaAgBIf2bNmmU7duyw6667LrBs3Lhx1q9fP9u/f7+1bNnSRowYwaSvSNcIogMAAABAGqbgRVKG1gM4ITY2NtHH9+7dm2JtAdKCgQMH2pVXXhkIomsi3rvvvts6dOhglStXtqFDh1qxYsWsf//+XjcVSDYE0QEAAAAgDWN4PXB6NAllYheWVCKEC0/Af1R3/umnnw7cnzBhgtWtW9fefvttd18T8yornSA60jOC6AAAAAAQQZo3b26jRo2yokWLet0UBOnVq5fly5fP62ZEhB9//NHrJgBpyq5du6xw4cKB+z///LM1bdo0cL9OnTq2ceNGj1oHpAyC6AAAAAAQQaZPn24HDx70uhkRXac+WIsWLdz/PXv2TMYWIViDBg1Oa/1nn33Wunbt6jLYkbpcfvnlli1bNq+bke4pgK75NZRxfuTIEVuwYIENGDAgpARS5syZPW0jkNwIogMAAAAAkMJ16kUlQ44fP57s7cHZGTx4sN16660E0T2uVR8sJibG/f+///0vGVsEv2bNmtmTTz5pzz33nH3++eeWPXt2dwHDb8mSJVa+fHlP2wgkN4LoAAAAAACcQ9SpT19UIx3e16oPrlfPxaeUpXrorVq1cqM4cubMaWPHjrUsWbIEHh89erRde+21nrYRSG4E0QEAAAAAAOApatWnXgUKFHClwPbs2eOC6BkzZgx5fOLEiW45kJ4RRAcAAAAAIBnt37/fTcS3YcMGV0842IMPPuhZu4C0XKseKS937twJLmdSZEQCgugAAAAAACSThQsXunrCBw4ccMF0BZu2b9/uagoXKlSIIDqQCH1vErr4dOGFF3rWJgCRiSA6AAAAAESQXr16kTWYgh5++GG7/vrrbeTIkS6Lc/bs2ZY5c2a744477KGHHvK6eUCqtG3bNuvYsaN98803CT5OTXQAKY0gOgAAAACkUZMnT07yui1atHD/9+zZMxlbhPgWLVpkb775pmXIkMHVET58+LCVK1fOnn/+eWvfvr2brA+p2+WXX27ZsmXzuhkRpXv37rZ7926bM2eOXXnllTZp0iTbsmWLDRo0yIYNG+Z18wBEIILoAAAAAJBGtWzZMknrRUVFkbnpEWWdK4AuKt+i0hSVK1d2WekbN270unkRJzY2NsnrxsTEuP//97//JWOLkJAffvjBvvjiC6tdu7b7/pQuXdquueYad0yGDBlizZs397qJACIMQXQAAAAASKPi4uK8bgJOoUaNGjZv3jyrUKGCmzixb9++rib6e++9ZxdccIHXzYs4efLkcReVEuPz+bjw5DHNH6CLTpI3b15X3uX888+3atWq2YIFC7xuHoAIRBAdAAAAAIBkMnjwYNu7d6/7+ZlnnrF27drZvffe64Lqo0eP9rp5EefHH3/0uglIgooVK9qKFSusTJkyVr16dVcSST9rboGiRYt63TwAESjKp0usAAAAAIB0kb35888/u5IhR44cCXnswQcf9KxdAHA63n//fTt27Jh16NDBfvvtN2vSpInt3LnTsmTJYu+++67ddtttXjcRQIQhiA4AAAAA6cDChQutWbNmduDAARdMz5cvnysbkj17dlcW4a+//vK6iRFt69atLrNWKlWqZAULFvS6Sfh/+s4kdOHpwgsv9KxNOPkYLV++3EqVKmUFChTwujkAItCJ2U0AAAAAAGnaww8/bNdff73t2rXLsmXLZrNnz7b169dbrVq17IUXXvC6eRFLpVzuvPNOK168uKuJrluxYsXsjjvusD179njdvIimOtvXXXed5cqVy6pWrerq1wff4J2BAwe6wLmfLgbWrFnTcuTI4R4DgJRGEB0AAAAA0oFFixbZI488YhkyZLCMGTPa4cOHrWTJkvb8889br169vG5exOrUqZPNmTPHvvrqK9u9e7e76ef58+fbPffc43XzIlr37t3d8dDx0YWnKVOm2NixY129+smTJ3vdvIg2YMAA27dv30nLFVjXYwCQ0phYFAAAAADSgcyZM7sAuqh8i8pTVK5c2XLnzm0bN270unkRSwHzb7/91i677LLAssaNG9vbb7/t6jzDOz/88IN98cUXVrt2bffdKV26tF1zzTUWExNjQ4YMsebNm3vdxIilysNRUVEnLV+8eLErVQUAKY0gOgAAAACkAyo/MW/ePJdFq5Ihffv2dTXR33vvPbvgggu8bl7Eyp8/v7uQEZ+W5c2b15M24QTNHaALTqJjofIu559/vlWrVs0WLFjgdfMiko6Dgue66VgEB9KPHz/ustO7du3qaRsBRCaC6AAAAACQDgwePNjV35ZnnnnG2rVrZ/fee68Lqo8ePdrr5kWs3r17W48ePdzFjCJFirhlmzdvtscee8z69OnjdfMiWsWKFd1kr2XKlLHq1avbm2++6X4eOXKkFS1a1OvmRaThw4e7LPS77rrLlW0JvgCVJUsWd3zq16/vaRsBRKYon347AQAAAACAZBkhsHr1alejvlSpUm6ZSu1ER0e7CxzByH5OWe+//74dO3bMOnToYL/99psrr7Nz504XrH333Xfttttu87qJEevnn3+2Sy+91DJlIvcTQOpAEB0AAAAA0pGtW7e67FqpVKmSFSxY0OsmRbTTmQSxX79+ydoWJE6TVi5fvtxd7ChQoIDXzYl4a9assTFjxrj/X375ZVd655tvvnHHp2rVql43D0CEIYgOAAAAAOmASrncd999NmHCBFc7WDJmzOiyaV977bUE63IDkWzgwIH26KOPWvbs2UOWHzx40IYOHermFYB3mehNmzZ12ejTp0+3ZcuWWbly5ezZZ5+1+fPn2yeffOJ1EwFEmBNTtwMAAAAA0rROnTrZnDlz7KuvvrLdu3e7m35WwOmee+7xunkRTcdi1KhR1rNnT1cuxF+65Z9//vG6aRbpowQ0UWVCGemnM4IA596TTz5pgwYNsqlTp7ryOn5XX321zZ4929O2AYhMFJcCAAAAgHRAAfNvv/3WLrvsssCyxo0b29tvv+1qPcMbS5YssUaNGrmRAOvWrbPOnTtbvnz57LPPPnO10ceNG+d1EyOWBuZHRUWdtHzx4sXuGME7v//+u40fP/6k5Srpsn37dk/aBCCykYkOAAAAAOlA/vz5EyzZomV58+b1pE0w69Gjh5u4ctWqVZY1a9bA8mbNmrkyFUh5+j4oSK4A+vnnn+9+9t/0fbnmmmvs1ltv9bqZES1Pnjy2adOmk5YvXLjQihcv7kmbAEQ2MtEBAAAAIB3o3bu3C9i+9957VqRIEbds8+bN9thjj1mfPn28bl7Emjdvnr355psnLVcgUMcHKW/48OEuC/2uu+5yZVuCLz6pdEiZMmWsfv36nrYx0rVu3dqeeOIJmzhxorvYERcXZzNnznQ17Nu1a+d18wBEIILoAAAAAJAOvPHGG7Z69WorVaqUu4nKhURHR9u2bdtCArmqx42Uof0fGxt70vKVK1dawYIFPWlTpGvfvr37v2zZsm7iykyZCI2kNoMHD7Zu3bq532XHjh2zKlWquAmT27Rp4y4YAkBK4y8FAAAAAKQDLVu29LoJSECLFi1s4MCB9vHHH7v7yqrVxQ1l2d50001eNy+iNWjQwNasWWNjxoxx/7/88suu5vY333zjgrdVq1b1uokRRxnnQ4cOtcmTJ9uRI0fszjvvdN8TTQBbo0YNq1ChgtdNBBChonwawwQAAAAAAM65PXv22M0332zz58+3vXv3WrFixVytZ5ULUbA2R44cXjcxYv3888/WtGlTl42u+vTLli2zcuXK2bPPPuuO1yeffOJ1EyPO008/bf3793eT8WbLls1Nlnz77bfb6NGjvW4agAhHEB0AAAAA0ondu3e7wJ+yalULXRMlqnRL4cKFmYzPY7/88ostWbLEZdTWqlXLGjZs6HWTIp4uZNxyyy1uLoFcuXLZ4sWLXRB97ty51qpVK/v777+9bmLEUaa56p7fc8897v73339vzZs3t4MHD1qGDBm8bh6ACMZvIAAAAABIBxSgPf/88+25556zF154wQXU5bPPPrOePXt63byIM2vWLPvqq68C9y+77DKXdf7666+7zNouXbrY4cOHPW1jpPv999/txhtvPGm5Srps377dkzZFOpU6atasWeC+MtJVAunff//1tF0AQBAdAAAAANIBZdN26NDBVq1aZVmzZg0sV0BKpSqQslQH/c8//wwJ2Hbu3NmuueYae/LJJ+3LL7+0IUOGeNrGSJcnTx5XWie+hQsXMnLDI5pENPj3l2TOnNmOHj3qWZsAQJhYFAAAAADSgXnz5tmbb7550nIFAzdv3uxJmyLZokWLXH1nvwkTJtjFF19sb7/9trtfsmRJ69evn6v/DG+0bt3aTfA6ceJEl+2sSS1nzpzpyom0a9fO6+ZFJFUc1sXA6OjowLJDhw5Z165dQ+YP0AgbAEhJBNEBAAAAIB1Q0Ck2Nvak5StXrrSCBQt60qZItmvXLleLPv4kln516tSxjRs3etQ6yODBg61bt25WqlQplwFdpUoVO378uLVp08Z69+7tdfMiUvv27U9adscdd3jSFgAIRhAdAAAAANKBFi1auBIiH3/8sbuvzFrVF1am7U033eR18yKOAuhr1651GedHjhxxE7wOGDAg8PjevXtdmQqkPGWcDx061CZPnuyOzZ133um+I5r0tUaNGm5yS3hjzJgxXjcBABJETXQAAAAASAeGDRvmgoCaFPHgwYPWoEEDK1++vOXMmdOeeeYZr5sXcVSLXrXPZ8yY4SZ2zZ49u11++eUhE8Hq+CDl6fvQq1cv991QuaPx48fbJ598YrfeeisBdABAgqJ8KjgFAAAAAEgXfvnlFxegVUC9Vq1a1rBhQ6+bFJG2b99urVq1csdDwdqxY8fajTfeGHhcx6VevXpc4PCAAuWqe37PPfe4+99//701b97cXXzKkIFcQwDAyQiiAwAAAEAaNmvWLNuxY4ddd911gWUK2GrSygMHDljLli1txIgRIRP1IeXs2bPHBdEzZswYsnznzp1ueZYsWTxrW6TSd2H16tWu1I5f1qxZ3bISJUp42jYAQOrEJVYAAAAASMNUB/3PP/8M3P/999+tc+fOds0117hyIl9++aUNGTLE0zZGsty5c58UQJd8+fIRQPeIJhFV0DyY6tMfPXrUszYBAFI3MtEBAAAAIA0rWrSoC5TXrl3b3X/qqafs559/dmVEZOLEiS4rfenSpR63FEgdVLKladOmIaMz9B26+uqrLUeOHIFln332mUctBACkNpm8bgAAAAAA4Mzt2rXLChcuHLivALoChH516tSxjRs3etQ6IPVp3779ScvuuOMOT9oCAEgbCKIDAAAAQBqmAPratWtdfecjR47YggULbMCAAYHH9+7d60pVADhhzJgxXjcBAJDGUBMdAAAAANKwZs2audrnM2bMsJ49e1r27Nnt8ssvDzy+ZMkSK1++vKdtBAAASMvIRAcAAACANOzpp5+2Vq1aWYMGDSxnzpw2duzYkAkrR48ebddee62nbQQAAEjLmFgUAAAAANKBPXv2uCB6xowZQ5bv3LnTLQ8OrAMAACDpCKIDAAAAAAAAABAGNdEBAAAAAAAAAAiDIDoAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQAAAAAAAACAMAiiAwAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAYBNEBAAAAAAAAAAiDIDoAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQAAAAAAAACAMAiiAzhr+/bts06dOlmRIkUsKirKunfv7nWTkIgOHTpYmTJlvG5Gurdu3Tr3fXj33Xe9bgoAAECa6afmzJnT62bAzDZu3GhZs2a1mTNnJvu5iPrM/fv3P6evg3Pvp59+csdK/5+uevXq2eOPP54s7QJSCkF0AC7Ipz+G8+fPP6PnDx482G3j3nvvtffee8/uvPNOi2Tal8G3mJgYa9CggX399deWGh04cMB1Ws+kM3QqixYtsjvuuMNKlixp0dHRli9fPmvUqJGNGTPGjh8/fs5fDwAAID320xXM/Oeff056/Morr7QLLrjgjLY9fvx4Gz58uKUnv/zyizVt2tSKFy/u9lmpUqXs+uuvd+81Jfq+SZUa2nAqAwcOtLp169qll16a4OO33nqr+2w+8cQTKd62SEnG0W3QoEEJrtO2bVv3+JledErp778+J6+99ppt3rw5xV4TONcIogM4az/88IO7styvXz8XMK1Vq5ZFumuuucZdUBg3bpy74r569WrXgf/2228ttVEnfsCAAee8Ez9q1CirXbu2/fjjj66T9/rrr1vfvn0tW7Zsdvfdd9tzzz1n6Vnp0qXt4MGDEX9RCQAAnL3Dhw/bs88+e063md6C6BMnTrQrrrjCtmzZYg899JCNGDHCnZvs2rXL3n777WTv+56O1NCGxGzbts3Gjh1rXbt2TfDx2NhY+/LLL11G+Ycffmg+n++sXk995t69e5/VNtIjXQjS/o1v//799sUXX7jHU/L7r++XjpX+P1033HCDSy7TOSGQVmXyugEA0r6tW7dalSpVztn24uLi7MiRI2fVKfDa+eef7zrtfjfddJPbRy+//LI1btzY0rvZs2e7Tnf9+vXtf//7n+XKlSvwmMr9aNTDH3/8YenRsWPH3Gc4S5YsafozDAAAUo+LLrrIBYJ79uxpxYoVs/RGQcEcOXKc1TaU2a3+tvqh6ofFP1/xsm1e9EPPxvvvv2+ZMmVySUAJ+fTTT92o0tGjR9vVV19t06dPdyNvzxR95oQ1a9bMPvvsM1u8eLFVr149sFwBdJ0vN2nSxCW0JbdDhw65z1SGDBnO+FjpuTfffLNLMtMFJGXRA2kNmegAEq1HqGGjLVu2dD8XLFjQHn300UAZDn9NtLVr17pSJf4hZxp+5s+YUXb6eeed50p5qKSHsrK1PJie061bN/vggw+satWqbt0pU6a4x/T6d911lxUuXNgt1+PqrAXzt+Pjjz+2Z555xkqUKOH+uDds2NBlgMc3Z84c1yHJmzev6xBfeOGFLrgdbPny5e6PvMqPaFvKqJ48efIZ78/KlStbgQIFbM2aNSHLk7qPpk6dapdddpnlyZPHHYuKFStar169Thrq69/38fdNuCwXra/jKv7OTHBNQg2369ixo9unal/RokVdFkH814nPvy0d0+AAup/2pz5jwScnjzzySKDsi97fCy+8cFJWi/+zokwjnSQpq12B+t9//909/uabb7p9qWOm4c3x2+kf8vzbb7/ZJZdc4p5ftmxZGzlyZMh66pQqa16jKnLnzu0+J5dffrnLqo+//9QmtVWZHOXLl3ftX7p0aYI10ZO6P5Wh4f8u6ET5/vvvt927dyf4XvRaV111lWXPnt0NXX7++ecTPTYAACDtUb9PffCkZqMrCKp+jPo66s+2bt3a1bgO7keo/75+/fpA/09Zxep7qc/ao0ePwLoKyqoPmjFjxpD+iEYVKtCq+ZH8FNBTn0l9Jz1H/Zxly5aFtE39TL2e+jBt2rRxfXL1cxMrD6j+qtoc/FrxqZ9dp06dBAPIhQoVSlLf138OpG3pfEH9WI2oFO2f4P5r8L7ULX7QUdtUYo36perztWrVym33VG1IaHsJ1RJPrB96tuczn3/+uSvlEq5UiPr4GnmrPqjOc3Q/3HbUX9Xr6/9JkyYluF78muj6XN53333unECf4fz589stt9yS4DmIPpMPP/yw2zd6/+pnt2vXzrZv3x5Y53TPS/3t9p9/+s9Ng+k8VaNr1VfXejqnUHlTnUf89ddfblsvvfTSSc/79ddf3WMJZZjHp/McbTe4HJFofyuArmMbnwLszZs3D7RLn4unn346pJRmuO9/8PnjhAkT3OgAnV/oPEOjD+KfW+q7reOj/R2/rJJ+X8Qv9aPPjF5T32kgLSITHUBY+kOrrGl1oNQ5+/77723YsGHuD7E6COowqWSJOi3qrCgIKuoUqrPdokUL9we0S5cubl0FOtWRWLlypeuYBFOHW0FwdVrUcdcfcQ3FVJkYf2dG2/3mm29cZ0V/xONPYKqTCl3hVqB/z549LpioTq+C5sHB6Ouuu851ZDXMU5Oh6o//V1995e7Ln3/+6Wr/qcPw5JNPupMAtU0XE5R1ceONN572vlR7NJRU+84vqftI7VGbFexXbUJ1hnRx4FxM8qN9+sYbb7jjqfelzr3otfwZ9Hr9Bx54wB0TZfFoH27YsCHs5KQanjpt2jQ3zE91KE9FJ2vaDwpQ69gq00plbx577DHXOY3f+ZwxY4Y7AVBgWYYMGeL2jzrCCj6rw619reOvCzDxszP0mE6KVMfx9ttvd8dW718nXFpf9PlSORo93rlzZ9u7d6+988477vswd+5c18ZgqvGukyUdR3/tdx3f+JKyP3UCoRMq1Y5Xu1asWOGO0bx589wxz5w5c8h7UQdax03v55NPPnGd1WrVqrl6oAAAIH1QIE2BKmWjq3+aWDa6kkr69Onj+gadOnVypTlU2kR9s4ULF7rg9lNPPeX6p3///Xegr6WAqfrd6gcrs9hvyZIlbl31s9UXUYDO3yerUaNGINCqcwX1P8qVK+f6Myr7oNfV9hYsWHBS31FB0QoVKrj5lcKVA1H/R/0vBYAVHFTALrFSeuqD6j3p3ORM+r7+bG69pgL7OgdSAPF0z6HUN1VbdPFC5xjqS6rPp5GY6uOdqg2nI6F+6Nmczxw9etTtd7UvIf/++6/rt6vci6i/rM/Qq6++GnIB47vvvguMxlV/fceOHYFkklPR6yvYrP2n9RU81z5T8FcXCfzHRBdVdNFG53Pqx9esWdMFz3WuoM+BzitP97xU6yn7W+cUuojyyiuvuPeh/rqC+f59cPHFF7sAvrZZqVIld96ivrjOhfQd0P5XsFvnysH8SUa6wJQU2r+6KKZzXX0/9f60b3UenlBwXwk8+k7qQpj+17mQkoN0fjN06FC3TrjvfzAF3nU8dW6tiw0JXZzSvtR6Om/TBRvtZyVH6YKP9onOXYP5y77q94h+dwBpjg9AxBszZox6rb558+YFlrVv394tGzhwYMi6NWrU8NWqVStkWenSpX3NmzcPWfbee+/5MmTI4JsxY0bI8pEjR7rtzpw5M7BM97Xun3/+GbLu3Xff7StatKhv+/btIctbt27ty507t+/AgQPu/o8//ui2UblyZd/hw4cD67388stu+e+//+7uHzt2zFe2bFnX3l27doVsMy4uLvBzw4YNfdWqVfMdOnQo5PFLLrnEV6FChUT25H/vR23ftm2bb+vWrb758+f7mjRp4pYPHTr0tPfRSy+95O5re6c6hmvXrg1Z7t83+j/42Gof+Gm7Wqdfv34hz9U+it/mpFi8eLF73kMPPZSk9T///HO3/qBBg0KW33zzzb6oqCjf6tWrA8u0XnR0dMj7fPPNN93yIkWK+GJjYwPLe/bsedI+adCggVs2bNiwwDJ9Zi666CJfoUKFfEeOHAl8VoI/S/79UbhwYd9dd90VWKZta3sxMTHuWAfzP6Zjk9T9qW1kyZLFd+211/qOHz8eWP7qq6+6544ePfqk9zJu3LiQ96L9cNNNN4V9DQAAkDb76WvWrPFlypTJ9+CDD4b0B6pWrRq4v27dOl/GjBl9zzzzTMh21B/Wc4OXq/8e3Cf0U19F2/D3q1555RW33sUXX+x74okn3DL1U/LkyeN7+OGHA8/z96d27NgR0i9Uf7ddu3aBZepz6j3dfvvtJ722+qk5cuRwP//yyy+uj6V2BvfLw3nnnXfcdtWXuuqqq3x9+vRx/ezgPlVifV//6+uxJ5988qTHtA/0eHw6Brr5qb+mbbz44osnres/50isDfG3F9y24OOVWD/0bM5n1PfWdkeMGJHg4y+88IIvW7Zsgc/HypUr3fqTJk0KWU+fB53L7d69O7Dsu+++c+vG/9zF3xf+87xgs2bNOqnv27dvX7fss88+C7uvT/e8VJ+f4PMP/7lN8P7Q51nbDD5/jv+6/nOUZcuWBR7TuUaBAgUS/BwF8x9bfRf/+OMP97O//a+99povZ86cvv3794d8XxLbd/fcc48ve/bsIZ+HcN9///ljuXLlTtpWQueW+n5ddtll7jxJ5+3333+/+12T0L4R7d9777030fcPpFaUcwGQqPiTyehKv4annYrKbejKtK5A62q5/6aaeRK/LIZq6AXXVVcfRlkSqsOnn4O3ocwQXTlXRkswZTYEXyFXW8XfXmXeqPSMMtiVgRPMX5Nt586d7mq9MneUMeJ/TWVO6HVXrVrlsgxORVnLynTR0FFlzigTRZnSwUNjk7qP/G1V9k1C2c3JRZk+2p8arqeM56RSloMkVMYlIaqZruF+Dz74YMhyjWzQsdfog2Aq0xOcyaSREqIMkeDX9C+P/3nVsON77rkncF/vUfeVFa4yL6L2+D9L2uf6XCgrSccy/ufO/9r+Yblnsz+VwaUhoPqMKtvLT9nwmohHwy6DKWMkuPa+tq+smKR8RwEAQNqi7FZNWP7WW2/Zpk2bElxHGbTqu6gvG9y/1OhLZX3H74MnRH1oZVMrE9ifca5luulnUUa1snD9/W21RyUalIEaXGJC2dUq4aD+XnzhJq0UtVN9b/X79J6UYX0qykRWZq6ylZVNrAxZtU/v2/9ekipcFnZS6BxGGdAaeRhfctSBjt8PPdvzGa0nKrOTEGVSazSCv9+t/asM4+CSLv7PQ/v27V1pRD99FpIyl1bwiANlxqtNKsWi86Lgvrj2tWqFJ5RZ79/Xp3teqpECwaOH9RlWP9zfv9b3S9nrOk/VuUG419X+Vxmb4P2i0bZ67eD++6monIza4C//otIuymIPN0IieN/5j7++B8qQV4mfpNKxS2zkh5/OWZT9rlEBGomikcGauyGhfeP/XAWX2gHSEoLoAMLSH/34gUH90UtKQFWdMw0j1PODb6oLmNDkPhqiGkzDTtUx10lC/G0oWJ7QNuKXDvF3/Pzt9dcjV327cFQmRYFbDYGN/7qqo5fQ6yZEHRsN2VTQ01/3UR2X4MBoUvfRbbfd5oYDajiuasNrWKOGYyZ3QF0nK6p1qSC2XldDgFUiRXW9E6NOpr/TlhSqi6chyfGD7urs+h9P7Dj7O+aqbZjQ8vifV71W/Mmh/Ps8uM6ihqiqw6rvgYZu6tjoeOoCTnzxP79nuj/971X1H4MpOK4T5/j7QsNb45+MJfU7CgAA0h7VKNaF/XC10dW/VF9Wgc34fUyVvEhKP1YlMRSg8wfM/UF09V00ObxKh/gf89cyD9eH8ffpFDRTmYek9J+0fQVpVe5Bfd7TmSRTQWIFKnUeoZI0Kv+ntqm8SlInF1XCRVJKjoSjcw7tB20nJcTfj+fqfCahEjv6DCkxSecmeh3/TRcuVB7Tn0zj/zzocxhfQp+R+FQKSCVI/PMl6aKE2q/jGtwX175O7NzuTM5LEypHGdy/1nmq3uepXlcBfwXag+uZK6CuEjv+AH5Sae4AXQzQvtYFId0PR+9VFxV0LqTzMr1Xf9A+ofOYcJJyfuOniw4651UZHgX99dlL7HPFpKJIq6iJDiAsZeOeKQV4VZf5xRdfTPDx+AHP+Fe5/QFi/cHXVfCExK8bGK694Woshmu3qPabOuEJURbEqajjrSwGUf1tdfxU112T7/jrHiZ1H2nf6CRAWRIK4irD5qOPPnKdL9XD0/sO1xEJnkDmTCgjWp0/ZVvohEQdItU0VHZLuDp22j86afBP9nmuhTvO5+L4+6nuoDKpVDdSNf40okDb13uPPzmsJCVL40z3Z2LO5XsGAACpny6qq3+sRBPVuo5P/Uv1C3XRPqF+QriJIoNp/kuHTQ8AAJFJSURBVBWN6FP/U0E7XfBXEF1JAMoK1nxDCqIrs/dUI/ESE67/pKCp+s8ahal+rwLgp0sXAfzZ8+qHa74Z7ZNw5xXxXz848cUvsf722Zw3JfQ6CfXlwvXrw51Hnen5jL/ud0JJGeoji+p8x6/17c8M9yc8nQ1l8avWu/rOmlxTAWHtFyUTnW4i0emel57L/rXmMVDwW4FvtUG12lVrPaHP16nqoiu7W6NTdXyuvfbaBNfTRQaN8FbwXPXIFdxWQpCy9zVv0unsu6Se3/jpvNRfL14jBzT6JVwb9Z0E0iKC6ACShf5gL1682A3BPJMrzeqQKzNZnUV/MPpctEn8E/qEOzHxnzycq9cVlQvRpC3KHlJmgPbJ6ewjdbS0nm7qAGoCJk0Io8C62unPulenJFj8zOWEnOq11U6VVtFNmRyaVFMTzPo70QmdtCjAr8Dwxo0bT+qYJjQJlMqYKHM9OBvdP9xQj59L6tgpEyo4G12TCom/TIwmBdJnQcOHg/ePP3vnbCS2P/3vVZOJ+j+LohIvKkV0Lj+TAAAgbVJ/Uv0GjXBLqJ+hYJ+ySP2ZtmfSB1TwWdtXH00BLwXMtb6yTBVA1y04uB3ch4lPfTptI/5IwMTapYxdjezU5KMKfivT+Uz5y0r4S+CcaRas+tvx+9r+/nZwv03HQBcadMEheEL4YIm1Qa+TUGm+pPTrz8X5jDKxFUBV3zOYPlfKqlZSkALB8al8jo6bguj+z4P6uvEl9BmJT31xXfBQHzl4hEL8/a99rXO75DwvTeg8VUHqU72uNGnSxK2v/aILUxqZrJJMZ3JMlP2vspAqNRRulIMeVwBb5zAaOeIX/1jKucwGHzlypBuFrUmNlSCkc19dBItPZYR0XuMfcQykNZRzAZAsVANOfyTffvvtBIfnxR/OGZ8yAFTfT9kMCXVQNIzudGloqk4ohg8fflIHzJ9ZoIxjddLffPPNBGtNnsnrijo6CppqCKS/Q5HUfaS6hvEp8CqaKT34AoEyhvx0AUJZSqfir6cXf5+ok6fOajC9jgLd/tcNR8Fm7VN1ElUfLz7VHle5FFGmkdr66quvhqyjiw7q3Km23rmkIdA6vn7qyOm+Orj+GeP9GSjBGSc6GZo1a9YZv25S9qdOdDRk+ZVXXgl5bdXY1/BLDW0GAACRTf0HZaOr/xK/zJ5GPKofo8zr+Jmzuu+vdy0Kaocr76Aguvon6jerZIs/4Kbl7733nktK8NdDl6JFi7r+qfp3wX1K9eOVoar+3ulQf0iBwDp16rhRfHPnzj3lczQHUUL89dj9ZUTC9X2Tst9nz57t+o5+KmGipJFgOodR+Zr4fVvxH5PE2qDX0YWH4PMOBYFnzpyZpHae7fmMgu+68KDSPcH0+ip9qCD5zTfffNJNJSiV4KPPRvDnIfgzpkDr0qVLT/ke9BmO//kdMWLESdn42tfaN5MmTTppG/7nn+15aULJTRqt+uWXX560j4Jf138OqCxylSVS3XBlo8cfTZ1UgwYNcudYCdXa90voHEafV9Upjy+x7//pUIBeI3d1LHr16mUvvPCCy7gfN27cSev655+65JJLzvp1AS+QiQ4gWSh4qs6CJgxSZ0pXztXpUYdQy1XKItxkI36q9ajn6qq9hq5pEhoFlDUcTVkxCQWXT9XheeONN1xHXJ06dQDVwVObVDtObZLXXnvNnSyok6PXVTbHli1bXAD177//dh21M6HyIKrtp6wedbySuo80FE/BcQVQldWhun3qCKlkjL8OpbKC6tWr54b5ab9oQqcJEya4gPGpKNNE+1YlYpSxpOeqxp+eq4wNdTz1uDqB6qBqX2goZWLUMdJ+VJaKMpf0XlUTUdnmypBQx0odQdHxUEaLMuvVMdfkQDrZ0sUGDeEMntjnXFBNdB0DvZber963Jj7SBQd/tpAyq3TiplED2u/qHCrDQvshoYsCSaFs91PtTwXydQx14qvMlRYtWrhsHR1vnUSeziREAAAg/VK/ScFs9RPUD/RTv0l9LPUn1NdRn1MX7NWXUb+jS5cursyHKHlA/SBNfK9+hkq9qF8mKqGhvoq2r+f4KbtV/WkJDqLL0KFDXfKDnnv33Xe7AKUCnyrFoXrJp0t9VAWpNcJR2/35558TrUOtzHUlzOg9aD8oOKpzBgU7/cH4xPq+p6pxrfmJlCGtPpr6cyrxpxEB8fuqKuGhAKL2q4L/2k/+tqhvrHYm1gZNkKqRpyrFov2ovr/6oTrO/prjp3K25zNqoz5jej3/fEfKplaQNlxSh/qteo7OQfTelZGsddUOvSedo+jzoPdxqv60+uL6fOuzo/2kdmv/+UvN+Cl4q2OiEQt6DX2m9To619A+03nFuTgvjU+jgnW+otIp+n4os1oXLFS6RZPaqh568OdBCTJ67YRGjySVXku3U52DaSSDsvgffPBBd/FL+zGhUjSJff+TStvVftfn2f97QVnoSoR76KGHXIKQzr2CL6Ioq/5MylgCqYIPQMQbM2aM/qr65s2bF1jWvn17X44cOU5at1+/fm7dYKVLl/Y1b978pHWPHDnie+6553xVq1b1RUdH+/LmzeurVauWb8CAAb49e/YE1tP27r///gTbtmXLFvdYyZIlfZkzZ/YVKVLE17BhQ99bb70VWOfHH39025g4cWLIc9euXeuW6/0F++WXX3zXXHONL1euXO49Xnjhhb4RI0aErLNmzRpfu3bt3OvpdYsXL+677rrrfJ988kkie/LU76d///7ucbU5qfto2rRpvhtuuMFXrFgxX5YsWdz/t99+u2/lypUntblRo0ZuO4ULF/b16tXLN3Xq1JDX8x9bHbNgv/76q3tdbV/r6zhv377dvY9KlSq5/ZQ7d25f3bp1fR9//LEvqX777TdfmzZtXJu1H/X+dPzGjh3rO378eGC9vXv3+h5++OHAehUqVPANHTrUFxcXd8p96z/OWj9YQp+LBg0auH09f/58X/369X1Zs2Z1++LVV18Nea5ed/Dgwe4x7c8aNWr4vvrqq5P2XbjXTujzdzr7U+3RetoXOpb33nuvb9euXSHr+N9LfAkdXwAAkH766cF/8/VYQv2BTz/91HfZZZe5Podu6leoH7JixYrAOvv27XP9tDx58rjtxO8/1KlTxy2fM2dOYNnff//tlqlvnpDvv//ed+mll/qyZcvmi4mJ8V1//fW+pUuXJng+sW3btgTfU/xzEPWhqlSp4vrlq1atCruvPvzwQ1/r1q195cuXd6+vfp6e99RTT/liY2NP2fcN9/rBhg0b5s4L1D/U+1SfUn0y3YIdOHDAvW7ZsmUD5zA333yz66+fqg3y/vvv+8qVK+ceu+iii3zffvvtafVDz/Z8RudgmTJl8r333nuBc5b8+fP7Lr/88kSfp/erfnPw57By5cpuf+lYfPbZZwn2VeO/f/V7O3bs6CtQoIAvZ86cvsaNG/uWL1/unqfnB9uxY4evW7du7v1pf5UoUcKto8/NuTovTeh1169f7/ZvwYIF3TZ1vPTcw4cPn/R8vW6GDBnc9ycpTnVs/RL6vM6cOdNXr1499x3QudXjjz/uPj/xzwnDff/DnVsHP+bfzssvv+zu6zgH27Bhg/v+N2vWLLBM535Fixb19e7dO0n7AEiNovSP14F8AABSgoa2anhtUmoYAgAAAJFKWfAaSan698lJWeEa9aCa6qr3nx4p81qjDcKVHIoEn3/+ubVp08aN4NBocCAtoiY6AAAAAAAAAlR/e968eUmuxX6m/HXbNflseqS66SodqbIukUylbLp160YAHWkaNdEBAAAAAAAQoNrVhw4dStbXUD1z1Y9X7W7NkZSeaOSrJtIcNmyYCxxr4tVIprr2QFpHJjoAAAAAAABS1OOPP25//vmnvfPOO1axYkVLT3SBoGPHjnb06FH78MMPLWvWrF43CcBZ8rQm+vTp090M3ro6pyE8mi1cs4cn5qeffnKzB+sXbcmSJV3NrA4dOqRYmwEAAAAAAAAAkcPTTPT9+/db9erV7bXXXkvS+mvXrrXmzZu7YT6qKdW9e3fr1KmTffvtt8neVgAAAAAAAABA5PE0Ez2YamCdKhP9iSeesK+//trVlvJr3bq17d6926ZMmZJCLQUAAAAAAAAARIoMaW0igkaNGoUsa9y4MRMUAAAAAAAAAACSRSZLQzZv3myFCxcOWab7sbGxdvDgQcuWLdtJzzl8+LC7+cXFxdnOnTstf/78LvsdAAAA6Z8GX+7du9eKFStmGTKkqTwSAAAAAB5LU0H0MzFkyBAbMGCA180AAABAKrBx40YrUaKE181AKnbomNctgJfy1unmdRMAAEAKO7jw1fQVRC9SpIht2bIlZJnux8TEJJiFLj179rQePXoE7u/Zs8dKlSrlTqD0PJy5fWPGWHqTs2NHr5sAAACSgUYulixZ0nLlyuV1UwAAAACkMWkqiF6/fn373//+F7Js6tSpbnk40dHR7hafAugE0c9OhjAXLtKynHwmAABI1yjnBwAAAOB0eVoQct++fbZo0SJ3k7Vr17qfN2zYEMgib9euXWD9rl272l9//WWPP/64LV++3F5//XX7+OOP7eGHH/bsPQAAAAAAAAAA0i9Pg+jz58+3GjVquJuo7Ip+7tu3r7u/adOmQEBdypYta19//bXLPq9evboNGzbMRo0aZY0bN/bsPQAAAAAAAAAA0i9Py7lceeWV5vP5wj7+7rvvJvichQsXJnPLAAAAAAAAAABIYzXRAcBPF+COHTtmx48f97opiAAZM2a0TJkyUUsZAAAAAIAIRBAdQJpz5MgRV+7pwIEDXjcFESR79uxWtGhRy5Ili9dNAQAAAAAAKYggOoA0JS4uzk1CrMzgYsWKuYAm2cFI7lEPunCzbds299mrUKGCZcjg6ZQiAAAAAAAgBRFEB5CmKJipQHrJkiVdZjCQErJly2aZM2e29evXu89g1qxZvW4SAAAAAABIIaTSAUiTyARGSuMzBwAAAABAZCIiAAAAAAAAAABAGATRASCFXHnllda9e3evm5GqlSlTxoYPH+51MwAAAAAAAAIIogMAzjlN9vr555973QwAAAAAAICzxsSiANKNd5fvTtHX61ApT4q9ls/ns+PHj1umTPzaBgAAAAAASElkogOAB9577z2rXbu25cqVy4oUKWJt2rSxrVu3Bh7/6aefXDb3N998Y7Vq1bLo6Gj75ZdfbO/evda2bVvLkSOHFS1a1F566aWTysQcPnzYHn30UStevLhbr27dum57SfHuu+9anjx5XBZ5hQoVLGvWrNa4cWPbuHFjyHpffPGF1axZ0z1erlw5GzBggB07dixQkkVuvPFG9x7899esWWM33HCDFS5c2HLmzGl16tSx77//PtELB/3797dSpUq591+sWDF78MEHT3NPAwAAAAAAnB2C6ADggaNHj9rTTz9tixcvdgHrdevWWYcOHU5a78knn7Rnn33Wli1bZhdeeKH16NHDZs6caZMnT7apU6fajBkzbMGCBSHP6datm82aNcsmTJhgS5YssVtuucWaNGliq1atSlLbDhw4YM8884yNGzfOvdbu3butdevWgcf1mu3atbOHHnrIli5dam+++aYLvus5Mm/ePPf/mDFjbNOmTYH7+/bts2bNmtm0adNs4cKFrk3XX3+9bdiwIcF2fPrpp+4igbavtms/VatW7TT2MgAAAAAAwNmjLgAAeOCuu+4K/KxM7ldeecVlZivQrCxtv4EDB9o111zjflYW+tixY238+PHWsGHDQKBaGdp+Ckhrmf73L1dW+pQpU9zywYMHJynA/+qrr7oMdtFrVq5c2ebOnWsXX3yxyzpXcL99+/aB9uuCwOOPP279+vWzggULuuXKaFeWvV/16tXdzU/PmTRpkrsgoMB/fHoPen6jRo0sc+bMLiNdrw8AAAAAAJCSyEQHAA/89ttvLgtbgWGVdGnQoIFbHj8rWyVf/P766y8X4A4OJOfOndsqVqwYuP/777+72unnn3++C8b7bz///LMrp5IUqruugL5fpUqVXEBc2fCi7HkF94O337lzZ5d1riz2cHSBQAF9BeS1PT1P2wyXia4M+oMHD7ogvbavgLu/ZAwAAAAAAEBKIRMdAFLY/v37XZ1x3T744AOXua1Asu4fOXIkZF3VND8dClRnzJjRBen1f7DgDPezoddQNnqrVq1Oekw10sNRAF0laF544QU777zzLFu2bHbzzTef9J79SpYsaStWrHB10/W8++67z4YOHeouCCgzHQAAAAAAICUQRAeAFLZ8+XLbsWOHq3WuQLHMnz//lM9TRraCx6oxrgx22bNnj61cudKuuOIKd79GjRouE12TlF5++eVn1D5le6s9/ox3BbJVF10Z5KIJRbVMgfBw1E61I5jqq6vuuyYc9QfjVQs+MQq0K2Nft/vvv99lxSvbXm0AAAAAAABICQTRASCFKQCeJUsWGzFihHXt2tX++OMPVx/8VFT2RXXIH3vsMcuXL58VKlTI1SDPkCGDRUVFuXVUxqVt27Zu4s9hw4a5oPq2bdvcZJ6amLR58+anfB0FwB944AFXp12lXVSvvF69eoGget++fe26665z70OZ5Hp9lXjR+xg0aJBbp0yZMu41L730UouOjra8efNahQoV7LPPPnMBcbW3T58+FhcXF7YdmqxUgXjVZs+ePbu9//77LqheunTp09jbOJV3l++29KZDpTxeNwEAAAAAkI5QEx0AUpjKtyhAPHHiRKtSpYrLSFeJk6R48cUXrX79+i6IrQk3FaRWhnhwGRVNIKog+iOPPOLqpbds2TIke/1UFLB+4oknrE2bNm77KgPz0UcfBR5X2ZmvvvrKvvvuO1c7XQH2l156KSS4rQC+SrAo016BfH/bFUy/5JJLXCBd20kso1x1099++23XBl0AUFmXL7/80vLnz5+k9wEAAAAAAHAuRPl8Pp9FkNjYWDcRn0ogxMTEeN2cNG3fW29ZepOzSxevm4BTOHTokK1du9bKli2baP3tSKqvXrx4cRe0vvvuu896ewrud+/e3ZVvQWR89shER6SgD4ikOsQc1hEtb51uXjcBAACksIMLXz3lOpRzAYA0ZOHCha6mukqrKBA0cOBAt/yGG27wumkAAAAAAADpEkF0AEhjVPpFE3uqrnqtWrVsxowZVqBAgSQ9t2nTpm79hPTq1cuKFSt2jlsLAAAAAACQthFEB4A0RPXFf/vttzN+/qhRo+zgwYMJPqbJSnXr0KHDWbQQAAAAAAAgfSGIDgARRPXTAQAAAAAAkHQZTmNdAAAAAAAAAAAiCkF0AAAAAAAAAADCIIgOAAAAAAAAAEAYBNEBAAAAAAAAAAiDIDoAAAAAAAAAAGEQRAeAdKx///520UUXBe536NDBWrZsaandTz/9ZFFRUbZ7926vmwIAAAAAACIcQXQAQLJ59913LU+ePF43AwAAAAAA4IxlOvOnAkDqsu+tt1L09XJ26ZKirwcAAAAAAICURyY6AKSgTz75xKpVq2bZsmWz/PnzW6NGjWz//v2BMiuDBw+2woULu+ztgQMH2rFjx+yxxx6zfPnyWYkSJWzMmDEh23viiSfs/PPPt+zZs1u5cuWsT58+dvTo0XPS1iuvvNK6devmbrlz57YCBQq47ft8vsA6hw8ftkcffdSKFy9uOXLksLp167pSLKL/O3bsaHv27HGlWXRTeRl57733rHbt2pYrVy4rUqSItWnTxrZu3Rq2LevXr7frr7/e8ubN616natWq9r///e+cvE8AAAAAAIDEkIkOAClk06ZNdvvtt9vzzz9vN954o+3du9dmzJgRCEr/8MMPLlA+ffp0mzlzpt19993266+/2hVXXGFz5syxjz76yO655x675ppr3HqiILRKphQrVsx+//1369y5s1v2+OOPn5M2jx071rVj7ty5Nn/+fOvSpYuVKlXKvY4owL506VKbMGGCa8OkSZOsSZMmri2XXHKJDR8+3Pr27WsrVqxw6+fMmdP9r0D/008/bRUrVnTB8x49ergLCeEC4/fff78dOXLE7RsF0fWa/m0BAAAAAAAkJ4LoAJCCQXRllrdq1cpKly7tlikr3U/Z5q+88oplyJDBBZcVbD9w4ID16tXLPd6zZ0979tln7ZdffrHWrVu7Zb179w48v0yZMi4rXAHtcxVEL1mypL300ksui1xtUnBc9xVE37Bhg8uM1/8KoItef8qUKW65suqVwa7nKts82F133RX4WRn0et916tSxffv2JRgc12vcdNNNgf2l5wAAAAAAAKQEyrkAQAqpXr26NWzY0AWCb7nlFnv77bdt165dgcdVokQBdD+VdQkOsmfMmNGVgAkue6Ls9EsvvdQFqRV8VlBdAedzpV69ei4I7le/fn1btWqVHT9+3AXU9b/Kyei1/beff/7Z1qxZk+h2f/vtN1eeRVntypxv0KCBWx6u7Q8++KANGjTIvdd+/frZkiVLztl7BAAAAAAASAxBdABIIQqCT5061b755hurUqWKjRgxwmV3r1271j2eOXPmkPUVvE5oWVxcnPt51qxZ1rZtW2vWrJl99dVXtnDhQnvqqadc2ZOUoKxxvScFxBctWhS4LVu2zF5++eWwz1MN+MaNG1tMTIx98MEHNm/ePFcGRsK1vVOnTvbXX3/ZnXfe6YL3qqeu/QcAAAAAAJDcCKIDQApSEFzZ1AMGDHBB7yxZsgQCyKdL9dJVFkaBcwWVK1So4CbgPJdUiz3Y7Nmz3esoeF6jRg2Xia7M+PPOOy/k5i/fovendYItX77cduzY4UrTXH755VapUqVEJxUNLi3TtWtX++yzz+yRRx5xmfwAgPT/d/Pzzz/3uhkAAACIcATRASCFKCCtOuGaoFNlSxQM3rZtm1WuXPmMtqdgtrajGugqn6K64mcakA9H29ekn5oY9MMPP3TZ3w899JB7TGVclAnfrl07916UUa8JSIcMGWJff/11oE67MtanTZtm27dvdzXeVcJFwXVtS9nlkydPdpOMJqZ79+727bffutdYsGCB/fjjj2e83wAASaO/Uffee6/7vR0dHe0ukGokkSa/Tsn5RJo2bZpirxfJJoz/wJpec7XVqVHN2ra+xX6ndFrEuLRmeftk+D3213fP2MGFr9r1V17odZOQgjj+kY3jH9k4/qeHIDoApBCVL5k+fborv6IAtOqXDxs27IyDAy1atLCHH37YunXrZhdddJHLTO/Tp885bbMC5AcPHrSLL77Y7r//fhdA79KlS+BxTSCqdZQZrtI0LVu2dOVZFHCRSy65xGWP33bbbVawYEE3War+f/fdd23ixImurI0y0l944YVE26Fsdr2+AudNmjRx++/1118/p+8VABBKEzpr1NTYsWNt5cqV7qLnlVde6UYTpRQF7hXAR/Ka8s3/7IXnh9g9991vEyZOsooVK9m999ydosca3smRLdp+X/mPdR/ykddNgQc4/pGN4x/ZOP6nJ8rn8/ksgsTGxlru3Lltz549LqCFM7fvrbcsvckZFBxE6nTo0CGXjVy2bFnLmjWr181J1xQoUXB++PDhXjclVUivn713l++29KZDpTxeNwGpEH3A07N7927Lmzev/fTTT4HJnxMqtaILmgqua72iRYu6i6U333xzYJ2NGze6C63fffedmzxbZbw0b4ZGKvmNHj3aXVRevXq15cuXzwXvX3311cBraJSVLtImZXtqx+OPP25//vmnm1dEk3aPHz/elT9LqkPHLOIo87zqBdWsV+++7r7mX7m2YQO7vc2ddnfnyOof563TzSKZMhFvffgt+/InRiJEIo5/ZOP4R7ZIP/4HF57oeyaGTHQAAAAAIXLmzOluqkd++PDhsOtpBJSC3osXL3Ylvlq3bu0mmJajR4+68i+5cuWyGTNmuDIw2qZGFPknkn7jjTfcSCONctLE0QrIa26NhJxqe8eOHXPBdgX9lyxZ4ibg1nYViEd4R48csWVL/7R69S8JLNMFinr1LrElixd62jYAAIDUIpPXDQAApDzVOlcplXCWLl2aou0BAKQumTJlcqW3OnfubCNHjrSaNWu64LSC5Bde+F+9zFtuucU6derkftb8FlOnTnVzXihD/aOPPnIZzaNGjQoEslUGLE+ePC5j/Nprr7VBgwa5zHL/fBtSp06dBNt0qu1pkm2NNLjuuuusfPny7nHmzzi1Xbt3ubJp+fPnD1mu+2vX/uVZuwAAAFITgugAEIGKFStmixYtSvRxBSQAAJFLGebNmzd3Wd+zZ8+2b775xpVrURC7Q4cObp369euHPEf3/X9flJ2uEi3KHI9fHksTYm/dutX+/fdfa9iwYZLac6rtKSivdilb/ZprrrFGjRrZrbfe6srMhKMs+/iZ9r6M0dRhBwAAQAiC6AAQoRmG4YbLAwDgpzkgFJDWTaVblHXer1+/QBA9Mfv27bNatWrZBx98cNJjmmRaJUNOx6m2589Mf/DBB23KlCkuc12TeCs7vl69egluc8iQITZgwICQZU/16We9+/a3SJE3T17LmDHjSZOI6n6BAgU8axcAAEBqQk10AAAAAEmiUmD79+8P3FeGejDd95dQUQmYVatWWaFChdyF2+CbJnlVRrkmBJ02bVqSXvtU2/OrUaOG9ezZ03799Ve74IIL3MSi4Wg9lYAJvj32RE+LJJmzZLHKVaranNmzAstUNmfOnFl2YfUanrYNAAAgtSCIDgAAAOCkLOSrr77a3n//fTdJ59q1a23ixImunMsNN9wQWE/LRo8ebStXrnQZ6nPnzrVu3bq5xzTRqDKZtb5KwmgbKhWmTPG///7brdO/f38bNmyYvfLKKy5AvmDBAldTPSGn2p7uKyiuCUXXr19v3333ndtmYnXRVbYlJiYm5BaJpVzubN/RPvvkY5v8+ST7a80aGzSwvx08eNBa3tjK66YhBeTIlsUuPL+4u0mZ4vndzyWL5PW6aUgBHP/IxvGPbBz/00M5FwAAAAAhcubMaXXr1rWXXnrJ1Rs/evSolSxZ0k002qtXr8B6KoUyYcIEu++++1zt8Q8//DAwcXX27Nlt+vTp9sQTT1irVq1s7969Vrx4cVcDXcFqad++vatprtd59NFHXZD85ptvTrBNp9qegr7Lly+3sWPHuosAas/9999v99xzTwrttbSrSdNmtmvnTnv91Vds+/ZtVrFSZXv9zVGWn3IuEaFmldL23aj/Jvd9/tGb3P/vTZ5tXfq972HLkBI4/pGN4x/ZOP6nJ8rn8/ksgsTGxrrhnhqq6e+848zse+stS29ydunidRNwCjrRVqZZ2bJlXZ1WIKWk18/eu8t3W3rToVIer5uAVIg+4LkXFRVlkyZNspYtW1p6cuiY1y2Al/LWOTGSAgAARI6DC1895TqUcwEAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQDSmSuvvNK6d+8euF+mTBkbPny4RboOHTqku5IDAOAlVYXk9yoAAAAiAROLAkg3Poz9MEVf7/aY2y0tmDdvnuXIkcPrZgAAAAAAAKRJBNEBIJ0rWLCg100AAAAAAABIsyjnAgApWGblgQcecKVW8ubNa4ULF7a3337b9u/fbx07drRcuXLZeeedZ998803gOX/88Yc1bdrUcubM6da/8847bfv27YHH9dx27dq5x4sWLWrDhg076XWDy7msW7fOoqKibNGiRYHHd+/e7Zb99NNP7r7+1/1vv/3WatSoYdmyZbOrr77atm7d6tpWuXJli4mJsTZt2tiBAweS9N4/+eQTq1atmttW/vz5rVGjRq7tfqNGjXLbzZo1q1WqVMlef/31wGP+Nk+YMMEuueQSt84FF1xgP//8c2Cd48eP2913321ly5Z1r1GxYkV7+eWXz6pNAAAAAAAAQhAdAFLQ2LFjrUCBAjZ37lwXUL/33nvtlltuccHhBQsW2LXXXusC5QpOK7it4LUC2fPnz7cpU6bYli1b