File size: 200,370 Bytes
3e7f4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "aed6a806-1aaa-41de-ade2-77d488a1326d",
   "metadata": {},
   "source": [
    "# PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)\n",
    "\n",
    "## Simple Explanation of Bayesian Networks\n",
    "\n",
    "Bayesian Networks are probabilistic graphical models that represent relationships between variables using directed graphs (like flowcharts with arrows). Think of them as \"smart decision trees\" that capture how different factors influence each other using probability. Each node represents a variable (like \"Rain,\" \"Traffic,\" or \"Late to Work\"), and arrows show direct influences. The network uses Bayes' theorem to calculate the probability of events given evidence. For example, if you know it's raining, the network can predict how likely you are to be late to work by considering intermediate factors like traffic. They're powerful for reasoning under uncertainty, making predictions, and understanding cause-and-effect relationships in complex systems.\n",
    "\n",
    "## Detailed Learning Roadmap\n",
    "\n",
    "### 1. **Graph Theory Foundations**\n",
    "   - **Directed Acyclic Graphs (DAGs)**: Learn about nodes, edges, and why cycles aren't allowed\n",
    "   - **Example**: Family tree showing parent-child relationships (parents → children, no loops)\n",
    "\n",
    "### 2. **Probability Fundamentals**\n",
    "   - **Joint, Marginal, and Conditional Probability**: Understanding P(A,B), P(A), and P(A|B)\n",
    "   - **Example**: P(Rain, Traffic) vs P(Rain) vs P(Traffic|Rain)\n",
    "\n",
    "### 3. **Conditional Independence**\n",
    "   - **D-separation rules**: When variables are independent given evidence\n",
    "   - **Example**: \"Wet grass\" depends on \"Rain\" and \"Sprinkler,\" but Rain and Sprinkler are independent\n",
    "\n",
    "### 4. **Network Construction**\n",
    "   - **Structure Learning**: Building the graph from data or expert knowledge\n",
    "   - **Example**: Medical diagnosis network connecting symptoms to diseases\n",
    "\n",
    "### 5. **Parameter Learning**\n",
    "   - **Conditional Probability Tables (CPTs)**: Learning probabilities for each node\n",
    "   - **Example**: P(Fever=High|Disease=Flu) = 0.8\n",
    "\n",
    "### 6. **Inference Methods**\n",
    "   - **Exact Inference**: Variable elimination, junction tree algorithms\n",
    "   - **Example**: Calculating P(Disease|Symptoms) using all available evidence\n",
    "\n",
    "### 7. **Approximate Inference**\n",
    "   - **Sampling Methods**: Monte Carlo, Gibbs sampling\n",
    "   - **Example**: Estimating probabilities when exact calculation is too complex\n",
    "\n",
    "### 8. **Dynamic Bayesian Networks**\n",
    "   - **Temporal Modeling**: Adding time dimension to capture sequences\n",
    "   - **Example**: Stock price prediction considering previous days' data\n",
    "\n",
    "## FORMULA MEMORY AIDS SECTION\n",
    "\n",
    "### 1. Bayes' Theorem\n",
    "**FORMULA**: P(A|B) = P(B|A) × P(A) / P(B)\n",
    "\n",
    "**REAL-LIFE ANALOGY**: \"Medical Test Accuracy\"\n",
    "- P(A|B) = Probability you have the disease given a positive test (what you want to know)\n",