7NZbbw1s77HHHnPB5C+++MK+++47FwDXds6F/v3726uvvmq//vqrbdy40b2ugvHjx4+3r7/+2r3eiBEjTrmdTZs22e2332533XWXLVu2zLWxVatWrpaufPDBB9a3b1975pln3OODBw+2Pn36uH0VTO/1kUcesYULF1r9+vXt+uuvtx07drjH4uLirESJEjZx4kRbunSp216vXr3s448/PqM2AQAAAAAA+FHOBQBSUPXq1a13797u5549e9qzzz7rguqdO3d2yxT8feONN2zJkiX2/fffuwC6gsp+o0ePtpIlS9rKlSutWLFi9s4779j7779vDRs2dI8r8Kxg8rkwaNAgu/TSS93PyvJWe9esWWPlypVzy26++Wb78ccf7Yknnkh0OwpYHzt2zAWpS5cu7ZYpA9yvX79+LoNej4uyyRUIf/PNN619+/aB9bp162Y33XST+1n7SBcV9P4ff/xxy5w5sw0YMCCwrrYxa9YsF0QPvuiQ1DYBAAAAAAD4EUQHgBR04YUXBn7OmDGjKyMSHLxVyRZR6ZTFixe7ILVKtcSnYPbBgwftyJEjVrdu3cDyfPnyuVIm57qtalf27NkDAXT/MmXUJ+XCgYL8ep+NGzd22fYKwKukjcqn6L0oSO+/kCAKcOfOnTtkO8o+98uUKZPVrl3bZZH7vfbaa+4iw4YNGwL75qKLLjrtNgEAAAAAAASjnAsApCBlTAdTre/gZbrvL0+yb98+V7JE9cuDb6tWrbIrrrjijF4/Q4YTv/aDy5YcPXr0lG2N307/MrXzVHSxYOrUqa6eepUqVVwJGAX6165d696jqDZ88HtULfjZs2cn+X2pXvqjjz7qgvEqM6NtqM68Aumn2yYAAAAAAIBgBNEBIJWqWbOm/fnnn25iUE04GnzLkSOHlS9f3gW258yZE3jOrl27XKmXcAoWLBgoZ+IXPMloclHAXaVhVHJFNc2zZMlikyZNctnsKkvz119/nfQeVZIlWHBQXZnqv/32m5uMVGbOnOnqyt93332uBI6erwz3M2kTAAAAAABAMMq5AEAqdf/997sMbU2AqbrfKtWyevVql3U9atQoV+ZFmdeacFNlYQoVKmRPPfVUINs8IdmyZbN69eq5WuwKUqtsjL9Ge3JRkH/atGmuZIraqPvbtm0LBMAVxH7wwQdd+ZYmTZrY4cOH3USquiDQo0ePkHItFSpUcM976aWX3OOaGFS0fNy4cfbtt9+69/Xee+/ZvHnzTgrEJ7VNAAAAAAAAfgTRAaQbt8fcbumJMrSVYa2JOxXsVXBZk2Aq0OwPlA8dOjRQ9iVXrlz2yCOP2J49exLdruqGK/heq1YtV8Lk+eefd9tPLjExMTZ9+nQbPny4xcbGuvegiUSbNm3qHu/UqZOrt673ogsCyrJXrfLu3buHbEeBf92UOa9M88mTJ7tJWeWee+5x2eS33XabyzDXhQdlpatcy5m0CQAAAAAAwC/KF1wYNwIoWKJsRwWZFETBmdv31luW3uTs0sXrJuAUDh065OpWK8M4a9asXjcHKWDdunXueCtIHm6i0JSQXj977y7fbelNh0p5vG4CUiH6gEiqQ8e8bgG8lLdON6+bAAAAUtjBha+ech1qogMAAAAAAAAAEAZBdADAWdmwYYOrzx7upscBAAAAAADSKmqiAwDOuna76pQn9vjZKFOmjEVY5TEAAAAAAJCKEEQHAJyVTJkyuYk+AQAAAAAA0iPKuQBIk8hMRkrjMwcAAAAAQGQiiA4gTcmcObP7/8CBA143BRHG/5nzfwYBAAAAAEBkoJwLgDQlY8aMlidPHtu6dau7nz17douKivK6WUjnGegKoOszp8+ePoMAAAAAACByEEQHkOYUKVLE/e8PpAMpQQF0/2cPAAAAAABEDoLoANIcZZ4XLVrUChUqZEePHvW6OYgAKuFCBjoAAAAAAJGJIDqANEtBTQKbAAAAAAAASE5MLAoAAAAAAAAAQBgE0QEAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDILoAAAAAAAAAACEQRAdAAAAAAAAAIAwCKIDAAAAAAAAABAGQXQAAAAAAAAAAMIgiA4AAAAAAAAAQBgE0QEAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDILoAAAAAAAAAACEQRAdAAAAAAAAAIAwCKIDAAAAAAAAAJBag+ivvfaalSlTxrJmzWp169a1uXPnJrr+8OHDrWLFipYtWzYrWbKkPfzww3bo0KEUay8AAAAAAAAAIHJ4GkT/6KOPrEePHtavXz9bsGCBVa9e3Ro3bmxbt25NcP3x48fbk08+6dZftmyZvfPOO24bvXr1SvG2AwAAAAAAAADSP0+D6C+++KJ17tzZOnbsaFWqVLGRI0da9uzZbfTo0Qmu/+uvv9qll15qbdq0cdnr1157rd1+++2nzF4HAAAAAAAAACBNBdGPHDliv/32mzVq1Oi/xmTI4O7PmjUrwedccskl7jn+oPlff/1l//vf/6xZs2ZhX+fw4cMWGxsbcgMAAAAAAAAAICkymUe2b99ux48ft8KFC4cs1/3ly5cn+BxloOt5l112mfl8Pjt27Jh17do10XIuQ4YMsQEDBpzz9gMAAAAA0pdd8171ugkAACAV8nxi0dPx008/2eDBg+311193NdQ/++wz+/rrr+3pp58O+5yePXvanj17AreNGzemaJsBAAAAAAAAAGmXZ5noBQoUsIwZM9qWLVtClut+kSJFEnxOnz597M4777ROnTq5+9WqVbP9+/dbly5d7KmnnnLlYOKLjo52NwAAAAAAAAAA0kwmepYsWaxWrVo2bdq0wLK4uDh3v379+gk+58CBAycFyhWIF5V3AQAAAAAAAAAgXWSiS48ePax9+/ZWu3Ztu/jii2348OEus7xjx47u8Xbt2lnx4sVdXXO5/vrr7cUXX7QaNWpY3bp1bfXq1S47Xcv9wXQAAAAAAAAAANJFEP22226zbdu2Wd++fW3z5s120UUX2ZQpUwKTjW7YsCEk87x3794WFRXl/v/nn3+sYMGCLoD+zDPPePguAAAAAAAAAADpVZQvwuqgxMbGWu7cud0kozExMV43J03b99Zblt7k7NLF6yYAQIp6d/luS286VMrjdROQCtEHRFIdOuZ1CwAAAJCSsmZKxTXRAQAAAAAAAABI7QiiAwAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAYBNEBAAAAAAAAAAiDIDoAAAAAAAAAAGH8X3v3ASZVdTYO/Ig0sYDYISgqKjbsBeztwxIVNYpEI6KxoyaWKIoiFmyo2I29xG6wRcWosYtiLGBU7C1WEBE7Ivt/3vP9Z7/dZQcWXHaWnd/veQZ27ty5c2bO3Jlz33nve5oVuwEAAAAAAMqdIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAUMbmmmuudNddd6U5XVN5HgAAND6C6AAAUALjxo1LBx10UFpyySVTq1at0uKLL5569uyZnn766dRYNYZA9UknnZRWX331krahKbrlphvTNlttntZZY9W0x+67plfGjCl1k2hA+r+86f/ypv/Lm/6vO0F0AAAogV122SW99NJL6brrrktvvvlmuueee9Kmm26avvzyy1I3jTIz4oH709CzTk8HHHxIuuX2O9MKK3RNBx2wr/dimdD/5U3/lzf9X970/8wRRAcAgAY2ceLE9OSTT6YzzzwzbbbZZmmppZZK6667bhowYEDaYYcdKtf54x//mBZZZJG0wAILpM033zyNHj16mozsv/71r6lTp06pTZs2abfddktff/115TrPP/982mqrrdLCCy+c2rZtmzbZZJP04osvzrbndeWVV6YVV1wxtW7dOnXt2jVdcskllbe9//77OZN9+PDh+TlHe1dbbbU0cuTIatu44oorKp/PTjvtlM4999zUrl27fNu1116bBg8enF+H2FZcYlnB+PHj833ivsstt1z+YYIZu+G6a9LOv9st9dppl7Rsly5p4KDBuQ/vGv73UjeNBqD/y5v+L2/6v7zp/5kjiA4AAA1svvnmy5cojfLTTz/Vus6uu+6avvjii/TAAw+kF154Ia255pppiy22SBMmTKhc5+2330633XZbuvfee9OIESNyZvvBBx9cefs333yT+vbtm5566qn07LPP5sDytttum5fXtxtvvDGdeOKJ6bTTTkuvv/56GjJkSDrhhBNypn1Vxx9/fDrqqKPSyy+/nJZffvnUp0+fNGXKlHxblLI58MAD0+GHH55vjx8AYnsFvXv3TkceeWRaeeWV06effpovsawgAuzxQ8KYMWPy89xjjz2qvV5M6+fJk9Prr72a1u/eo3JZs2bN0vrr90hjRr9U0rYx++n/8qb/y5v+L2/6f+YJogMAQANr3rx5zqCOAHNkWW+wwQbpuOOOy8HfEEHvUaNGpdtvvz2tvfbaOfg9dOjQvO4dd9xRuZ0ff/wxXX/99TkjfeONN04XXnhhuuWWW9Jnn32Wb4/s9T333DNnhUeG+OWXX56+//779Pjjj9f7cxo0aFA655xz0s4775yWXnrp/P+f//znnClfVQTQt9tuuxxAj6D3Bx98kH8MCNH+bbbZJq8Tt8cPAnG9YJ555sk/PsTrFzXk4xLLCvbee+8clO/SpUsO4n/77bf5daS4ryZ+lX755Ze00EILVVse1yOzn6ZN/5c3/V/e9H950/8zTxAdAABKVBP9k08+ySVHtt566/TYY4/lbPMIrke5kggAx4FMIWs9Lu+991565513KrcRk5J27Nix8nr37t3T1KlT0xtvvJGvf/7552m//fbLQfgo5xJlYWK7H374Yb0+l++++y63a999963W3lNPPbVae0O3bt0q/15iiSXy/5FxH6LdUdamqprXp6fqtuedd978fAvbrk2cBTBp0qRql2JnBgAAUL6al7oBAABQrqLuZJQsiUuUPoka6JHRHRnYEWCOwHpNhfrgdRGlXGJyqPPPPz/XXW/VqlUOtE+ePLlen0cE5gv1zNdbb71qt80999zVrrdo0aLy76hpHiLwXx+qbruw/elt+/TTT8/Z8FUdf8KgNPDEk1K5WLDdgrmPak4iFtejlj5Nm/4vb/q/vOn/8qb/Z55MdAAAaCRWWmmlnNUdGelRkiXKlkRpkqqXqgc2kVEe2ewFUfc86lmusMIKlTXGDzvssFwfPOqIRxB9dpyiu9hii6UOHTqkd999d5r2RmmXuop2x2SoVdW83rJly3z6cX2IiVxjItaql6OPGZDKSYuWLdOKK62cnnv2/yZ4jR8enntuZOq22holbRuzn/4vb/q/vOn/8qb/Z55MdAAAaGCR5RMTh+6zzz65BMn888+f/v3vf6ezzjor7bjjjmnLLbfMGeO9evXKy6I+eATL77vvvrTTTjvlOumFTPbINo966VGKJALmMbFm1AoPUcblhhtuyOvH7UcffXS1GuKzIkrKxKSfVcXjREZ3PH6UjYnyNFEWJZ7TV199lY444og6bfvQQw/Ntd3PPffctP3226d//etfeWLVQsZ66Ny5c2UbfvOb3+TXLn4cmBVxv5r3/fF/5zgtK3/o2y+dcNwxaeWVV0mrrNot/e2G69IPP/yQeu20c6mbRgPQ/+VN/5c3/V/e9P/MEUQHAIAGFvXCo+zJeeedl2uG//zzz6lTp065fnlMMBpB4/vvvz8df/zxqV+/fmncuHE5MB4B5sj6LohM75jAMzLNJ0yYkH7729+mSy65pPL2q666Ku2///45sz22H5NtxqSdv0ZtAfEnn3wyl6Jp06ZNOvvss3OwPmqSr7rqqulPf/pTnbcdE6xedtllOSA/cODA1LNnzzw56UUXXVStlvzw4cPTZpttliZOnJiuueaaPKEos27rbbZNX02YkC656II0fvy4tELXFdMlf70yLeR07rKg/8ub/i9v+r+86f+ZM1dFRUVFKiORgRPZMXGqZkw0xKz79vLLU1Mz3/77l7oJAA3q2rETU1Ozd9e614umfDTFMeBJJ52U7rrrrmmywpua+GFh7NixOVDfEMoxEx0AoJy1rkOauUx0AACg0YjSNDHRamSyRymX6667rlp2PQAANDQTiwIAALnUS5SZqe2yzTbbNFg7Ro0alYPoUQomSrtccMEFuVQMAACUinIuzDLlXADmfMq5UC6MAWcsaqrHpTYxGWnHjh1TOVDOBQCgvLRWzgUAAKiL9u3b5wsAAFCdci4AAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARzYvdAAC/xs2Tbk5NTZ8F+pS6CQAAAEADk4kOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAYw2iX3zxxalz586pdevWab311kujRo2a7voTJ05MhxxySFpiiSVSq1at0vLLL5/uv//+BmsvAAAAAADlo3kpH/zWW29NRxxxRLrssstyAH3YsGGpZ8+e6Y033kiLLrroNOtPnjw5bbXVVvm2O+64I3Xs2DF98MEHqV27diVpPwAAAAAATVtJg+jnnntu2m+//VK/fv3y9Qim33fffenqq69Oxx577DTrx/IJEyakZ555JrVo0SIviyx2AAAAAABoUuVcIqv8hRdeSFtuueX/NaZZs3x95MiRtd7nnnvuSd27d8/lXBZbbLG0yiqrpCFDhqRffvml6OP89NNPadKkSdUuAAAAAADQqIPo48ePz8HvCIZXFdc/++yzWu/z7rvv5jIucb+og37CCSekc845J5166qlFH+f0009Pbdu2rbx06tSp3p8LAAAAAABNU8knFp0ZU6dOzfXQL7/88rTWWmul3r17p+OPPz6XgSlmwIAB6euvv668fPTRRw3aZgAAAAAA5lwlq4m+8MILp7nnnjt9/vnn1ZbH9cUXX7zW+yyxxBK5Fnrcr2DFFVfMmetRHqZly5bT3KdVq1b5AgAAAAAAc0wmegS8I5v8kUceqZZpHtej7nltNthgg/T222/n9QrefPPNHFyvLYAOAAAAAABzbDmXI444Il1xxRXpuuuuS6+//no66KCD0nfffZf69euXb99rr71yOZaCuH3ChAnp8MMPz8Hz++67L08sGhONAgDA7Pbiiy+mV155pfL63XffnXr16pWOO+64fGYkAADQ9JQ0iB41zYcOHZpOPPHEtPrqq6eXX345jRgxonKy0Q8//DB9+umnlevHpKAPPvhgev7551O3bt3SYYcdlgPqxx57bAmfBQAA5eKAAw7IyRyFSe9333331KZNm3T77benv/zlL6VuHgAA0JRqohf0798/X2rz2GOPTbMsSr08++yzDdAyAACoLgLokfwRInC+8cYbp5tuuik9/fTTOaA+bNiwUjcRAABoSpnoAAAwJ6moqKicn+fhhx9O2267beUZk+PHjy9x6wAAgNlBEB0AAOpo7bXXTqeeemq64YYb0uOPP5622267vPy9996rLEkIAAA0LYLoAABQR1GuJSYXjXKExx9/fOrSpUtefscdd6QePXqUunkAAEBTrIkOAABzipjc/pVXXplm+dlnn53mnnvukrQJAACYvWSiAwDATJg4cWK68sor04ABA9KECRPystdeey198cUXpW4aAAAwG8hEBwCAOhozZkzaYostUrt27dL777+f9ttvv9S+ffs0fPjw9OGHH6brr7++1E0EAADqmUx0AACooyOOOCL169cvvfXWW6l169aVy7fddtv0xBNPlLRtAADA7CGIDgAAdfT888+nAw44YJrlHTt2TJ999llJ2gQAADTCIPqjjz5a/y0BAIBGrlWrVmnSpEnTLH/zzTfTIossUpI2AQAAjTCIvvXWW6dll102nXrqqemjjz6q/1YBAEAjtMMOO6STTz45/fzzz/n6XHPNlWuhH3PMMWmXXXYpdfMAAIDGEkT/+OOPU//+/dMdd9yRlllmmdSzZ8902223pcmTJ9d/CwEAoJE455xz0rfffpsWXXTR9MMPP6RNNtkkdenSJc0///zptNNOK3XzAACAxhJEX3jhhdOf//zn9PLLL6fnnnsuLb/88unggw9OHTp0SIcddlgaPXp0/bcUAABKrG3btumhhx5K9957b7rgggtyYsn999+fHn/88TTvvPOWunkAAMBs0PzXbmDNNddMiy++eFpooYXSGWecka6++up0ySWXpO7du6fLLrssrbzyyvXTUgAAaCQ23HDDfAEAAJq+WQ6iRx3Iu+++OwfNIxtn7bXXThdddFHq06dPGjduXBo4cGDadddd02uvvVa/LQYAgAYUGed1FWdlAgAATcssBdEPPfTQdPPNN6eKior0hz/8IZ111llplVVWqbw9TmUdOnRoLu8CAABzsvPOO6/a9UgY+f7771O7du3y9YkTJ6Y2bdrkOumC6AAA0PTMUhA9sssvvPDCtPPOO6dWrVoVrZv+6KOP/tr2AQBASb333nuVf9900025dOFVV12VVlhhhbzsjTfeSPvtt1864IADSthKAACgUU0sOmjQoFyqpWYAfcqUKemJJ57Ifzdv3jxtsskm9dNKAABoBE444YScTFIIoIf4O7LVo5whAADQ9MxSEH2zzTZLEyZMmGb5119/nW8DAICm6NNPP82JIzX98ssv6fPPPy9JmwAAgEYYRI9a6HPNNdc0y7/88stcDx0AAJqiLbbYIpdtefHFFyuXvfDCC+mggw5KW265ZUnbBgAANIKa6FEDPUQAfe+9965WziWyb8aMGZN69OhR/60EAIBG4Oqrr059+/ZNa6+9dmrRokVeFpnpPXv2TFdeeWWpmwcAAJQ6iN62bdvKTPT5558/zTPPPJW3tWzZMq2//vp5UiUAAGiKFllkkXT//fenN998M73++us5uaRr165p+eWXL3XTAACAxhBEv+aaa/L/nTt3TkcddZTSLQAAlKUImi+33HL579rKHAIAAGVeE33QoEEC6AAAlKXrr78+rbrqqvmszLh069Yt3XDDDaVuFgAAUOpM9DXXXDM98sgjacEFF0xrrLHGdDNuqk60BAAATcW5556bTjjhhNS/f/+0wQYb5GVPPfVUOvDAA9P48ePTn//851I3EQAAKFUQfccdd6ycSLRXr1713Q4AAGj0LrzwwnTppZemvfbaq3LZDjvskFZeeeV00kknCaIDAEA5B9GjhEttfwMAQLn49NNPU48ePaZZHsviNgAAoOmZpZroAABQjrp06ZJuu+22aZbfeuutlRONAgAAZZqJHrXQp1cHvaoJEyb8mjYBAECjNHjw4NS7d+/0xBNPVNZEf/rpp/PcQbUF1wEAgDIKog8bNmz2tgQAABq5XXbZJT333HPpvPPOS3fddVdetuKKK6ZRo0alNdZYo9TNAwAAShlE79u37+x4fAAAmKOstdZa6W9/+1upmwEAADS2IPqkSZPSAgssUPn39BTWAwAAAACAsqmJ/umnn6ZFF100tWvXrtb66BUVFXn5L7/8Ut/tBACAkmnWrNkM5weK26dMmdJgbQIAABpZEP1f//pXat++ff770UcfnZ1tAgCARuXOO+8setvIkSPTBRdckKZOndqgbQIAABpZEH2TTTap9W8AAGjqdtxxx2mWvfHGG+nYY49N9957b9pjjz3SySefXJK2AQAAjSSIXtNXX32VrrrqqvT666/n6yuttFLq169fZbY6AAA0RZ988kkaNGhQuu6661LPnj3Tyy+/nFZZZZVSNwsAAJhNms3KnZ544onUuXPnfNpqBNPjEn8vvfTS+TYAAGhqvv7663TMMcekLl26pFdffTU98sgjOQu9qQfQo9b7XXfdNdu2v/fee6devXpNd51NN900/elPf5ruOtdee22euwkAABpFEP2QQw5JvXv3Tu+9914aPnx4vrz77rtp9913z7cBAEBTctZZZ6Vlllkm/eMf/0g333xzeuaZZ9JGG200Wx9z3Lhx6aCDDkpLLrlkatWqVVp88cVz5vvTTz+dGqP1118/HXjggdWWXXbZZTkIHwHumoHzwut3/vnnT3P7jERCz7Bhw+qh1RTcctONaZutNk/rrLFq2mP3XdMrY8aUukk0IP1f3vR/edP/5U3/z+Yg+ttvv52OPPLINPfcc1cui7+POOKIfBsAADQlUfv8xx9/zFnoUcZl5513rvVSn3bZZZf00ksv5cd788030z333JMzsr/88svUGG222Wbpscceq7bs0UcfTZ06dZpmeVzffPPN899t27aVQV5iIx64Pw096/R0wMGHpFtuvzOtsELXdNAB+zba9xr1S/+XN/1f3vR/edP/DRBEX3PNNStroVcVy1ZbbbVZ2SQAADRae+21V9ptt93y/D8R9C12qS8TJ05MTz75ZDrzzDNzcHqppZZK6667bhowYEDaYYcdKtf54x//mBZZZJG0wAIL5KD06NGjK7dx0kknpdVXXz399a9/zYHsNm3a5OcQZWkKnn/++bTVVlulhRdeOLd/k002SS+++OIstTnaGZOtfvbZZ5XLHn/88fwDRNUgepzN+sEHH+T1ayvn8t133+XXe7755ktLLLFEOuecc6o9TvyQEPf/85//nLPc41LVgw8+mFZcccV8/6233jp9+umns/R8yskN112Tdv7dbqnXTrukZbt0SQMHDU6tW7dOdw3/e6mbRgPQ/+VN/5c3/V/e9P9smlh0TJV0/sMOOywdfvjhOes8TtsMzz77bLr44ovTGWecMZNNAACAxm1my438WhEAjkvUIo/xdpRzqWnXXXdN88wzT3rggQdyADyC5VtssUXOWo9gf4jx+m233ZZrt0+aNCntu+++6eCDD0433nhjvv2bb75Jffv2TRdeeGGqqKjIAettt902vfXWW2n++eefqTZvsMEGqUWLFjn7vE+fPum1115LP/zwQ37MqCUfwfOYQylujwO07t2717qdo48+Ogff77777rToooum4447Lgf24weBEKUkI3Fn//33T/vtt1+1+37//fdp6NCh6YYbbkjNmjVLe+65ZzrqqKMqny/T+nny5PT6a6+mffc7oHJZvHbrr98jjRn9Uknbxuyn/8ub/i9v+r+86f/ZGESPQWtkecTguuAvf/nLNOv9/ve/z/XSAQCAWdO8efMcuI8gcdQVjzNBI0s85iDq1q1beuqpp9KoUaPSF198URlgj+BxBN3vuOOOHGAOUYLm+uuvTx07dszXI1i+3Xbb5WB51FgvlFQpuPzyy3NplQhi//a3v52pNs8777w5Wz6yziOIHv9vuOGGuX09evTI1yOIHv9HAL22Hwa+/fbbdNVVV6W//e1v+QeBEOVsfvOb31SuEz8QRCnJCPLHc6jq559/zq/Xsssum6/3798/nXzyyTP1PMrNVxO/Sr/88ktaaKGFqi2P6++9927J2kXD0P/lTf+XN/1f3vT/bAyiR+YIAADQMKImegS8o6xLnPUZGecxwemVV16ZS55EwLnmgU9kfr/zzjuV12NS0kIAPUTweurUqbnsSgSgP//88zRw4MAc2I6AfBxMRTb3hx9+OEttjlIrt99+e/47thnXQ/wAENf79euX/6+ZQV4QbZ88eXJab731qgXNV1hhhTo9fpSsKQTQQ5SDiedVzE8//ZQvVVXM3arWAD8AAOWrzkH0qMMIAAA0nCh7EjXL43LCCSfkGuiDBg3KJVkiQFxzws4wM5N0RimXmDzq/PPPz+P9CB5HoD0C2bMi6pyfdtpp6eOPP85ti1IqhSB6lJuJIPlHH300TQZ8fYlyMlXVPJO2ptNPPz0NHjy42rLjTxiUBp540mxpX2O0YLsFc2Z/zUnE4nrUyqdp0//lTf+XN/1f3vR/A00sWhB1DkeMGJHuueeeahcAAKD+rbTSSjkLPcq7xASeUfalS5cu1S5VD3wio/yTTz6pvB4Z7VHvspDZ/fTTT+f5jqIO+sorr5yD6OPHj5/l9kXZlpYtW6ZLLrkkl5JZa6218vJ11lknjRs3Ll199dWVZV9qE1nkEQh/7rnnKpd99dVXuc57VfEYkTX/a8VErTHRatXL0ccMSOWkRcuWacWVVk7PPTuyclmcrfDccyNTt9XWKGnbmP30f3nT/+VN/5c3/T8bM9Grevfdd9NOO+2UXnnllWrZHfF3qI8BLQAANDZPPPFEDhRH8LqqKVOmpGeeeSZtvPHG9fI4kQUUE4fus88+uQZ61P/+97//ncu57LjjjmnLLbfMGeO9evXKy5ZffvkcLL/vvvvyOH3ttdeuzGSPbPOolx4Ti0bAfLfddqusJb7ccsvlSThj/bg9JvWMyUpnVdw3JkKN2usx0WhkOBWC3lWX18wYL4jJVGMi0mhHlKqJiUWPP/74HPivqnPnzrkvokZ8BP5nNWMq7luzdMuPU1LZ+UPffumE445JK6+8Slpl1W7pbzdcl0sD9dpp51I3jQag/8ub/i9v+r+86f8GCKIffvjheVKgRx55JP8fkxrFQP/II4/MA3QAAGiKolzJp59+moO7VUUGc9xWX8kkEUyOuuDnnXdeLoESE2Z26tQp1xI/7rjjcvLK/fffnwPMUWc8srwjMB5B/MUWW6xyO5GZvvPOO+dM8wkTJuTJQiNLvCAm8YxJSCOzPbY/ZMiQyhIssypehwhwF+qhF0RJl0cffTTfPj1nn312rve+/fbb5x8P4hgjXt+qYrLQAw44IGeuR03z6ZVsYca23mbb9NWECemSiy5I48ePSyt0XTFd8tcr00JO5y4L+r+86f/ypv/Lm/6fOXNVzMKIMzI9/vWvf+WsmLZt2+YgepwSGstikPvSSy+lxioybKLNMRBfYIEFSt2cOdq3l1+empr59t+/1E2AJuPmSTenpqbPAn1SU3Pt2Impqdm7a93rQVM+6msMGBnRMRnnIossUm15lBspZHM3FieddFK666670ssvv1zqpsxRyjETHQCgnLVuPpsy0SPDJrJCCgH1OHU0gugxGdEbb7wxK5sEAIBGK7K5Q2SA77333tVKgMTYeMyYMbnMCwAA0PTMUhB9lVVWSaNHj86lXOI006jDGHUOL7/88rTMMsvUfysBAKCEIos9xEmckUxStW54od53lFppyqLUS1xqs9FGG6UHHnigwdsEAACNNog+cODA9N1331XWI4zaijFwjsl/br311vpuIwAAlNQ111xTOaFl1Ayfd955U2MX5VziUl8OPPDAPClpbX7NZKQAANAkg+g9e/asNlnR2LFj80RFCy64YD7FFQAAmqJBgwalctW+fft8AQCActPs127go48+ypcYUAugAwDQlMWkon/4wx9Shw4dUvPmzdPcc89d7QIAADQ9s5SJPmXKlDR48OB0wQUXpG+//TYvm2+++dKhhx6as3NatGhR3+0EAICSi0lFP/zww3TCCSekJZZYQhIJAACUgVkKokewfPjw4XlC0e7du+dlI0eOzDUXv/zyy3TppZfWdzsBAKDknnrqqfTkk0+m1VdfvdRNAQAAGnMQ/aabbkq33HJL2mabbSqXdevWLXXq1Cn16dNHEB0AgCYpxrsVFRWlbgYAANDYa6K3atUqde7ceZrlSy+9dGrZsmV9tAsAABqdYcOGpWOPPTa9//77pW4KAADQmDPR+/fvn0455ZR0zTXX5IB6+Omnn9Jpp52WbwMAgKaod+/e6fvvv0/LLrtsatOmzTRzAU2YMKFkbQMAAEocRN95552rXX/44YfTb37zm7Taaqvl66NHj06TJ09OW2yxRf23EgAAGkkmOgAAUF7qHERv27Ztteu77LLLNPUhAQCgKevbt2+pmwAAADTWIHqUbgEAgHL3zjvv5LFx/H/++eenRRddND3wwANpySWXTCuvvHKpmwcAADSGiUULxo0bl5566ql8ib8BAKApe/zxx9Oqq66annvuuTR8+PD07bffVpY2HDRoUKmbBwAANJYg+nfffZf22WeftMQSS6SNN944Xzp06JD23XffPNESAAA0Rccee2w69dRT00MPPZRatmxZuXzzzTdPzz77bEnbBgAANKIg+hFHHJGzcO699940ceLEfLn77rvzsiOPPLL+WwkAAI3AK6+8knbaaadplkdJl/Hjx5ekTQAAQCOpiV7V3//+93THHXekTTfdtHLZtttum+aZZ5602267pUsvvbQ+2wgAAI1Cu3bt0qeffpqWXnrpastfeuml1LFjx5K1CwAAaGSZ6FGyZbHFFqs1A0c5FwAAmqrdd989HXPMMemzzz5Lc801V5o6dWp6+umn01FHHZX22muvUjcPAABoLEH07t2754mTfvzxx8plP/zwQxo8eHC+DQAAmqIhQ4akrl27pk6dOuVJRVdaaaU8P1CPHj3SwIEDS908AACgsZRzGTZsWNp6663Tb37zm7TaaqvlZaNHj06tW7dODz74YH23EQAASq6ioiJnoF9wwQXpxBNPzPXRI5C+xhprpOWWW67UzQMAABpTEH3VVVdNb731VrrxxhvT2LFj87I+ffqkPfbYI9dFBwCAphhE79KlS3r11Vdz0Dyy0QEAgKZvpoPoP//8cz6F9R//+Efab7/9Zk+rAACgkWnWrFkOnn/55ZcyzwEAoIzMdE30Fi1aVKuFDgAA5eKMM85IRx99dPrPf/5T6qYAAACNeWLRQw45JJ155plpypQp9d8iAABopPbaa680atSoPC9QlDFs3759tQsAAND0zFJN9Oeffz498sgj6Z///Geujz7vvPNWu3348OH11T4AAGg0hg0bVuomAAAAc0IQvV27dmmXXXap/9YAAEAj1rdv31I3AQAAaMxB9KlTp6azzz47vfnmm2ny5Mlp8803TyeddFI+lRUAAMpJzBMUY+KqFlhggZK1BwAAaAQ10U877bR03HHHpfnmmy917NgxXXDBBbk+OgAAlIPvvvsu9e/fPy266KK5pOGCCy5Y7QIAAJR5EP36669Pl1xySXrwwQfTXXfdle69995044035gx1AABo6v7yl7+kf/3rX+nSSy9NrVq1SldeeWUaPHhw6tChQx4rAwAAZR5E//DDD9O2225beX3LLbdMc801V/rkk09mR9sAAKBRiSSSSCqJ+YGaN2+eNtpoozRw4MA0ZMiQnFwCAACUeRB9ypQpqXXr1tWWtWjRIv3888/13S4AAGh0JkyYkJZZZpnK+udxPWy44YbpiSeeKHHrAACAkk8sWlFRkfbee+986mrVCZUOPPDAXBOyYPjw4fXbSgAAaAQigP7ee++lJZdcMnXt2jXddtttad11180Z6u3atSt18wAAgFIH0fv27TvNsj333LM+2wMAAI1Wv3790ujRo9Mmm2ySjj322LT99tuniy66KJ+Zee6555a6eQAAQKmD6Ndcc83saAMAAMwR/vznP1ebH2js2LHphRdeSF26dEndunUradsAAIBGEEQHAIByNHXq1HT22Wene+65J02ePDltscUWadCgQWmppZbKFwAAoOmaqYlFAQCgHJ122mnpuOOOS/PNN1/q2LFjOv/889MhhxxS6mYBAAANQBAdAABm4Prrr0+XXHJJevDBB9Ndd92VJxK98cYbc4Y6AADQtAmiAwDADHz44Ydp2223rVYPfa655kqffPJJSdsFAACUSRD94osvTp07d06tW7dO6623Xho1alSd7nfLLbfkg5devXrN9jYCAFC+pkyZkseqVbVo0SL9/PPPJWsTAABQJhOL3nrrremII45Il112WQ6gDxs2LPXs2TO98cYbadFFFy16v/fffz8dddRRaaONNmrQ9gIAUH4qKirS3nvvnVq1alW57Mcff0wHHnhgmnfeeSuXDR8+vEQtBAAAmmwm+rnnnpv222+/1K9fv7TSSivlYHqbNm3S1VdfXfQ+v/zyS9pjjz3S4MGD0zLLLNOg7QUAoPz07ds3J3i0bdu28rLnnnumDh06VFsGAAA0PSXNRJ88eXJ64YUX0oABAyqXNWvWLNeYHDlyZNH7nXzyyfkgZt99901PPvlkA7UWAIBydc0115S6CQAAQDkG0cePH5+zyhdbbLFqy+P62LFja73PU089la666qr08ssv1+kxfvrpp3wpmDRp0q9sNQAAAAAA5aLkNdFnxjfffJP+8Ic/pCuuuCItvPDCdbrP6aefnsu+AAAAAADUtOA6/UvdBEroh5cuatxB9AiEzz333Onzzz+vtjyuL7744tOs/8477+QJRbfffvvKZVOnTs3/N2/ePE9Guuyyy1a7T5SKiYlLq2aid+rUaTY8GwAAAAAAmpqSBtFbtmyZ1lprrfTII4+kXr16VQbF43r//tP+AtS1a9f0yiuvVFs2cODAnKF+/vnn1xocb9WqVb4AAAAAAMAcV84lssT79u2b1l577bTuuuumYcOGpe+++y7169cv377XXnuljh075rIsrVu3Tqusskq1+7dr1y7/X3M5AAAAAADM8UH03r17p3HjxqUTTzwxffbZZ2n11VdPI0aMqJxs9MMPP0zNmjUrdTMBAAAAAChDJQ+ihyjdUlv5lvDYY49N977XXnvtbGoVAAAAAADlToo3AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAABQph577LE011xzpYkTJ6Y5WVN5HgAANE6C6AAA0AjsvffeORAcl5YtW6YuXbqkk08+OU2ZMmWG97322mtTu3btyiJQvemmm6Y//elPJW1DU3TLTTembbbaPK2zxqppj913Ta+MGVPqJtGA9H950//lTf+Xrw3WXDbdMeyA9O4/T0s/vHRR2n7TbqVuUqMmiA4AAI3E1ltvnT799NP01ltvpSOPPDKddNJJ6eyzzy51s2jiRjxwfxp61unpgIMPSbfcfmdaYYWu6aAD9k1ffvllqZtGA9D/5U3/lzf9X97mnadVeuXNj9OfTr+11E2ZIwiiAwBAI9GqVau0+OKLp6WWWioddNBBacstt0z33HNP+umnn9JRRx2VOnbsmOadd9603nrr5czwEP/369cvff3115WZ7BF8DzfccENae+210/zzz5+3+/vf/z598cUXs6Xt02tj1Wz5Bx98MK244oppvvnmq/zRoCCy7g877LC83kILLZSOOeaY1Ldv39SrV6/KbP3HH388nX/++ZXP9f3336+8/wsvvJCfb5s2bVKPHj3SG2+8MVuea1Nzw3XXpJ1/t1vqtdMuadkuXdLAQYNT69at013D/17qptEA9H950//lTf+Xt38+/VoafMk/0j2POvugLgTRAQCgkZpnnnnS5MmTU//+/dPIkSPTLbfcksaMGZN23XXXHICOjPUIFg8bNiwtsMACOSAdlwhmh59//jmdcsopafTo0emuu+7KAecIRM8O02tjwffff5+GDh2ag/tPPPFE+vDDDyvbGs4888x04403pmuuuSY9/fTTadKkSbndBRE87969e9pvv/0qn2unTp0qbz/++OPTOeeck/7973+n5s2bp3322We2PNem5OfJk9Prr72a1u/eo3JZs2bN0vrr90hjRr9U0rYx++n/8qb/y5v+h5nTfCbXBwAAZrOKior0yCOP5KztPn365KByBJw7dOiQb4/A84gRI/LyIUOGpLZt2+as7Mg2r6pqEHmZZZZJF1xwQVpnnXXSt99+mzPB60u0bUZtLAT1L7vssrTssstWBt6j7nvBhRdemAYMGJB22mmnfP2iiy5K999/f+Xt8TyjXnxkmtd8ruG0005Lm2yySf772GOPTdttt1368ccfc1Ydtftq4lfpl19+yZn/VcX19957t2TtomHo//Km/8ub/oeZI4gOAACNxD/+8Y8c3I5g89SpU3P5ld/97ne5FMryyy8/TfmUmge+NUV5kyjtEpnoX331Vd5miGD3SiutVG/tfuWVV/KB+IzaGMHvQgA9LLHEEpXlZaIczeeff57WXXfdytvnnnvutNZaa1W2e0a6detWbdshtr/kkkvWun60Ly5VVczdKpfVAQCAAkF0AABoJDbbbLN06aWX5mzryOiOkiS33nprDiZHQDz+r2p62eTfffdd6tmzZ75EiZRFFlkkB8/jepSIqU+R2V6XNrZo0aLabZE9H1n39aXq9mPbYXoB+NNPPz0NHjy42rLjTxiUBp74vzXly8GC7RbMfVZzErm4vvDCC5esXTQM/V/e9H950/8wc9REBwCARiIm5OzSpUvOnI4AelhjjTVylndkVMdtVS+FkiYRdI91qho7dmw+ED7jjDPSRhttlLp27TrbJhWtSxtnJEq1LLbYYun555+vXBbbfPHFF6utV9tznVVROiYy4Ktejj5mQConLVq2TCuutHJ67tmRlcvih4fnnhuZuq22Rknbxuyn/8ub/i9v+h9mjkx0AABoxKJEyh577JH22muvPGlmBKzHjRuXa6ZH+ZKo+925c+ecDR7LVltttVw2JQLxEXCOOuMHHnhg+s9//pMnGa2P0i3zzz9/tYzveMwZtbEuDj300JwdHsH3CPpH26MMTSGrPMRzfe655/IkqZHl3r59+1l+LlG2pWbplh+npLLzh7790gnHHZNWXnmVtMqq3dLfbrgu/fDDD6nXTjuXumk0AP1f3vR/edP/5W3eeVqmZTstUnm9c8eFUrflO6avJn2fPvrsq5K2rTESRAcAgEYuJuc89dRT05FHHpk+/vjjfJr1+uuvn37729/m23v06JED5b17987Z54MGDcq10KOW+nHHHZcnFF1zzTXT0KFD0w477PCr2rLxxhtXux6ngk+ZMmWGbayLY445Jn322Wc5GB/b3X///XP5maolYmLC0r59++aa7nGg/9577/2q50NKW2+zbfpqwoR0yUUXpPHjx6UVuq6YLvnrlWkhp/OXBf1f3vR/edP/5W3NlZZK/7zy8MrrZx21S/7/hnueTfsP+lsJW9Y4zVVRn0UI5wCTJk3Kp4rGqZoLLLBAqZszR/v28stTUzPf/vuXugnQZNw86ebU1PRZoE9qaq4dOzE1NXt3bVfqJtAIGQPOmeK08hVXXDHttttu9ZJFXxflmIkOAOVuwXX6l7oJlNAPL100w3VkogMAAI3CBx98kP75z3+mTTbZJP3000/poosuypnmv//970vdNAAAypiJRQEAgLTNNtvkGuO1XYYMGdIgbWjWrFkuQbPOOuukDTbYINdff/jhh3M2OgAAlIpMdAAAIF155ZW5xnhtfs3knTOjU6dO6emnn26QxwIAgLoSRAcAAFLHjh1L3QQAAGiUlHMBAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoIjmxW4AAKBxuHnSzamp6bNAn1I3AQAAoE5kogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAAjTmIfvHFF6fOnTun1q1bp/XWWy+NGjWq6LpXXHFF2mijjdKCCy6YL1tuueV01wcAAAAAgDk2iH7rrbemI444Ig0aNCi9+OKLabXVVks9e/ZMX3zxRa3rP/bYY6lPnz7p0UcfTSNHjkydOnVK//M//5M+/vjjBm87AAAAAABNW8mD6Oeee27ab7/9Ur9+/dJKK62ULrvsstSmTZt09dVX17r+jTfemA4++OC0+uqrp65du6Yrr7wyTZ06NT3yyCMN3nYAAAAAAJq2kgbRJ0+enF544YVckqWyQc2a5euRZV4X33//ffr5559T+/bta739p59+SpMmTap2AQAAAACAumieSmj8+PHpl19+SYsttli15XF97NixddrGMccckzp06FAtEF/V6aefngYPHlwv7QUAAAAAmpavnr+o1E2gkSt5OZdf44wzzki33HJLuvPOO/OkpLUZMGBA+vrrrysvH330UYO3EwAAAACAOVNJM9EXXnjhNPfcc6fPP/+82vK4vvjii0/3vkOHDs1B9Icffjh169at6HqtWrXKFwAAAAAAmKMy0Vu2bJnWWmutapOCFiYJ7d69e9H7nXXWWemUU05JI0aMSGuvvXYDtRYAAAAAgHJT0kz0cMQRR6S+ffvmYPi6666bhg0blr777rvUr1+/fPtee+2VOnbsmGubhzPPPDOdeOKJ6aabbkqdO3dOn332WV4+33zz5QsAAAAAADSZIHrv3r3TuHHjcmA8AuKrr756zjAvTDb64YcfpmbN/i9h/tJLL02TJ09Ov/vd76ptZ9CgQemkk05q8PYDAAAAANB0lTyIHvr3758vtXnssceqXX///fcbqFUAAAAAAJS7ktZEBwAAAACAxkwQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKaF7sBihHN0+6OTU1fRboU+omAAAAAMAcSyY6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAMA0HnvssTTXXHOliRMnzrbH6Ny5cxo2bNh014k23HXXXdNdZ++99069evWq59YBAMD/EkQHAIBGLoLEEUyOS8uWLVOXLl3SySefnKZMmTLD+1577bWpXbt2s61t3377bWrRokW65ZZbqi3ffffdc3vff//9aQLnJ5xwQv77+eefT/vvv3+dHyu2Fdt8+eWX66n1FNxy041pm602T+ussWraY/dd0ytjxpS6STQg/V/e9H950//lTf/XnSA6AADMAbbeeuv06aefprfeeisdeeSR6aSTTkpnn312qZuV5ptvvrT22mvnzPWq4nqnTp2qLX/vvffSBx98kDbffPN8fZFFFklt2rRp8DZT3YgH7k9Dzzo9HXDwIemW2+9MK6zQNR10wL7pyy+/LHXTaAD6v7zp//Km/8ub/p85gugAADAHaNWqVVp88cXTUkstlQ466KC05ZZbpnvuuSf99NNP6aijjkodO3ZM8847b1pvvfUqA9fxf79+/dLXX39dmckewfdwww035OD3/PPPn7f7+9//Pn3xxRez1LbNNtusWrD89ddfTz/++GNuZ9Xl8Xc8j+7du9daziV+INh4441T69at00orrZQeeuihao+z9NJL5//XWGON/Fw23XTTarcPHTo0LbHEEmmhhRZKhxxySPr5559n6fmUmxuuuybt/LvdUq+ddknLdumSBg4anPvgruF/L3XTaAD6v7zp//Km/8ub/p85gugAADAHmmeeedLkyZNT//7908iRI3M5lTFjxqRdd901Z61HQLpHjx45SL3AAgvkLPa4RMA9RID5lFNOSaNHj841x6NUSpSNmdUg+htvvJG3Hx599NG04YYb5ozzqkH0WB4B9DhAq2nq1Klp5513zuVqnnvuuXTZZZelY445pto6o0aNyv8//PDD+bGGDx9ebdvvvPNO/v+6667LZWziwvT9PHlyev21V9P63XtULmvWrFlaf/0eaczol0raNmY//V/e9H950//lTf/PPEF0AACYg1RUVOQg8oMPPpi6deuWrrnmmnT77benjTbaKC277LI5SB4B7FgeAem2bdvmrO3INo9LlF8J++yzT9pmm23SMsssk9Zff/10wQUXpAceeCDXOJ9ZG2ywQX6sqhnwm2yySVprrbXS+PHjcxmX8Pjjj+eAe23iOY0dOzZdf/31abXVVssZ6UOGDKm2TpR/CZFpHs+lffv2lbctuOCC6aKLLkpdu3ZNv/3tb9N2222XHnnkkZl+LuXmq4lfpV9++SW/plXF9eg7mjb9X970f3nT/+VN/888QXQAAJgD/OMf/8gB8MjijuB379690+9+97t8ALT88svn2wqXCFZHVvb0vPDCC2n77bdPSy65ZC7pEkHv8OGHH85026Ku+TrrrFMZRI/Hj1IrzZs3z9nwsfzdd9/N2y4WRI8SMFFDvUOHDpXLCmVf6mLllVdOc889d+X1KOsyo/I0UQpn0qRJ1S6xDAAAqmpe7RoAANAoRfD50ksvzRnfEWiOAPWtt96aA8cREK8aQA6FjPPafPfdd6lnz575cuONN+YM7whwx/UoETOr7Yv2vPrqq+mHH35Ia665Zl4ewfkosRLlWiLYHjXbZ4cWLVpUux7Z9/GY03P66aenwYMHV1t2/AmD0sAT/7dufDlYsN2C+b1TcxKxuL7wwguXrF00DP1f3vR/edP/5U3/zzyZ6AAAMAeISUO7dOmSM8cjgF6YYDMy0SPjOm6reolyJyGC7rFOVVE2JQ6SzjjjjFwGJkqgzOqkolWD6FGH/aabbsrlZApB/SjLEpnpkY1eKPtSmxVXXDF99NFHlXXVw7PPPlttncJ9az6fWTVgwIA86WrVy9HHDEjlpEXLlmnFlVZOzz07snJZ/Pjw3HMjU7fV1ihp25j99H950//lTf+XN/0/8wTRAQBgDhVlXPbYY4+011575Uk2o/Z4TL4ZGdb33XdfXqdz5865znnUB48al99//30OxEdA+sILL8xlVu655548yeivEWVbWrVqlbdZKA0T1l133Rygv/vuu4uWcglbbrllfj59+/bNk50++eST6fjjj6+2zqKLLponVB0xYkT6/PPPc9D714j2xqSrVS+xrNz8oW+/NPyO29I9d92Z3n3nnXTqySflswl67bRzqZtGA9D/5U3/lzf9X970/8xRzgUAAOZgMYHoqaeemo488sj08ccf51NwY6LQmFyzENw+8MADcw31yD4fNGhQOumkk9K1116bjjvuuDyhaJReGTp0aNphhx1muR1Rqz0et1APvSCC0rE8MtGnF0Rv1qxZuvPOO9O+++6bA+8R/I+2bb311pXrRAZ+LDv55JPTiSeemLPoC3XYmXVbb7Nt+mrChHTJRRek8ePHpRW6rpgu+euVaSGnc5cF/V/e9H950//lTf/PnLkqKioqUhmJyYLatm2bs1Yi04RZ9+3ll6em5t7d509NTZ8F+pS6CZSpmyfdnJqaprg/XTt2Ympq9u7aLjU19qdfzxiQuvpxSqlbAABAQ2pdhzRz5VwAAAAAAKAIQXQAAGC6ttlmmzTffPPVehkyZEipmwcAALOVmugAAMB0XXnllXmiqdq0b9++wdsDAAANSRAdAACYro4dO5a6CQAAUDLKuQAAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAU0bzYDQCN1bVjJ6amZu+u7UrdBAAAAABqIRMdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAxB9Evvvji1Llz59S6deu03nrrpVGjRk13/dtvvz117do1r7/qqqum+++/v8HaCgAAAABA+Sh5EP3WW29NRxxxRBo0aFB68cUX02qrrZZ69uyZvvjii1rXf+aZZ1KfPn3Svvvum1566aXUq1evfPnPf/7T4G0HAAAAAKBpK3kQ/dxzz0377bdf6tevX1pppZXSZZddltq0aZOuvvrqWtc///zz09Zbb52OPvrotOKKK6ZTTjklrbnmmumiiy5q8LYDAAAAANC0lTSIPnny5PTCCy+kLbfc8v8a1KxZvj5y5Mha7xPLq64fInO92PoAAAAAADCrmqcSGj9+fPrll1/SYostVm15XB87dmyt9/nss89qXT+W1+ann37Kl4Kvv/46/z9p0qR6eAbl7dsffkhNzfeT5k5NzaTU9N7rP3zb9J7TpEklPzGo3n0/6fvU1Nif5gz2pzlDQ+9PhbFfRUVFgz4uAAAw5ytpEL0hnH766Wnw4MHTLO/UqVNJ2kMj96fU5Pwx/bHUTaAODi51A6gT+9Ocwf40ZyjV/vTNN9+ktm3bluSxmTO0bvJHSMVF8lEcPw0YMCC1atWq1M2hgen/8qb/y5v+L2/6v27mqihhOk6Uc4n653fccUeeHLSgb9++aeLEienuu++e5j5LLrlknoj0T3/6v2hnTEp61113pdGjR88wE33q1KlpwoQJaaGFFkpzzTXXbHle1H/mWPzo8dFHH6UFFlig1M2BOZr9CeqHfWnOE0PeCKB36NAhlw8Eav9six+Z4uxdn23lR/+XN/1f3vR/edP/dVPSPIuWLVumtdZaKz3yyCOVQfQIcsf1/v3713qf7t2759urBtEfeuihvLw28QtKzV9R2rVrV6/Pg4YRO7KdGeqH/Qnqh31pziIDHQAAmBUlP1kxssoj83zttddO6667bho2bFj67rvvUr9+/fLte+21V+rYsWM+rSAcfvjhaZNNNknnnHNO2m677dItt9yS/v3vf6fLL7+8xM8EAAAAAICmpuRB9N69e6dx48alE088MU8Ouvrqq6cRI0ZUTh764YcfVjvltkePHummm25KAwcOTMcdd1xabrnlcimXVVZZpYTPAgAAAACApqjkQfQQpVuKlW957LHHplm266675gvlIcrxRN17kxvAr2d/gvphXwKaIp9t5U3/lzf9X970f3nT/3PAxKIAAAAAANCY/V+dFAAAAAAAoBpBdAAAAAAAKEIQHaCJm2uuufIEzI11e9AQTjrppDx5+a8Vc7XEPjBx4sQ632fvvfdOvXr1+tWPDdAYGAfMeZpKnzWV59HUX8e6jHs23XTT9Kc//Wm661x77bWpXbt29dy68jAr49XGqKk8j6b+Gnbu3DkNGzbsV3/uzAnHTILo1Ktx48algw46KC255JJ5QoLFF1889ezZMz399NMNGuSAxmj77bdPW2+9da23Pfnkk/mLZcyYMfX+uJ9++mnaZptt6n27MCftWzvvvHN65JFHfvVj9ejRI+9Tbdu2rfN9zj///HwgCFDqsXZ9MK6Ys/prTgxUN9Vjwjnt/bD++uunAw88sNqyyy67LL9Hao5rIvi10UYbzfK4py5BuDlVvDbxmsWlZcuWqUuXLunkk09OU6ZMmeF9G+KHhMYSqK7LDytzusb8Xvj2229TixYt0i233FJt+e67757b+/7770+zz55wwgn57+effz7tv//+dX6s2FZs8+WXX05zmualbgBNyy677JImT56crrvuurTMMsukzz//PActvvzyy1I3DUpu3333zfvIf//73/Sb3/ym2m3XXHNNWnvttVO3bt1mapuxv8UX8PTEAL0xqUuboaH3rbq+L2Odmd2nZibgDtDYx9qNbVzRmDWG/qLxmNPeD5tttlm68847qy179NFHU6dOnXLgNQKCBXG9b9+++W/jnmlFskeMSX/66ad0//33p0MOOSQHLAcMGFDqptHAGut7Yb755svHTLEvR+C8IK7X3Offe++99MEHH6TNN988X19kkUVS2aiAevLVV19VxFvqsccem+46++67b8XCCy9cMf/881dsttlmFS+//HK+7Zprrsn3r3qJZeGDDz6o2GGHHSrmnXfefL9dd9214rPPPqvcbmxj0003rZhvvvny7WuuuWbF888/n28bP358xe67717RoUOHinnmmadilVVWqbjppptm++sBNf38888Viy22WMUpp5xSbfk333yT37uXXnppxZNPPlmx4YYbVrRu3briN7/5TcWhhx5a8e2331auu9RSS1WcfPLJFX/4wx/ye71v374VP/30U8UhhxxSsfjii1e0atWqYskll6wYMmRI5X1iX7rzzjsrr3/00Ud5n1hwwQUr2rRpU7HWWmtVPPvss5W3X3LJJRXLLLNMRYsWLSqWX375iuuvv75ae2tub8yYMXlfjja3b9++Yr/99svPqSDauOOOO1aceuqpFUsssURF586d6/FVhbrtW4MGDapYbbXVZvi+fPrpp/N6sS/FvhHv9XjPv/TSS/n2Rx99NF+P77MQ31Nt27atGDFiREXXrl3z91TPnj0rPvnkk2keq+CXX36pOPPMMyuWXXbZipYtW1Z06tQpt6PgL3/5S8Vyyy2Xv7OWXnrpioEDB1ZMnjx5Nr6CQFMZa8ft8T2+9dZb5+/l+Ay5/fbbq63z4Ycf5rF0fHbFWCDG2O+99161da666qqKlVZaKX9GxfgixhnFxgEz2l58bq6zzjp5zBHr9OjRo+L999+vaOp+7bFRKHx3XXbZZXlcGN8L8VpPnDixcp1Ro0ZVbLnllhULLbRQxQILLFCx8cYbV7zwwgvVHqdmn03PjNa94oor8vddfE+usMIKFRdffHHlbdHvcf+///3v+dgs2tutW7eKZ555pto2Lr/88srn06tXr4pzzjknvzdmdEwYf8fjx33ivl26dKm4++67K+YEc+L74cEHH8zrfvrpp5XLYrwVfR7HJAXvvvtuXi/29drGPXEsE8cuMUaKz5OhQ4dWbLLJJhWHH354vj3+rtnndR1jzQlqvh5hq622qlh//fUrfvzxx4ojjzwyxyriM3LdddetfB0LY86ql3gPhDg+i3FqjHOjT/r06VPx+eefV26/5nh1ema07vTaWNd+irF6HNfGenG8GGPdvfbaq/J1ideo5nONz5NC2x5++OH8fOM9371794qxY8dWzIka+3thwIAB+XO94LXXXst9FrGFaHvB1Vdfnb8Dfvjhh3w9Pg/OO++8ytvffPPNio022iivs+KKK1b885//rPa5U/O5xGdA1dfn7LPPzp8V8V45+OCDG9VxkHIu1OsvV3GJ0//iV7Xa7LrrrumLL75IDzzwQHrhhRfSmmuumbbYYos0YcKE1Lt373TkkUemlVdeOZ8mGpdYNnXq1LTjjjvmdR5//PH00EMPpXfffTffVrDHHnvk7MM4jSS2e+yxx+Zf88KPP/6Y1lprrXTfffel//znP/k0kz/84Q9p1KhRDfbaQGjevHnaa6+98qlY//vd8b9uv/329Msvv6Tu3bvnX6YjSyXKutx6663pqaeeSv3796+2naFDh6bVVlstvfTSS/kUqgsuuCDdc8896bbbbktvvPFGuvHGG/PpVcVO09pkk03Sxx9/nO8zevTo9Je//CXvZyGyTQ4//PC8L8b+csABB6R+/frlrJPafPfdd/k01AUXXDDvf/FcHn744WnaHFk20bbYf//xj3/Uw6sJdd+3+vTpU+v9ar4vJ02alEvDrLrqqunFF19Mp5xySjrmmGNm+Pjff/993i9vuOGG9MQTT6QPP/wwHXXUUUXXj0yTM844I++/r732WrrpppvSYostVnn7/PPPn59L3BanRF9xxRXpvPPOm+nXBSi/sXaIz5YYS8R3fIyRI6Ps9ddfz7f9/PPP+Xs7Pmei3FWUkYhtxvgjMmTDpZdemjPjYsz8yiuv5PFCnHJemxltL05Rj/qmMfaIsc3IkSPzduM07qbu1x4bFbz99tt5jHfvvfemESNG5PHfwQcfXHn7N998kzOAY8z47LPPpuWWWy5tu+22eXl9izHmiSeemE477bT8nhoyZEh+v0VmdVXHH398/h6MU/WXX375/D1cKFcQ75EoERLjzbh9q622ytsrKHZMWDB48OC022675fdTPM94j1d9vRqrOfH9sMEGG+Rj6sJxQIxLfvjhh3wGYGTPRzZqiNtbt26dj2Vqc/TRR+fj+Lvvvjv985//zBmtMc4qGD58eD6Wj7IWhT6f1THWnGKeeebJn5FxzBSfi1FCI97T8R6Iz8+33norlxCMEjcLLLBA5etSeO7x2Rvj1Picj/dUlMeoemZAfZpeG+vaT2eeeWb+/IgM7PgMiDF31bJRMd6N989+++1X+Vwj+7nqZ8o555yT/v3vf+dx/z777JOaisb0XoizT+LYqLAPxr694YYb5ozz2G8LYnn0V+z3NUVcIcpoxtm7zz33XC4BVfN4qhCLi7hBPFZ8BlTd9jvvvJP/j++WOCZqVGUxSx3Fp2m54447cgZKZL5Elkn8kjV69Oh8W2TYxq/h8QtbVZGJ99e//jX/XTNTMMSvVnPPPXfOcil49dVX8y9W8Ut7iF/qr7322jq3c7vttsu/8kFDe/3116tlaoT4lXbPPffMmSf7779/tfVjv2nWrFm1X3kj+6aq+FV/8803r5g6dWqtj1n1V9/Y12J/+fLLL2tdN/bbyCSvKjJctt1221q3F5lEsc9XzZa/7777cpsLZ4vEL8rxq3hkzEMp9q1QWyZ6zfdlZKxH5lZhfwuR8TajTPS4/vbbb1feJzK0Ytu1ZZ1MmjQpZ2XEdusqsjEiwwRgemPtEJ9HBx54YLX7rLfeehUHHXRQ/vuGG27IWWZVxwzxORjZfZF1GiIL7vjjjy/ahqrjgBltL8YbM8q+bcrq49gojoP++9//Vt7+wAMP5HFW1ezgquJspxjr3XvvvfWeiR5tq3lGb5wFFpmhVTPRr7zyymmO2+J7OvTu3Tsfi1W1xx57VGaiFzsmLLQtzs4qiPFnLIvXZE4wJ74fNthgg8rjkxjfFI4J/ud//idno4bIMo+s+drGPXFWYJzRctttt1XeHp8L8RlRyESvLZO1rmOsOUHV1yM+Kx966KE8Ftx7771zf3788cfV1t9iiy3ye6NqlveMxFn48VoVzgaur0z0qAhQlzbOqJ/i7xjPFkyZMiWfPV01K7vq2Qk12xaZ6FWPNWNZ1fH6nKKxvxe+++67vL8WPucjDnDWWWflMwniDIN33303L4++Gzx4cK37b3z3N2/evNpzic+pqp87he+KwvFV1dcnthXvj4JoQ3xvNBYy0alXkfXyySef5IyV+NUsfq2KX9Djl6P4ZSyyYBdaaKHKX+LjEr9gxy9NxUSWQ/wKWfWXyJVWWilPqlDIqjniiCPSH//4x7Tlllvm7L6q24ssxPhlLjIL27dvnx/zwQcfzL+OQkPr2rVr/iX56quvrswmicytyOiIfST2lar7R2R3xa+5hUyPELXKqopfmiOTZ4UVVkiHHXZYzvAoJtZbY4018r5Qm9inIuukqrhe2NdqWz+y4uedd95q60eb41fsgtj/1EGnVPtWMTXfl/GejdrpVbMq1l133Rk+dps2bdKyyy5beX2JJZbImWTF9pnIQIvMsmLiLJTYj6LucHwODBw40HcWMMOxdkHNbNC4Xvgej7FGfD5G5nhhrBFjgjhzM8bP8dkV25/eZ1RVM9pe/B3jlBjPxJk+kW1YNcu0qauPY6OYhLJjx47V+rPqOCvqakf2ZmQcRy3qyFSM7db390acfRjtiu/Vqu099dRTpzmWqzoPSXwnhsL3YrS75ndrXb5ra9t2jD/j+Rb7zm1s5sT3Q0z2WMhAjf/jeoizS6oujwzW2kTbI8t2vfXWq1wWnwtx3FIXMzPGaszijMfozxhjxsTMcXbF7373uxyriLM1qvZ5ZO1PLz4S4kyF+EyN90N8/kZ/hPre7+NspLq0cXr99PXXX+f3ZdX9fO65587VAupqep8pc5rG/F6IflxnnXUq9+14/NjnI/s/jrMee+yxXBUitl1sny/E7zp06FC5rNhZKrWJs5Di/dFY93kTi1Lv4sMgTsuLS5zeF8HtQYMG5dPMYgeoehpIwa+dZThmcP/973+fS7bE6W/xeHEazE477ZTOPvvsPGCP018iYBKDrZj1uXDKKjS0OPg49NBD08UXX5xPaYsBR3zZxQA3yqdEILym+FIsqBqwDjH4jgF2vPfjlKg4xTV+ULrjjjtqPV2sFGq2GRpy35rd78tC+bCCKFNQtazMzOyDcRpnnJoep6tH0CkOgOP7LE5hBZjeWLsup2/HWCMCF3FafU0xMVizZjOXYzWj7YX4PI6xTZSeiB8J44fBKKO1/vrrp3Iwu4+NonRHlNaI452llloqtWrVKgcs6vtYJ/o6RImxqgHRUDXgUfN7sVC6p1A6cHZ859bXthvCnPZ+iEBZlNuJUpDRtkIJiRhf/fWvf80Bvo8++qhygsH6NjNjrMYsXscolRXJGxFcjKBkfB7GvhNB0Jr7UARQiymU04xLfPbGZ20ENeP67Njv69LG2d1Ps/MzpaE19vdCtC/a8+qrr+byTRFrKOzzjz76aH7dI9he83ugvjT2z3iZ6Mx2kTUeO3fsfJ999ln+kIi6ilUvCy+8cF43PkjiF7iqVlxxxfzFHJeCqMc2ceLEvO2C+NXuz3/+c87CjRpMMWAPUXMraqrvueeeOWM2ZkJ/8803G+z5Q00R5I6D1KiDfP311+eabvHlEPtIvLdr7h9xmVEWd2SZxK/YcWATX3p///vfa60PGb/iRzZ6sdqRsb/FPlNVXK+6r9VcPzJnYh+vun48v7pmmMDs3rfqKt6zkXFTtVZp1PqvT5EZFoH0qMdem2eeeSYf9EbtxzjrJNb/4IMP6rUNQNMcaxdEHeSq4np8X4cYa0R91UUXXXSasUb8aBdZbDGvSrHPqJpmtL2COAsu5oOIz7hVVlklf06Xq5k5NgoREIns5ar9WXWcFeOu+JEi6l5HBl8ETcePH1/v7Y65OyLgE1mINdu79NJL13k70e6a3601r9d2TNhUNfb3Q2SfRn9ccskllXONhchWHTduXD4DMJISip1NEAkNERSL2sgFX3311TTH4029z+M1ir6MxKjo48LnYjznyLKt2edxNmKx12Xs2LH5h5I4A3+jjTbKZ2POrkzdurRxRuK7ID4/qu7nsc2qdfHL4T0wp7wXIoge3+vxPR310AtB/Y033jhnpsePaXHGbLH4RCF+V/Wss5rjksJ958T+FkSn3sTOG79A/+1vf8sTIURmbEzqdtZZZ+UgdmTGxq/gMblQBLpjwoMYSEegICaICDFoj/tFkC++7COQEfeLDPLIzIsP2piEICaQi1/CIsAQv47FJAyxM0egIQYO8QFdOFiIAERku8RjxaklkekbpxNBqcSvyRHwjoPJ+HIpZI7FhBvxPo33c+wD8eUVE/DUnKSzpnPPPTfdfPPN+Us0BqSx38WXbW1ZKzGxU9wW+2HsK3EgFAH3yH4tTPwTp5TGr+Px+LHtmOij2AQ+sV9GRk1kvcREpPHrdGQCx+S9VSdKhFLuW3UVZzRFpkNMehffF1H6KyZJCvU1CV7sL7Gvx4S+EeiPDK4YWF511VWV31lxgBzZ53FbTBwcE/4CzGisXRDLIrAVY4LIcI2xc2EsEd/bEZCL9aPkVWwjxtARdPvvf/9beYZnnP0Snz8xFojx94UXXlhrm2a0vbgen8kxzohxehwDxDYL4/SmrD6OjUJhnBVJC/Eax2sbPxoXAivxvRGT+cX3VgQqo09+7ZmHheOxqpcI9MZZUqeffnp+b8T7K354jsSlGC/WVYwT77///nyfeC9ENnOcTVn1e7a2Y8I53Zz6foj7xlkj8RkQgbNCQC2CYFWX18werTo2izMF4xjjX//6Vz5eiPFZzbNeos9jQsrIeJ8dPwI1RpEEGP0TsY043or3RHxexz4WZ9gXXpfIBo8fNuN1iQk8I/gar3+89nEsF+WBonztrxX7c9V9Pt5jdWljXff7uE8c20bpoZhYOH5Mqbnfx3s23vvxXBtT9nE5vRfih7P48S22WfWM3vih7Isvvsh9WKyUS4jPsng+VT+n4nOsqvjhPT5b4gy1iM1FyZ85RqmLstN0xCQoxx57bMWaa66ZJzxo06ZNnmgoJn/5/vvvKydUi0kQY8KiFi1aVHTq1ClPJFOYNDS2scsuu1S0a9cuTzQQkycUJrTYYYcd8mQGMTFKTC5QmLQwJi/afffd87ZiEoTYdv/+/SsnmoiJS2Lyhvnmm69i0UUXze3Za6+9qk1iAQ3tmWeeye/xqhN2hpgsd6uttsrv13i/d+vWreK0006b7qQ7Mbnn6quvntePCYliApIXX3yx6ORB77//ft7PYt3YT9dee+2K5557rvL2Sy65pGKZZZbJ++jyyy9fcf3111d7vJrbGzNmTJ5MKCZJat++fZ6YtDCRSc0JVKBU+1ZtE4vW9r58+umn834X3ycxmWdMrBPbGzt2bNGJRWtO8hP7R9UhVs3Hikm+Tj311Lw/x34Wk/MMGTKk8vajjz46T3AanwMxkU7s83WZSAho2uoy1o7PnpjQLcYSMVlZ586dK2699dZq24kJCGMsvPDCC+d14js/vru//vrrynUuu+yyvO34jFpiiSXy+L3YOGB624vxekyIHtuIz9X43DvxxBPz52BTVx/HRoXvrhibxTox1vrd735XMWHChMrHiTFfjOXituWWW67i9ttvn2a8OLMTi9Z2iYkvw4033pjHndGfMUnmxhtvXDF8+PCik8XF92XNib9j7NqxY8c8uWS8P+I7cfHFF6/22tV2TFjb84jXtnB7Yzanvh8Kjxv3OeOMM6otP+mkk/Ly008/vdrymuOeOC6Iid7jOccEkzFRYc1JJEeOHJnHX/EZUhhD1WWMNSeY3rHQ5MmT82difFYXPm932mmnfHxVEJNFx7gwnnf0RYjxadwnXq+Y2Peee+6ptu/NysSiNS8x0WVd2liXfoqJKSNGE8ef8blxzDHH5JhOxHEK3njjjYr1118/fy7EfePzpLbnEc+xcPucprG/Fwpi/4z7PPvss9WWb7rppnl57K9V1fyMib7ccMMN8/dExBNGjBgxzefOFVdckT/jYmLkeLxir098ThRubwzmin9KHcgHAGiMor5gv379coZEqeYUAKiryOqLs1cim5U5X5wVcNddd+Ws0KYsJsKMMyojY5HiyuX9QNMXWeZxRlKcRVEfWfTQUEwsCgDw/0WJlZg7o2PHjvkUxCi9EgN8AXQAqB9RKi0m1ozawFHK5brrrss1t4GmqVDOK8qDRHmmiy66KJcsiVKKMCdREx0A4P+LSb1iIurIjonJqnfdddd0+eWXl7pZAPCrDRkyJNeoru2yzTbbNFg7otZvBNFj3qvLLrss11j/4x//2GCPT+N6PzB7RV8W6+d4DzSEqIEf827FhLRRQz/qrz/88MNlMT9GY9IY3gtzOuVcAAAAoImbMGFCvtQmzriKs7AoH94P5SEma/3hhx9qva19+/b5QnnwXvj1BNEBAAAAAKAI5VwAAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QGoZq655kp33XVXqZsBAABlZ0Zj8cceeyyvM3HixHz92muvTe3atZvuNk866aS0+uqrp1KpSxsBGjtBdIBGZNy4cemggw5KSy65ZGrVqlVafPHFU8+ePdPTTz/dYG349NNP0zbbbNNgjwcAAOXgs88+S4ceemhaZpll8li/U6dOafvtt0+PPPJInbfRo0ePPF5v27ZtvbXr/fffz4H5RRddNH3zzTfVbovgewThAcpd81I3AID/s8suu6TJkyen6667Lg+uP//88zyo/vLLLxusDRG4BwAAUr0GqjfYYIOckX322WenVVddNf3888/pwQcfTIccckgaO3ZsnbbTsmXL2TZejwD60KFD0+DBg2fL9gHmZDLRARqJOCXzySefTGeeeWbabLPN0lJLLZXWXXfdNGDAgLTDDjvkdSJD5NJLL82Z4vPMM08OtN9xxx3VtvPRRx+l3XbbLQ/Q27dvn3bcccc8aK/q6quvTiuvvHLOgFliiSVS//79i55COqPtxSml0c555503rxMHBx988MFsfKUAAGDOcvDBB+dx9qhRo3LizPLLL5/H40cccUR69tlnq607fvz4tNNOO6U2bdqk5ZZbLt1zzz1Fy7nU5owzzkiLLbZYmn/++dO+++6bfvzxxzq1MbLkzz333PTFF18UXeerr75Ke+21V1pwwQVz++K45K233pqmfEucWRu3x/OoLSHo7rvvTmuuuWZq3bp1PqaJwP2UKVPybRUVFTn7vXB2bocOHdJhhx1Wp+cAMLsIogM0EvPNN1++RAD7p59+KrreCSeckAfeo0ePTnvssUfafffd0+uvv55vi2yWKP8SA+YIyEcZmNjm1ltvnTPcQwThI9tl//33T6+88koelHfp0qXWx5rR9mKg26tXr7TJJpukMWPGpJEjR+btxsAeAABIacKECWnEiBF5DB6JJzXVrBceAeVIYonx9bbbbpvH/LGNurjttttyAHrIkCHp3//+d06YueSSS+p03z59+uTjgpNPPrnoOnvvvXfebhxDxNg/At7RxjhuCM8991wO3EeSzssvv5yTg0499dRq24jjigjEH3744em1115Lf/3rX3Pg/bTTTsu3//3vf0/nnXdeXh4B+jg+isx9gJKqAKDRuOOOOyoWXHDBitatW1f06NGjYsCAARWjR4+uvD0+tg888MBq91lvvfUqDjrooPz3DTfcULHCCitUTJ06tfL2n376qWKeeeapePDBB/P1Dh06VBx//PFF2xCPceedd9Zpe19++WVe/7HHHqvHVwEAAJqO5557Lo+Zhw8fPsN1Y72BAwdWXv/222/zsgceeCBff/TRR/P1r776Kl+/5pprKtq2bVu5fvfu3SsOPvjgaY4XVltttaKP+d577+VtvvTSSxUjRoyoaNGiRcXbb7+db4v7DRo0KP/95ptv5vWefvrpyvuOHz8+Hxvcdttt+XqfPn0qtt1222rb7927d7U2brHFFhVDhgyptk4cdyyxxBL573POOadi+eWXr5g8efIMXy+AhiITHaARiQzzTz75JGd2RLZ3nK4ZpzlGZkZB9+7dq90nrhcy0SM7/e23386Z44XM9ijBEqdwvvPOO/nUzNj+FltsUaf2zGh78Xdko0S2ekyKdP755+eJjgAAgP/1v7HxuuvWrVvl35G5vsACC0y3xEpVcVyw3nrrVVtW8/hhemJcv+GGG+azX2vbdvPmzattf6GFFkorrLBC5fFIXR4/jjEi271wfBGX/fbbLx9HfP/992nXXXdNP/zwQy7zEsvvvPPOylIvAKViYlGARibqAm611Vb5EoPXP/7xj2nQoEE5WD0j3377bVprrbXSjTfeOM1tiyyySGrWbOZ+O53R9sI111yTaxTGKaq33nprGjhwYHrooYfS+uuvP1OPBQAATVHUNY9yh3WdPLRFixbVrsd9p06dmhpK1FSPwPfRRx89W7YfxxhRsmbnnXeu9VioU6dO6Y033kgPP/xwPq6IevIxGevjjz8+zWsD0FBkogM0ciuttFL67rvvKq/XnHgorq+44or578haj7qBiy66aK5nWPXStm3bnFHeuXPn9Mgjj9TpsWe0vYI11lgjT4D6zDPPpFVWWSXddNNN9fb8AQBgThZnb0aG98UXX1xtXF8wvUlCZ1YcF0Rd8qpqHj/MyLrrrpsD3Mcee+w0246M8Krbj0lDI+Adxyx1ffw4xoj71Dy+iEsh6WeeeebJZ7pecMEF+ezcqL8e8zkBlIogOkAjEQPQzTffPP3tb3/Lkwi999576fbbb09nnXVW2nHHHSvXi2VXX311evPNN3OG+qhRo/LEPSEmHVp44YXz+jFhT2wjBp2RKf7f//43rxMTDZ1zzjl5QBoB8hdffDFdeOGFtbZpRtuL6xE8j0HtBx98kP75z3/mbRaC+gAAQMoB9F9++SUHqGPizBgzR+mTGJPPTLmVGYnJOuNYIc4WLRwvvPrqqzO9nZjk81//+lcOdlfNqI/jgiix8tRTT+WyLHvuuWfq2LFj5fFK4QzVoUOH5ud40UUX5etVnXjiien666/P2ejRtngdbrnllnxGa4hSlldddVX6z3/+k9599918fBRB9aWWWupXvz4As0oQHaCRiFqAUT8wZqLfeOONc0Z3lHOJQWoMPgtisBmDzKiVGIPPm2++uTLzo02bNumJJ55ISy65ZM4eiWD2vvvum2uYRy3F0Ldv3zRs2LB0ySWXpJVXXjn99re/zQPc2sxoe3F7nJYatdyXX375tP/++6dDDjkkHXDAAQ30qgEAQOMX9b0jeWWzzTZLRx55ZB7rR/nGOEP00ksvrbfH6d27dz6G+Mtf/pLLMkaiy0EHHTTT24mx/T777JPH/VVFcD62G8cQEfyPeu/3339/ZZmVKOl4xRVX5LmSVltttZxkUwiOF0RW/j/+8Y982zrrrJPvE8dAhSB5u3bt8jY22GCDfMwTZV3uvffeXH8doFTmitlFS/boAMyUqIcYE+v06tWr1E0BAAAAKAsy0QEAAAAAoAhBdAAAAAAAKKJ5sRsAaHxU4AIAAABoWDLRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAINXu/wH2pzQc3qXR8QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x1200 with 5 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:__main__:Saving model and results\n",