    "- P(B|A) = Test accuracy - probability of positive test given you have disease (95%)\n",
    "- P(A) = How common the disease is in population (1 in 1000 people)\n",
    "- P(B) = How often anyone tests positive (including false positives)\n",
    "\n",
    "**MEMORY TRICK**: \"Bayes flips the question! From 'test accuracy' to 'do I really have it?'\"\n",
    "\n",
    "### 2. Chain Rule of Probability\n",
    "**FORMULA**: P(X₁, X₂, ..., Xₙ) = ∏ᵢ P(Xᵢ|Parents(Xᵢ))\n",
    "\n",
    "**REAL-LIFE ANALOGY**: \"Recipe Steps Dependencies\"\n",
    "- X₁ = \"Buy ingredients\" (depends on nothing: P(X₁))\n",
    "- X₂ = \"Preheat oven\" (depends on having ingredients: P(X₂|X₁))\n",
    "- X₃ = \"Bake cake\" (depends on oven being hot: P(X₃|X₂))\n",
    "- Total probability = P(X₁) × P(X₂|X₁) × P(X₃|X₂)\n",
    "\n",
    "**MEMORY TRICK**: \"Chain rule = Chain of cooking steps - each step depends on previous ones!\"\n",
    "\n",
    "### 3. Conditional Independence\n",
    "**FORMULA**: P(X|Y,Z) = P(X|Z) if X ⊥ Y | Z\n",
    "\n",
    "**REAL-LIFE ANALOGY**: \"Weather and Clothing Choice\"\n",
    "- X = \"Wearing jacket\" \n",
    "- Y = \"Season (Winter/Summer)\"\n",
    "- Z = \"Today's temperature\"\n",
    "- Given today's temperature, the season doesn't matter for jacket choice\n",
    "\n",
    "**MEMORY TRICK**: \"Given the 'middleman' (Z), the other factor (Y) becomes irrelevant!\"\n",
    "\n",
    "## Step-by-Step Numerical Example\n",
    "\n",
    "Let's build a simple medical diagnosis network:\n",
    "\n",
    "**Variables**: \n",
    "- Flu (F): Yes/No\n",
    "- Fever (Fv): High/Normal  \n",
    "- Cough (C): Yes/No\n",
    "\n",
    "**Network Structure**: Flu → Fever, Flu → Cough\n",
    "\n",
    "**Step 1: Prior Probabilities**\n",
    "- P(Flu = Yes) = 0.1\n",
    "- P(Flu = No) = 0.9\n",
    "\n",
    "**Step 2: Conditional Probability Tables**\n",
    "- P(Fever = High | Flu = Yes) = 0.8\n",
    "- P(Fever = High | Flu = No) = 0.1\n",
    "- P(Cough = Yes | Flu = Yes) = 0.7\n",
    "- P(Cough = Yes | Flu = No) = 0.2\n",
    "\n",
    "**Step 3: Calculate Joint Probability**\n",
    "P(Flu=Yes, Fever=High, Cough=Yes) = P(Flu=Yes) × P(Fever=High|Flu=Yes) × P(Cough=Yes|Flu=Yes)\n",
    "= 0.1 × 0.8 × 0.7 = 0.056\n",
    "\n",
    "**Step 4: Inference with Evidence**\n",
    "Given evidence (Fever=High, Cough=Yes), calculate P(Flu=Yes|Evidence):\n",
    "\n",
    "P(Flu=Yes|Fv=High,C=Yes) = P(Fv=High,C=Yes|Flu=Yes) × P(Flu=Yes) / P(Fv=High,C=Yes)\n",
    "\n",
    "Numerator = 0.8 × 0.7 × 0.1 = 0.056\n",
    "Denominator = 0.056 + P(Fv=High,C=Yes|Flu=No) × P(Flu=No)\n",
    "= 0.056 + (0.1 × 0.2 × 0.9) = 0.056 + 0.018 = 0.074\n",
    "\n",
    "Result: P(Flu=Yes|Evidence) = 0.056/0.074 = 0.757 (75.7%)\n",
    "\n",
    "## Real-World AI Use Case\n",
    "\n",
    "**Medical Diagnosis Systems**: IBM Watson for Oncology uses Bayesian Networks to assist doctors in cancer diagnosis and treatment recommendations. The network incorporates patient symptoms, medical history, test results, and treatment outcomes to calculate probabilities of different diagnoses and suggest optimal treatment plans. It processes thousands of medical papers and patient cases to update its probability estimates continuously.\n",
    "\n",
    "## Tips for Mastering Bayesian Networks\n",