"INFO:__main__:Saved trained model as 'bayesian_network_model.pkl'\n",
"INFO:__main__:Saved inference results as 'inference_results.json'\n",
"INFO:__main__:Saved processed data as 'processed_iris_data.csv'\n",
"INFO:__main__:Saved model summary as 'model_summary.json'\n",
"INFO:__main__:Bayesian Network implementation completed successfully!\n",
"INFO:__main__:Final model accuracy: 0.8444\n",
"INFO:__main__:All artifacts saved for future reference\n"
]
}
],
"source": [
"# Installation commands for Google Colab and local Mac\n",
"# !pip install pgmpy pandas numpy matplotlib seaborn scikit-learn\n",
"\n",
"import logging\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from pgmpy.models import DiscreteBayesianNetwork\n",
"from pgmpy.factors.discrete import TabularCPD\n",
"from pgmpy.inference import VariableElimination\n",
"from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator\n",
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import KBinsDiscretizer\n",
"import json\n",
"import pickle\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"# Configure logging\n",
"logging.basicConfig(\n",
" level=logging.INFO,\n",
" format='%(asctime)s - %(levelname)s - %(message)s',\n",
" handlers=[\n",
" logging.FileHandler('bayesian_network_training.log'),\n",
" logging.StreamHandler()\n",
" ]\n",
")\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"def load_and_prepare_data():\n",
" logger.info(\"Loading and preparing Iris dataset for Bayesian Network\")\n",
" \n",
" # Load Iris dataset\n",
" iris = load_iris()\n",
" df = pd.DataFrame(iris.data, columns=iris.feature_names)\n",
" df['species'] = iris.target\n",
" \n",
" logger.info(f\"Original dataset shape: {df.shape}\")\n",
" logger.info(f\"Features: {list(df.columns)}\")\n",
" \n",
" # Discretize continuous features into categories\n",
" discretizer = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='quantile')\n",
" \n",
" # Create meaningful feature names\n",
" feature_mapping = {\n",
" 'sepal length (cm)': 'Sepal_Length',\n",
" 'sepal width (cm)': 'Sepal_Width', \n",
" 'petal length (cm)': 'Petal_Length',\n",
" 'petal width (cm)': 'Petal_Width'\n",
" }\n",
" \n",
" df_processed = df.copy()\n",
" for old_name, new_name in feature_mapping.items():\n",
" discretized_feature = discretizer.fit_transform(df[[old_name]]).flatten()\n",
" df_processed[new_name] = discretized_feature.astype(int)\n",
" logger.info(f\"Discretized {old_name} -> {new_name}: {len(np.unique(discretized_feature))} bins\")\n",
" \n",
" # Create final dataset with meaningful names\n",
" final_df = df_processed[['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'species']].copy()\n",
" final_df.rename(columns={'species': 'Species'}, inplace=True)\n",
" \n",
" logger.info(f\"Final processed dataset shape: {final_df.shape}\")\n",
" logger.info(f\"Species distribution: {final_df['Species'].value_counts().to_dict()}\")\n",
" \n",
" return final_df\n",
"\n",
"def create_network_structure():\n",
" logger.info(\"Creating Bayesian Network structure\")\n",
" \n",
" # Define network structure based on botanical knowledge\n",
" # Species influences all physical characteristics\n",
" model = DiscreteBayesianNetwork([\n",
" ('Species', 'Sepal_Length'),\n",
" ('Species', 'Sepal_Width'),\n",
" ('Species', 'Petal_Length'),\n",
" ('Species', 'Petal_Width'),\n",
" ('Petal_Length', 'Petal_Width') # Petal dimensions are correlated\n",
" ])\n",
" \n",
" logger.info(f\"Network nodes: {model.nodes()}\")\n",
" logger.info(f\"Network edges: {model.edges()}\")\n",
" logger.info(\"Network structure created successfully (DAG validation will occur after parameter learning)\")\n",
" \n",
" return model\n",
"\n",
"def learn_parameters(model, data):\n",
" logger.info(\"Learning network parameters using Maximum Likelihood Estimation\")\n",
" \n",
" # Fit the model to data\n",
" model.fit(data, estimator=MaximumLikelihoodEstimator)\n",
" \n",
" # Now we can check if the model is valid\n",
" try:\n",
" model.check_model()\n",
" logger.info(\"Model validation passed - all CPDs are properly defined\")\n",
" except Exception as e:\n",
" logger.warning(f\"Model validation warning: {e}\")\n",
" \n",
" logger.info(\"Learned Conditional Probability Distributions:\")\n",
" for cpd in model.get_cpds():\n",
" logger.info(f\"CPD for {cpd.variable}:\")\n",
" logger.info(f\" Variables: {cpd.variables}\")\n",
" \n",
" # Use the correct attribute name for cardinalities\n",
" try:\n",
" if hasattr(cpd, 'cardinality'):\n",
" logger.info(f\" Cardinality: {cpd.cardinality}\")\n",
" elif hasattr(cpd, 'get_cardinality'):\n",
" logger.info(f\" Cardinality: {cpd.get_cardinality()}\")\n",
" else:\n",
" logger.info(f\" Shape info: {cpd.values.shape}\")\n",
" except Exception as e:\n",
" logger.info(f\" Shape info: {cpd.values.shape}\")\n",
" \n",
" logger.info(f\" Values shape: {cpd.values.shape}\")\n",
" \n",
" # Log a sample of the probability values\n",
" if cpd.values.size <= 20: # Only for small CPDs\n",
" logger.info(f\" Sample values: {cpd.values.flatten()[:5]}\")\n",
" \n",
" return model\n",
"\n",
"def perform_inference(model, evidence_scenarios):\n",
" logger.info(\"Performing probabilistic inference\")\n",
" \n",
" # Create inference object\n",
" inference = VariableElimination(model)\n",
" results = {}\n",
" \n",
" for scenario_name, evidence in evidence_scenarios.items():\n",
" logger.info(f\"Inference scenario: {scenario_name}\")\n",
" logger.info(f\"Evidence: {evidence}\")\n",
" \n",
" try:\n",
" # Query probability of each species given evidence\n",
" result = inference.query(variables=['Species'], evidence=evidence)\n",
" \n",
" logger.info(f\"Results for {scenario_name}:\")\n",
" for i, prob in enumerate(result.values):\n",
" species_name = ['Setosa', 'Versicolor', 'Virginica'][i]\n",
" logger.info(f\" P(Species={species_name}|Evidence) = {prob:.4f}\")\n",
" \n",
" results[scenario_name] = {\n",
" 'evidence': evidence,\n",
" 'probabilities': result.values.tolist(),\n",
" 'species_names': ['Setosa', 'Versicolor', 'Virginica']\n",
" }\n",
" except Exception as e:\n",
" logger.error(f\"Error in inference for {scenario_name}: {e}\")\n",
" results[scenario_name] = {\n",
" 'evidence': evidence,\n",
" 'error': str(e)\n",
" }\n",
" \n",
" return results\n",
"\n",
"def visualize_network_and_results(model, inference_results, data):\n",
" logger.info(\"Creating visualizations\")\n",
" \n",
" # Set up the plotting style\n",
" plt.style.use('default')\n",
" fig, axes = plt.subplots(2, 2, figsize=(15, 12))\n",
" \n",
" # Plot 1: Data distribution\n",
" species_counts = data['Species'].value_counts().sort_index()\n",
" axes[0, 0].bar(species_counts.index, species_counts.values, alpha=0.7, edgecolor='black')\n",
" axes[0, 0].set_title('Species Distribution in Dataset')\n",
" axes[0, 0].set_xlabel('Species (0=Setosa, 1=Versicolor, 2=Virginica)')\n",
" axes[0, 0].set_ylabel('Count')\n",
" axes[0, 0].set_xticks([0, 1, 2])\n",
" \n",
" # Plot 2: Feature correlation heatmap\n",
" correlation_matrix = data.corr()\n",
" sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[0, 1], fmt='.3f')\n",
" axes[0, 1].set_title('Feature Correlation Matrix')\n",
" \n",
" # Plot 3: Inference results comparison\n",
" valid_results = {k: v for k, v in inference_results.items() if 'probabilities' in v}\n",
" if valid_results:\n",
" scenarios = list(valid_results.keys())[:3] # Plot first 3 valid scenarios\n",
" species_names = ['Setosa', 'Versicolor', 'Virginica']\n",
" x = np.arange(len(species_names))\n",
" width = 0.25\n",
" \n",
" colors = ['skyblue', 'lightcoral', 'lightgreen']\n",
" for i, scenario in enumerate(scenarios):\n",
" probs = valid_results[scenario]['probabilities']\n",
" axes[1, 0].bar(x + i*width, probs, width, label=scenario, alpha=0.8, color=colors[i])\n",
" \n",
" axes[1, 0].set_xlabel('Species')\n",
" axes[1, 0].set_ylabel('Probability')\n",
" axes[1, 0].set_title('Inference Results Comparison')\n",
" axes[1, 0].set_xticks(x + width)\n",
" axes[1, 0].set_xticklabels(species_names)\n",
" axes[1, 0].legend()\n",
" axes[1, 0].set_ylim(0, 1)\n",
" else:\n",
" axes[1, 0].text(0.5, 0.5, 'No valid inference results', \n",
" ha='center', va='center', transform=axes[1, 0].transAxes)\n",
" axes[1, 0].set_title('Inference Results (No Valid Results)')\n",
" \n",
" # Plot 4: Model structure visualization (simplified)\n",
" # Create adjacency matrix for network structure\n",
" nodes = list(model.nodes())\n",
" adj_matrix = np.zeros((len(nodes), len(nodes)))\n",
" node_to_idx = {node: i for i, node in enumerate(nodes)}\n",
" \n",
" for edge in model.edges():\n",
" i, j = node_to_idx[edge[0]], node_to_idx[edge[1]]\n",
" adj_matrix[i][j] = 1\n",
" \n",
" sns.heatmap(adj_matrix, annot=True, xticklabels=nodes, yticklabels=nodes, \n",
" cmap='Blues', ax=axes[1, 1], cbar=False, fmt='g')\n",
" axes[1, 1].set_title('Network Structure (Adjacency Matrix)')\n",
" axes[1, 1].set_xlabel('Child Nodes')\n",
" axes[1, 1].set_ylabel('Parent Nodes')\n",
" \n",
" plt.tight_layout()\n",
" plt.savefig('bayesian_network_analysis.png', dpi=300, bbox_inches='tight')\n",
" logger.info(\"Saved visualization as 'bayesian_network_analysis.png'\")\n",
" plt.show()\n",
"\n",
"def evaluate_model_performance(model, data):\n",
" logger.info(\"Evaluating model performance\")\n",
" \n",
" # Split data for evaluation\n",
" train_data, test_data = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Species'])\n",
" logger.info(f\"Training data shape: {train_data.shape}\")\n",
" logger.info(f\"Test data shape: {test_data.shape}\")\n",
" \n",
" # Train model on training data\n",
" train_model = DiscreteBayesianNetwork(model.edges())\n",
" train_model.fit(train_data, estimator=MaximumLikelihoodEstimator)\n",
" \n",
" # Perform inference on test data\n",
" inference = VariableElimination(train_model)\n",
" correct_predictions = 0\n",
" total_predictions = 0\n",
" \n",
" prediction_details = []\n",
" \n",
" for idx, row in test_data.iterrows():\n",
" try:\n",
" # Use all features except Species as evidence\n",
" evidence = {col: int(row[col]) for col in data.columns if col != 'Species'}\n",
" \n",
" # Query for Species\n",
" result = inference.query(variables=['Species'], evidence=evidence)\n",
" predicted_species = np.argmax(result.values)\n",
" actual_species = int(row['Species'])\n",
" \n",
" prediction_details.append({\n",
" 'actual': actual_species,\n",
" 'predicted': predicted_species,\n",
" 'confidence': float(np.max(result.values)),\n",
" 'evidence': evidence\n",
" })\n",
" \n",
" if predicted_species == actual_species:\n",
" correct_predictions += 1\n",
" total_predictions += 1\n",
" except Exception as e:\n",
" logger.warning(f\"Could not make prediction for row {idx}: {e}\")\n",
" \n",
" if total_predictions > 0:\n",
" accuracy = correct_predictions / total_predictions\n",
" logger.info(f\"Model accuracy on test data: {accuracy:.4f} ({correct_predictions}/{total_predictions})\")\n",
" \n",
" # Log some prediction examples\n",
" logger.info(\"Sample predictions:\")\n",
" for i, pred in enumerate(prediction_details[:5]):\n",
" result = \"✓\" if pred['actual'] == pred['predicted'] else \"✗\"\n",
" logger.info(f\" {result} Actual: {pred['actual']}, Predicted: {pred['predicted']}, Confidence: {pred['confidence']:.3f}\")\n",
" else:\n",
" accuracy = 0.0\n",
" logger.warning(\"No successful predictions made\")\n",
" \n",
" return accuracy, train_model\n",
"\n",
"def save_model_and_results(model, inference_results, accuracy, data):\n",