    "\n",
    "1. **Practice Sources**: \n",
    "   - Kevin Murphy's \"Machine Learning: A Probabilistic Perspective\"\n",
    "   - Online courses: Stanford CS228 (Probabilistic Graphical Models)\n",
    "   - Kaggle datasets for hands-on practice\n",
    "\n",
    "2. **Programming Practice**:\n",
    "   - Start with pgmpy library in Python\n",
    "   - Work through medical diagnosis examples\n",
    "   - Build weather prediction networks\n",
    "\n",
    "3. **Problem-Solving Strategy**:\n",
    "   - Always draw the network first\n",
    "   - Identify independence assumptions\n",
    "   - Work through small examples by hand before coding\n",
    "   - Practice different inference scenarios\n",
    "\n",
    "4. **Common Pitfalls to Avoid**:\n",
    "   - Don't create cycles in your graphs\n",
    "   - Remember that correlation doesn't imply causation\n",
    "   - Be careful about the direction of arrows (causality)\n",
    "   - Test your independence assumptions with data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ef70f8f5-c8b7-4646-81bc-8a5d6c7c34dd",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: pgmpy in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (1.0.0)\n",
      "Requirement already satisfied: pandas in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (2.3.1)\n",
      "Requirement already satisfied: numpy in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (2.3.2)\n",
      "Requirement already satisfied: matplotlib in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (3.10.3)\n",
      "Requirement already satisfied: seaborn in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (0.13.2)\n",
      "Requirement already satisfied: scikit-learn in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (1.7.1)\n",
      "Requirement already satisfied: networkx in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (3.5)\n",
      "Requirement already satisfied: scipy in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (1.16.1)\n",
      "Requirement already satisfied: torch in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (2.7.1)\n",
      "Requirement already satisfied: statsmodels in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (0.14.5)\n",
      "Requirement already satisfied: tqdm in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (4.67.1)\n",
      "Requirement already satisfied: joblib in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (1.5.1)\n",
      "Requirement already satisfied: opt-einsum in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (3.4.0)\n",
      "Requirement already satisfied: pyro-ppl in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pgmpy) (1.9.1)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pandas) (2.9.0.post0)\n",
      "Requirement already satisfied: pytz>=2020.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pandas) (2025.2)\n",
      "Requirement already satisfied: tzdata>=2022.7 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pandas) (2025.2)\n",
      "Requirement already satisfied: contourpy>=1.0.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (1.3.3)\n",
      "Requirement already satisfied: cycler>=0.10 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (0.12.1)\n",
      "Requirement already satisfied: fonttools>=4.22.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (4.59.0)\n",
      "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (1.4.8)\n",
      "Requirement already satisfied: packaging>=20.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (25.0)\n",
      "Requirement already satisfied: pillow>=8 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (11.3.0)\n",
      "Requirement already satisfied: pyparsing>=2.3.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from matplotlib) (3.2.3)\n",
      "Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from scikit-learn) (3.6.0)\n",
      "Requirement already satisfied: six>=1.5 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n",
      "Requirement already satisfied: pyro-api>=0.1.1 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from pyro-ppl->pgmpy) (0.1.2)\n",
      "Requirement already satisfied: filelock in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (3.18.0)\n",
      "Requirement already satisfied: typing-extensions>=4.10.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (4.14.1)\n",
      "Requirement already satisfied: sympy>=1.13.3 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (1.14.0)\n",
      "Requirement already satisfied: jinja2 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (3.1.6)\n",
      "Requirement already satisfied: fsspec in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from torch->pgmpy) (2025.7.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from sympy>=1.13.3->torch->pgmpy) (1.3.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from jinja2->torch->pgmpy) (3.0.2)\n",
      "Requirement already satisfied: patsy>=0.5.6 in /Users/karthik/Projects/AILearning/venv/lib/python3.11/site-packages (from statsmodels->pgmpy) (1.0.1)\n"
     ]
    }
   ],
   "source": [
    "# Installation commands for Google Colab and local Mac\n",
    "!pip install pgmpy pandas numpy matplotlib seaborn scikit-learn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "a814731a-bf98-4282-91e3-3d734a911fb8",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:__main__:Starting Bayesian Network implementation\n",
      "INFO:__main__:Loading and preparing Iris dataset for Bayesian Network\n",
      "INFO:__main__:Original dataset shape: (150, 5)\n",
      "INFO:__main__:Features: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'species']\n",
      "INFO:__main__:Discretized sepal length (cm) -> Sepal_Length: 3 bins\n",
      "INFO:__main__:Discretized sepal width (cm) -> Sepal_Width: 3 bins\n",
      "INFO:__main__:Discretized petal length (cm) -> Petal_Length: 3 bins\n",
      "INFO:__main__:Discretized petal width (cm) -> Petal_Width: 3 bins\n",
      "INFO:__main__:Final processed dataset shape: (150, 5)\n",
      "INFO:__main__:Species distribution: {0: 50, 1: 50, 2: 50}\n",
      "INFO:__main__:Creating Bayesian Network structure\n",
      "INFO:__main__:Network nodes: ['Species', 'Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']\n",
      "INFO:__main__:Network edges: [('Species', 'Sepal_Length'), ('Species', 'Sepal_Width'), ('Species', 'Petal_Length'), ('Species', 'Petal_Width'), ('Petal_Length', 'Petal_Width')]\n",