" logger.info(\"Saving model and results\")\n",
" \n",
" # Save the trained model\n",
" with open('bayesian_network_model.pkl', 'wb') as f:\n",
" pickle.dump(model, f)\n",
" logger.info(\"Saved trained model as 'bayesian_network_model.pkl'\")\n",
" \n",
" # Save inference results\n",
" with open('inference_results.json', 'w') as f:\n",
" json.dump(inference_results, f, indent=2)\n",
" logger.info(\"Saved inference results as 'inference_results.json'\")\n",
" \n",
" # Save processed data\n",
" data.to_csv('processed_iris_data.csv', index=False)\n",
" logger.info(\"Saved processed data as 'processed_iris_data.csv'\")\n",
" \n",
" # Save model summary\n",
" summary = {\n",
" 'model_type': 'Discrete Bayesian Network',\n",
" 'dataset': 'Iris (discretized)',\n",
" 'nodes': list(model.nodes()),\n",
" 'edges': list(model.edges()),\n",
" 'accuracy': accuracy,\n",
" 'data_shape': list(data.shape),\n",
" 'num_parameters': sum(cpd.values.size for cpd in model.get_cpds()),\n",
" 'inference_scenarios': len(inference_results)\n",
" }\n",
" \n",
" with open('model_summary.json', 'w') as f:\n",
" json.dump(summary, f, indent=2)\n",
" logger.info(\"Saved model summary as 'model_summary.json'\")\n",
"\n",
"def main():\n",
" logger.info(\"Starting Bayesian Network implementation\")\n",
" \n",
" # Load and prepare data\n",
" data = load_and_prepare_data()\n",
" \n",
" # Create network structure\n",
" model = create_network_structure()\n",
" \n",
" # Learn parameters\n",
" trained_model = learn_parameters(model, data)\n",
" \n",
" # Define inference scenarios\n",
" evidence_scenarios = {\n",
" 'large_petals': {'Petal_Length': 2, 'Petal_Width': 2}, # Large petals\n",
" 'small_petals': {'Petal_Length': 0, 'Petal_Width': 0}, # Small petals\n",
" 'medium_sepals': {'Sepal_Length': 1, 'Sepal_Width': 1}, # Medium sepals\n",
" 'mixed_features': {'Sepal_Length': 2, 'Petal_Length': 0} # Mixed evidence\n",
" }\n",
" \n",
" # Perform inference\n",
" inference_results = perform_inference(trained_model, evidence_scenarios)\n",
" \n",
" # Evaluate model\n",
" accuracy, _ = evaluate_model_performance(trained_model, data)\n",
" \n",
" # Create visualizations\n",
" visualize_network_and_results(trained_model, inference_results, data)\n",
" \n",
" # Save everything\n",
" save_model_and_results(trained_model, inference_results, accuracy, data)\n",
" \n",
" logger.info(\"Bayesian Network implementation completed successfully!\")\n",
" logger.info(f\"Final model accuracy: {accuracy:.4f}\")\n",
" logger.info(\"All artifacts saved for future reference\")\n",
"\n",
"if __name__ == \"__main__\":\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b1c9a62-2365-4b37-8cdd-f58fa091f63d",
"metadata": {},
"outputs": [],
"source": [
"# Bayesian Networks Implementation - Fully Commented Version\n",
"# This implementation demonstrates probabilistic graphical models for classification\n",
"# using the Iris dataset with discrete features\n",
"\n",
"# Installation commands for dependency management\n",
"# Google Colab: !pip install pgmpy pandas numpy matplotlib seaborn scikit-learn\n",
"# Local Mac: pip install pgmpy pandas numpy matplotlib seaborn scikit-learn\n",
"\n",
"import logging\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from pgmpy.models import DiscreteBayesianNetwork # Updated from deprecated BayesianNetwork\n",
"from pgmpy.factors.discrete import TabularCPD\n",
"from pgmpy.inference import VariableElimination # For probabilistic queries\n",
"from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator\n",
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import KBinsDiscretizer # Convert continuous to discrete\n",
"import json\n",
"import pickle\n",
"import warnings\n",
"warnings.filterwarnings('ignore') # Suppress non-critical warnings\n",
"\n",
"# Configure comprehensive logging system\n",
"# This captures all major steps for debugging and analysis\n",
"logging.basicConfig(\n",
" level=logging.INFO,\n",
" format='%(asctime)s - %(levelname)s - %(message)s',\n",
" handlers=[\n",
" logging.FileHandler('bayesian_network_training.log'), # Save to file\n",
" logging.StreamHandler() # Display in console\n",
" ]\n",
")\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"def load_and_prepare_data():\n",
" \"\"\"\n",
" Load Iris dataset and convert continuous features to discrete bins.\n",
" \n",
" Bayesian Networks require discrete variables, so we discretize continuous\n",
" features into 3 bins using quantile-based binning for balanced distribution.\n",
" \n",
" Returns:\n",
" pd.DataFrame: Processed dataset with discrete features\n",
" \"\"\"\n",
" logger.info(\"Loading and preparing Iris dataset for Bayesian Network\")\n",
" \n",
" # Load the classic Iris dataset (150 samples, 4 features, 3 species)\n",
" iris = load_iris()\n",
" df = pd.DataFrame(iris.data, columns=iris.feature_names)\n",
" df['species'] = iris.target\n",
" \n",
" logger.info(f\"Original dataset shape: {df.shape}\")\n",
" logger.info(f\"Features: {list(df.columns)}\")\n",
" \n",
" # Discretize continuous features into 3 bins (small, medium, large)\n",
" # Strategy='quantile' ensures each bin has approximately equal samples\n",
" discretizer = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='quantile')\n",
" \n",
" # Create meaningful, shorter feature names for network clarity\n",
" feature_mapping = {\n",
" 'sepal length (cm)': 'Sepal_Length',\n",
" 'sepal width (cm)': 'Sepal_Width', \n",
" 'petal length (cm)': 'Petal_Length',\n",
" 'petal width (cm)': 'Petal_Width'\n",
" }\n",
" \n",
" df_processed = df.copy()\n",
" \n",
" # Transform each continuous feature to discrete bins (0, 1, 2)\n",
" for old_name, new_name in feature_mapping.items():\n",
" # Fit discretizer and transform data\n",
" discretized_feature = discretizer.fit_transform(df[[old_name]]).flatten()\n",
" # Convert to integers for cleaner representation\n",
" df_processed[new_name] = discretized_feature.astype(int)\n",
" logger.info(f\"Discretized {old_name} -> {new_name}: {len(np.unique(discretized_feature))} bins\")\n",
" \n",
" # Create final dataset with only the processed features we need\n",
" final_df = df_processed[['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'species']].copy()\n",
" final_df.rename(columns={'species': 'Species'}, inplace=True)\n",
" \n",
" logger.info(f\"Final processed dataset shape: {final_df.shape}\")\n",
" logger.info(f\"Species distribution: {final_df['Species'].value_counts().to_dict()}\")\n",
" \n",
" return final_df\n",
"\n",
"def create_network_structure():\n",
" \"\"\"\n",
" Define the Bayesian Network structure based on botanical domain knowledge.\n",
" \n",
" Network Design Rationale:\n",
" - Species is the root cause (influences all physical characteristics)\n",
" - All morphological features depend on species\n",
" - Petal dimensions are correlated (petal length influences petal width)\n",
" \n",
" This creates a DAG (Directed Acyclic Graph) representing causal relationships.\n",
" \n",
" Returns:\n",
" DiscreteBayesianNetwork: Network structure without learned parameters\n",
" \"\"\"\n",
" logger.info(\"Creating Bayesian Network structure\")\n",
" \n",
" # Define edges representing causal relationships\n",
" # Format: (parent, child) - parent causes/influences child\n",
" model = DiscreteBayesianNetwork([\n",
" ('Species', 'Sepal_Length'), # Species determines sepal length\n",
" ('Species', 'Sepal_Width'), # Species determines sepal width\n",
" ('Species', 'Petal_Length'), # Species determines petal length\n",
" ('Species', 'Petal_Width'), # Species determines petal width\n",
" ('Petal_Length', 'Petal_Width') # Petal dimensions are correlated\n",
" ])\n",
" \n",
" # Log network structure for verification\n",
" logger.info(f\"Network nodes: {model.nodes()}\")\n",
" logger.info(f\"Network edges: {model.edges()}\")\n",
" logger.info(\"Network structure created successfully (DAG validation will occur after parameter learning)\")\n",
" \n",
" return model\n",
"\n",
"def learn_parameters(model, data):\n",
" \"\"\"\n",
" Learn Conditional Probability Distributions (CPDs) from data using MLE.\n",
" \n",
" Maximum Likelihood Estimation finds parameter values that maximize\n",
" the likelihood of observing the training data.\n",
" \n",
" Args:\n",
" model: Network structure\n",
" data: Training data\n",
" \n",
" Returns:\n",
" DiscreteBayesianNetwork: Trained model with learned CPDs\n",
" \"\"\"\n",
" logger.info(\"Learning network parameters using Maximum Likelihood Estimation\")\n",
" \n",
" # Fit model parameters to data using Maximum Likelihood Estimation\n",
" # This automatically creates CPDs for each node based on observed frequencies\n",
" model.fit(data, estimator=MaximumLikelihoodEstimator)\n",
" \n",
" # Validate that the model is properly constructed\n",
" try:\n",
" model.check_model() # Verifies all CPDs are valid and consistent\n",
" logger.info(\"Model validation passed - all CPDs are properly defined\")\n",
" except Exception as e:\n",
" logger.warning(f\"Model validation warning: {e}\")\n",
" \n",
" # Log details about learned probability distributions\n",
" logger.info(\"Learned Conditional Probability Distributions:\")\n",
" for cpd in model.get_cpds():\n",
" logger.info(f\"CPD for {cpd.variable}:\")\n",
" logger.info(f\" Variables: {cpd.variables}\") # Shows variable and its parents\n",
" \n",
" # Safely access cardinality information (number of states per variable)\n",
" try:\n",
" if hasattr(cpd, 'cardinality'):\n",
" logger.info(f\" Cardinality: {cpd.cardinality}\")\n",
" elif hasattr(cpd, 'get_cardinality'):\n",
" logger.info(f\" Cardinality: {cpd.get_cardinality()}\")\n",
" else:\n",
" logger.info(f\" Shape info: {cpd.values.shape}\")\n",
" except Exception as e:\n",
" logger.info(f\" Shape info: {cpd.values.shape}\")\n",
" \n",
" logger.info(f\" Values shape: {cpd.values.shape}\")\n",
" \n",
" # Show sample probability values for smaller CPDs\n",
" if cpd.values.size <= 20: # Only for manageable sizes\n",
" logger.info(f\" Sample values: {cpd.values.flatten()[:5]}\")\n",
" \n",
" return model\n",
"\n",
"def perform_inference(model, evidence_scenarios):\n",
" \"\"\"\n",
" Perform probabilistic inference for different evidence scenarios.\n",
" \n",
" Uses Variable Elimination algorithm for exact inference to compute\n",
" P(Species | Evidence) for various combinations of observed features.\n",
" \n",
" Args:\n",
" model: Trained Bayesian Network\n",
" evidence_scenarios: Dict of scenario_name -> evidence_dict\n",
" \n",
" Returns:\n",
" dict: Results for each inference scenario\n",
" \"\"\"\n",
" logger.info(\"Performing probabilistic inference\")\n",
" \n",
" # Create inference engine using Variable Elimination (exact inference)\n",
" inference = VariableElimination(model)\n",
" results = {}\n",
" \n",
" # Process each evidence scenario\n",
" for scenario_name, evidence in evidence_scenarios.items():\n",
" logger.info(f\"Inference scenario: {scenario_name}\")\n",
" logger.info(f\"Evidence: {evidence}\")\n",
" \n",
" try:\n",
" # Query: Given evidence, what's the probability distribution over Species?\n",
" result = inference.query(variables=['Species'], evidence=evidence)\n",
" \n",
" # Log human-readable results\n",
" logger.info(f\"Results for {scenario_name}:\")\n",
" species_names = ['Setosa', 'Versicolor', 'Virginica']\n",
" for i, prob in enumerate(result.values):\n",
" logger.info(f\" P(Species={species_names[i]}|Evidence) = {prob:.4f}\")\n",
" \n",
" # Store results for later analysis and visualization\n",
" results[scenario_name] = {\n",
" 'evidence': evidence,\n",
" 'probabilities': result.values.tolist(),\n",
" 'species_names': species_names\n",
" }\n",
" except Exception as e:\n",
" # Handle cases where evidence is impossible/inconsistent\n",
" logger.error(f\"Error in inference for {scenario_name}: {e}\")\n",
" results[scenario_name] = {\n",
" 'evidence': evidence,\n",
" 'error': str(e)\n",
" }\n",
" \n",
" return results\n",
"\n",
"def visualize_network_and_results(model, inference_results, data):\n",
" \"\"\"\n",
" Create comprehensive visualizations of the network and inference results.\n",
" \n",
" Generates 4 subplots:\n",
" 1. Species distribution in dataset\n",
" 2. Feature correlation heatmap\n",
" 3. Inference results comparison\n",
" 4. Network structure adjacency matrix\n",
" \n",
" Args:\n",
" model: Trained network\n",
" inference_results: Results from inference scenarios\n",
" data: Original dataset\n",
" \"\"\"\n",
" logger.info(\"Creating visualizations\")\n",
" \n",
" # Set up matplotlib style and create subplot grid\n",
" plt.style.use('default')\n",
" fig, axes = plt.subplots(2, 2, figsize=(15, 12))\n",
" \n",
" # Plot 1: Species distribution (shows balanced dataset)\n",
" species_counts = data['Species'].value_counts().sort_index()\n",
" axes[0, 0].bar(species_counts.index, species_counts.values, alpha=0.7, edgecolor='black')\n",
" axes[0, 0].set_title('Species Distribution in Dataset')\n",
" axes[0, 0].set_xlabel('Species (0=Setosa, 1=Versicolor, 2=Virginica)')\n",
" axes[0, 0].set_ylabel('Count')\n",
" axes[0, 0].set_xticks([0, 1, 2])\n",
" \n",
" # Plot 2: Feature correlation matrix (shows relationships between features)\n",
" correlation_matrix = data.corr()\n",
" sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[0, 1], fmt='.3f')\n",
" axes[0, 1].set_title('Feature Correlation Matrix')\n",
" \n",
" # Plot 3: Inference results comparison (shows model predictions)\n",
" valid_results = {k: v for k, v in inference_results.items() if 'probabilities' in v}\n",
" if valid_results:\n",
" scenarios = list(valid_results.keys())[:3] # Show first 3 valid scenarios\n",
" species_names = ['Setosa', 'Versicolor', 'Virginica']\n",
" x = np.arange(len(species_names)) # Species positions\n",
" width = 0.25 # Bar width for grouped bars\n",
" \n",
" # Use distinct colors for each scenario\n",
" colors = ['skyblue', 'lightcoral', 'lightgreen']\n",
" for i, scenario in enumerate(scenarios):\n",
" probs = valid_results[scenario]['probabilities']\n",
" # Offset bars for each scenario to create grouped bar chart\n",
" axes[1, 0].bar(x + i*width, probs, width, label=scenario, alpha=0.8, color=colors[i])\n",
" \n",
" axes[1, 0].set_xlabel('Species')\n",
" axes[1, 0].set_ylabel('Probability')\n",
" axes[1, 0].set_title('Inference Results Comparison')\n",
" axes[1, 0].set_xticks(x + width) # Center ticks between grouped bars\n",
" axes[1, 0].set_xticklabels(species_names)\n",
" axes[1, 0].legend()\n",
" axes[1, 0].set_ylim(0, 1) # Probability range [0, 1]\n",
" else:\n",
" # Handle case where no valid inference results exist\n",
" axes[1, 0].text(0.5, 0.5, 'No valid inference results', \n",
" ha='center', va='center', transform=axes[1, 0].transAxes)\n",
" axes[1, 0].set_title('Inference Results (No Valid Results)')\n",
" \n",
" # Plot 4: Network structure as adjacency matrix\n",
" nodes = list(model.nodes())\n",
" adj_matrix = np.zeros((len(nodes), len(nodes))) # Initialize empty matrix\n",
" node_to_idx = {node: i for i, node in enumerate(nodes)} # Map node names to indices\n",
" \n",
" # Fill adjacency matrix: 1 if edge exists, 0 otherwise\n",
" for edge in model.edges():\n",
" parent_idx, child_idx = node_to_idx[edge[0]], node_to_idx[edge[1]]\n",
" adj_matrix[parent_idx][child_idx] = 1\n",
" \n",
" # Create heatmap of network structure\n",
" sns.heatmap(adj_matrix, annot=True, xticklabels=nodes, yticklabels=nodes, \n",
" cmap='Blues', ax=axes[1, 1], cbar=False, fmt='g')\n",
" axes[1, 1].set_title('Network Structure (Adjacency Matrix)')\n",
" axes[1, 1].set_xlabel('Child Nodes')\n",
" axes[1, 1].set_ylabel('Parent Nodes')\n",
" \n",
" # Save and display the complete visualization\n",
" plt.tight_layout()\n",
" plt.savefig('bayesian_network_analysis.png', dpi=300, bbox_inches='tight')\n",
" logger.info(\"Saved visualization as 'bayesian_network_analysis.png'\")\n",
" plt.show()\n",
"\n",
"def evaluate_model_performance(model, data):\n",
" \"\"\"\n",
" Evaluate model performance using train/test split with stratification.\n",
" \n",
" Performance Evaluation Strategy:\n",
" - Stratified split maintains class balance in train/test sets\n",
" - Use all features except Species as evidence for prediction\n",
" - Predict Species and compare with ground truth\n",
" - Calculate accuracy and log sample predictions with confidence\n",
" \n",
" Args:\n",
" model: Trained Bayesian Network\n",
" data: Complete dataset\n",
" \n",
" Returns:\n",
" tuple: (accuracy_score, trained_model_on_train_split)\n",
" \"\"\"\n",
" logger.info(\"Evaluating model performance\")\n",
" \n",
" # Create stratified train/test split (maintains class distribution)\n",
" # test_size=0.3 means 30% for testing, 70% for training\n",
" # stratify ensures equal representation of each species in both sets\n",
" train_data, test_data = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Species'])\n",
" logger.info(f\"Training data shape: {train_data.shape}\")\n",
" logger.info(f\"Test data shape: {test_data.shape}\")\n",
" \n",
" # Train a new model on training data only (proper evaluation)\n",
" train_model = DiscreteBayesianNetwork(model.edges()) # Same structure\n",
" train_model.fit(train_data, estimator=MaximumLikelihoodEstimator)\n",
" \n",
" # Create inference engine for the trained model\n",
" inference = VariableElimination(train_model)\n",
" correct_predictions = 0\n",
" total_predictions = 0\n",
" \n",
" prediction_details = [] # Store details for analysis\n",
" \n",
" # Evaluate on each test sample\n",
" for idx, row in test_data.iterrows():\n",
" try:\n",
" # Create evidence dictionary (all features except target Species)\n",
" evidence = {col: int(row[col]) for col in data.columns if col != 'Species'}\n",
" \n",
" # Perform inference: P(Species | evidence)\n",
" result = inference.query(variables=['Species'], evidence=evidence)\n",
" \n",
" # Make prediction (species with highest probability)\n",
" predicted_species = np.argmax(result.values)\n",
" actual_species = int(row['Species'])\n",
" \n",
" # Store prediction details for analysis\n",
" prediction_details.append({\n",
" 'actual': actual_species,\n",
" 'predicted': predicted_species,\n",
" 'confidence': float(np.max(result.values)), # Highest probability\n",
" 'evidence': evidence\n",
" })\n",
" \n",
" # Count correct predictions\n",
" if predicted_species == actual_species:\n",
" correct_predictions += 1\n",
" total_predictions += 1\n",
" \n",
" except Exception as e:\n",
" # Log failed predictions (e.g., due to unseen evidence combinations)\n",
" logger.warning(f\"Could not make prediction for row {idx}: {e}\")\n",
" \n",
" # Calculate and report accuracy\n",
" if total_predictions > 0:\n",
" accuracy = correct_predictions / total_predictions\n",
" logger.info(f\"Model accuracy on test data: {accuracy:.4f} ({correct_predictions}/{total_predictions})\")\n",
" \n",
" # Show sample predictions with confidence scores\n",
" logger.info(\"Sample predictions:\")\n",
" for i, pred in enumerate(prediction_details[:5]): # Show first 5 predictions\n",
" result_symbol = \"✓\" if pred['actual'] == pred['predicted'] else \"✗\"\n",
" logger.info(f\" {result_symbol} Actual: {pred['actual']}, Predicted: {pred['predicted']}, Confidence: {pred['confidence']:.3f}\")\n",
" else:\n",
" accuracy = 0.0\n",
" logger.warning(\"No successful predictions made\")\n",
" \n",
" return accuracy, train_model\n",
"\n",
"def save_model_and_results(model, inference_results, accuracy, data):\n",
" \"\"\"\n",
" Save all important artifacts for reproducibility and future use.\n",
" \n",
" Saves:\n",
" - Trained model (pickle format for Python)\n",
" - Inference results (JSON for cross-platform compatibility)\n",
" - Processed data (CSV for analysis in other tools)\n",
" - Model summary (JSON with metadata)\n",
" \n",
" Args:\n",
" model: Trained Bayesian Network\n",
" inference_results: Dictionary of inference scenarios and results\n",
" accuracy: Model accuracy score\n",
" data: Processed dataset\n",
" \"\"\"\n",
" logger.info(\"Saving model and results\")\n",
" \n",
" # Save trained model using pickle (preserves Python objects)\n",
" with open('bayesian_network_model.pkl', 'wb') as f:\n",
" pickle.dump(model, f)\n",
" logger.info(\"Saved trained model as 'bayesian_network_model.pkl'\")\n",
" \n",
" # Save inference results as JSON (human-readable, cross-platform)\n",
" with open('inference_results.json', 'w') as f:\n",
" json.dump(inference_results, f, indent=2)\n",
" logger.info(\"Saved inference results as 'inference_results.json'\")\n",
" \n",
" # Save processed data as CSV (can be opened in Excel, loaded by other tools)\n",
" data.to_csv('processed_iris_data.csv', index=False)\n",
" logger.info(\"Saved processed data as 'processed_iris_data.csv'\")\n",
" \n",
" # Create comprehensive model summary\n",
" summary = {\n",
" 'model_type': 'Discrete Bayesian Network',\n",
" 'dataset': 'Iris (discretized)',\n",
" 'nodes': list(model.nodes()),\n",
" 'edges': list(model.edges()),\n",
" 'accuracy': accuracy,\n",
" 'data_shape': list(data.shape),\n",
" 'num_parameters': sum(cpd.values.size for cpd in model.get_cpds()), # Total parameters\n",
" 'inference_scenarios': len(inference_results)\n",
" }\n",
" \n",
" # Save model summary as JSON\n",
" with open('model_summary.json', 'w') as f:\n",
" json.dump(summary, f, indent=2)\n",
" logger.info(\"Saved model summary as 'model_summary.json'\")\n",
"\n",
"def main():\n",
" \"\"\"\n",
" Main execution function that orchestrates the complete Bayesian Network workflow.\n",
" \n",
" Workflow:\n",
" 1. Data loading and preprocessing\n",
" 2. Network structure definition\n",
" 3. Parameter learning from data\n",
" 4. Probabilistic inference with test scenarios\n",
" 5. Model evaluation and performance measurement\n",
" 6. Visualization and results analysis\n",
" 7. Artifact saving for reproducibility\n",
" \"\"\"\n",
" logger.info(\"Starting Bayesian Network implementation\")\n",
" \n",
" # Step 1: Load and preprocess data\n",
" data = load_and_prepare_data()\n",
" \n",
" # Step 2: Define network structure based on domain knowledge\n",
" model = create_network_structure()\n",
" \n",
" # Step 3: Learn parameters (CPDs) from data using MLE\n",
" trained_model = learn_parameters(model, data)\n",
" \n",
" # Step 4: Define test scenarios for inference\n",
" # These scenarios test different combinations of evidence\n",
" evidence_scenarios = {\n",
" 'large_petals': {'Petal_Length': 2, 'Petal_Width': 2}, # Expect Virginica\n",
" 'small_petals': {'Petal_Length': 0, 'Petal_Width': 0}, # Expect Setosa \n",
" 'medium_sepals': {'Sepal_Length': 1, 'Sepal_Width': 1}, # Mixed prediction\n",
" 'mixed_features': {'Sepal_Length': 2, 'Petal_Length': 0} # Potentially conflicting\n",
" }\n",
" \n",
" # Step 5: Perform probabilistic inference\n",
" inference_results = perform_inference(trained_model, evidence_scenarios)\n",
" \n",
" # Step 6: Evaluate model performance using proper train/test methodology\n",
" accuracy, _ = evaluate_model_performance(trained_model, data)\n",
" \n",
" # Step 7: Create comprehensive visualizations\n",
" visualize_network_and_results(trained_model, inference_results, data)\n",
" \n",
" # Step 8: Save all artifacts for future reference and reproducibility\n",
" save_model_and_results(trained_model, inference_results, accuracy, data)\n",
" \n",
" # Final summary\n",
" logger.info(\"Bayesian Network implementation completed successfully!\")\n",
" logger.info(f\"Final model accuracy: {accuracy:.4f}\")\n",
" logger.info(\"All artifacts saved for future reference\")\n",
"\n",
"# Entry point - execute main function when script is run directly\n",
"if __name__ == \"__main__\":\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea1fef14-6651-43be-800c-2e89f529aefc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|