      "INFO:__main__:Network structure created successfully (DAG validation will occur after parameter learning)\n",
      "INFO:__main__:Learning network parameters using Maximum Likelihood Estimation\n",
      "INFO:pgmpy: Datatype (N=numerical, C=Categorical Unordered, O=Categorical Ordered) inferred from data: \n",
      " {'Sepal_Length': 'N', 'Sepal_Width': 'N', 'Petal_Length': 'N', 'Petal_Width': 'N', 'Species': 'N'}\n",
      "INFO:__main__:Model validation passed - all CPDs are properly defined\n",
      "INFO:__main__:Learned Conditional Probability Distributions:\n",
      "INFO:__main__:CPD for Species:\n",
      "INFO:__main__:  Variables: ['Species']\n",
      "INFO:__main__:  Cardinality: [3]\n",
      "INFO:__main__:  Values shape: (3,)\n",
      "INFO:__main__:  Sample values: [0.33333333 0.33333333 0.33333333]\n",
      "INFO:__main__:CPD for Sepal_Length:\n",
      "INFO:__main__:  Variables: ['Sepal_Length', 'Species']\n",
      "INFO:__main__:  Cardinality: [3 3]\n",
      "INFO:__main__:  Values shape: (3, 3)\n",
      "INFO:__main__:  Sample values: [0.8  0.1  0.02 0.2  0.62]\n",
      "INFO:__main__:CPD for Sepal_Width:\n",
      "INFO:__main__:  Variables: ['Sepal_Width', 'Species']\n",
      "INFO:__main__:  Cardinality: [3 3]\n",
      "INFO:__main__:  Values shape: (3, 3)\n",
      "INFO:__main__:  Sample values: [0.02 0.54 0.38 0.22 0.36]\n",
      "INFO:__main__:CPD for Petal_Length:\n",
      "INFO:__main__:  Variables: ['Petal_Length', 'Species']\n",
      "INFO:__main__:  Cardinality: [3 3]\n",
      "INFO:__main__:  Values shape: (3, 3)\n",
      "INFO:__main__:  Sample values: [1.   0.   0.   0.   0.92]\n",
      "INFO:__main__:CPD for Petal_Width:\n",
      "INFO:__main__:  Variables: ['Petal_Width', 'Petal_Length', 'Species']\n",
      "INFO:__main__:  Cardinality: [3 3 3]\n",
      "INFO:__main__:  Values shape: (3, 3, 3)\n",
      "INFO:__main__:Performing probabilistic inference\n",
      "INFO:__main__:Inference scenario: large_petals\n",
      "INFO:__main__:Evidence: {'Petal_Length': 2, 'Petal_Width': 2}\n",
      "INFO:__main__:Results for large_petals:\n",
      "INFO:__main__:  P(Species=Setosa|Evidence) = 0.0000\n",
      "INFO:__main__:  P(Species=Versicolor|Evidence) = 0.0435\n",
      "INFO:__main__:  P(Species=Virginica|Evidence) = 0.9565\n",
      "INFO:__main__:Inference scenario: small_petals\n",
      "INFO:__main__:Evidence: {'Petal_Length': 0, 'Petal_Width': 0}\n",
      "INFO:__main__:Results for small_petals:\n",
      "INFO:__main__:  P(Species=Setosa|Evidence) = 1.0000\n",
      "INFO:__main__:  P(Species=Versicolor|Evidence) = 0.0000\n",
      "INFO:__main__:  P(Species=Virginica|Evidence) = 0.0000\n",
      "INFO:__main__:Inference scenario: medium_sepals\n",
      "INFO:__main__:Evidence: {'Sepal_Length': 1, 'Sepal_Width': 1}\n",
      "INFO:__main__:Results for medium_sepals:\n",
      "INFO:__main__:  P(Species=Setosa|Evidence) = 0.1244\n",
      "INFO:__main__:  P(Species=Versicolor|Evidence) = 0.6312\n",
      "INFO:__main__:  P(Species=Virginica|Evidence) = 0.2443\n",
      "INFO:__main__:Inference scenario: mixed_features\n",
      "INFO:__main__:Evidence: {'Sepal_Length': 2, 'Petal_Length': 0}\n",
      "INFO:__main__:Results for mixed_features:\n",
      "INFO:__main__:  P(Species=Setosa|Evidence) = nan\n",
      "INFO:__main__:  P(Species=Versicolor|Evidence) = nan\n",
      "INFO:__main__:  P(Species=Virginica|Evidence) = nan\n",
      "INFO:__main__:Evaluating model performance\n",
      "INFO:__main__:Training data shape: (105, 5)\n",
      "INFO:__main__:Test data shape: (45, 5)\n",
      "INFO:pgmpy: Datatype (N=numerical, C=Categorical Unordered, O=Categorical Ordered) inferred from data: \n",
      " {'Sepal_Length': 'N', 'Sepal_Width': 'N', 'Petal_Length': 'N', 'Petal_Width': 'N', 'Species': 'N'}\n",
      "INFO:__main__:Model accuracy on test data: 0.8444 (38/45)\n",
      "INFO:__main__:Sample predictions:\n",
      "INFO:__main__:  ✓ Actual: 2, Predicted: 2, Confidence: 0.989\n",
      "INFO:__main__:  ✓ Actual: 1, Predicted: 1, Confidence: 1.000\n",
      "INFO:__main__:  ✗ Actual: 2, Predicted: 1, Confidence: 0.530\n",
      "INFO:__main__:  ✗ Actual: 1, Predicted: 2, Confidence: 0.947\n",
      "INFO:__main__:  ✓ Actual: 2, Predicted: 2, Confidence: 0.913\n",
      "INFO:__main__:Creating visualizations\n",
      "INFO:__main__:Saved visualization as 'bayesian_network_analysis.png'\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAASmCAYAAADBBeLHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4FFUXxvE3ISQhQEIPvfcuoBQLgiiiogj2QhHxQxBFRAUbYsOKqIBYKHYUu6Kg0gQEQZqigNJ7qEloSSDs95wbN2RDFgICm/L/Pc+Y7Mzs7J2ZLN45c+bcII/H4xEAAAAAAAAAADhK8NGzAAAAAAAAAACAIYgOAAAAAAAAAIAfBNEBAAAAAAAAAPCDIDoAAAAAAAAAAH4QRAcAAAAAAAAAwA+C6AAAAAAAAAAA+EEQHQAAAAAAAAAAPwiiAwAAAAAAAADgB0F0AAAAAAAAAAD8IIgOIEsKCgrS448/rqxs+vTprp3283SzY2GflZa9vuuuu3QmjBs3zn3e2rVrdaZVrFhRXbt2PeOfCwAAAJyOfrBty7Zp20aKCy+80E0AkFURRAdyqT/++EPXXHONKlSooPDwcJUpU0YXX3yxXnvtNeVG3o6sd8qbN6+KFSumFi1a6KGHHtL69etP2Wc988wz+vLLL5UVZeW2neobEt4pIiJC5cuXV/v27TV27FglJiae9La/++67LHXzJzecTwAAskMANqNpwIABp+Uzf/nlF9cfiY2NVVa1atUq/e9//1PlypXdtUhkZKTOPfdcvfLKKzpw4IByig8//FDDhg1TVmLJKfb3Z8c8o2P9zz//pP6Nvvjiiye8/c2bN7u/v8WLF5+iFgNA1hAS6AYAOPOsY92qVSsXOOzRo4dKliypDRs2aO7cua7j2qdPn0A30XXoQkLO/D9RN954oy677DIdPnxYu3fv1vz5813H147L6NGjdcMNN6Sue8EFF7h2hoaGnnBg025gdOjQIdPveeSRR07bhVZm2nbrrbe6fQ8LC9OZtmLFCgUHn/p7vq+//roKFCjgguabNm3S5MmTddttt7nz/e2336pcuXInFUQfMWJElgmkn8zfGgAAOPWeeOIJVapUyWde3bp1T1tff/DgwS5YWqhQIWU1EydO1LXXXuv6lZ07d3bHISkpSbNmzdL999+vP//8U2+++aZyShB96dKl6tu3r898S2Sy6whL3AkEu87av3+/vvnmG1133XU+yz744AN3YyMhIeGktm1BdPv7s6dJGzZsmOn3/fDDDyf1eQBwphBEB3Khp59+WlFRUS5AnL5jvW3bNmUF1nELhEaNGumWW27xmbdu3Tpdcskl6tKli2rVqqUGDRq4+RbYPd3t3Ldvn/Lnz+86uoG4qeCVJ08eNwXC6QrcW3DZnjbweuyxx9xFg13M2YWd3VQCAAA4Fdq1a6cmTZooO/P2S/+LNWvWuMQMCyJPnTpVpUqVSl3Wu3dvrVy50gXZ/yuPx+OCwPny5Ttqmc23JJjTkaSRWZblHajrHW//2jL/P/roo6OC6Bb4v/zyy/XZZ5+dkbZYMN+eDD3RxCQAONMo5wLkQvb4ZJ06dTLMTClRokSGdbctuFijRg3X2WvcuLF+/vnno95r2byWyRsdHe06ZvYZY8aMybDjapm61atXd9uzznPHjh1du9J+bvps3sxu30rS2DLrjBUuXNhdsFhn8GRZJ98exbUMmeeff/6YNdHt8cdOnTq57H7bt7Jly7oLhbi4uNT9sguQd955J/UxSW+9b2+Zkb/++ks33XSTa/t5553nsywjxzs3tn3LBEkv/TaP1TZ/tSBHjhzpjrWdj9KlS7uLn/SPDlttQ8swsv2yJyDsvFj5oLTH8kRqonvbMnv2bPXr10/Fixd3F3RXX321tm/frv/i5ptv1u23365ff/1VP/74Y+r8mTNnusC6Pb1h+2pZ6vfee6/PI7DWRstCN2kf1fayx2GtPFDRokXdBZ2dq08//fSoNtjn2nm376dlytu5tZJCaVn2/KBBg1S1atXU9jzwwAM+pWiOdT4BAEDW8v333+v88893fZqCBQu6IKZlZKf1+++/u/+Xe0ugWH/T+sY7d+706d9ZNrexzHdvH8D6cMeqw52+732sfql5//33XV/G+jRFihRx/V17svV4rP+3d+9e94Rn2gC6l/Vt7rnnntTXhw4d0pNPPqkqVaq4Po/1C61flL78ns2/4oor3JOF1ve3dr3xxhup/fXx48e7JzutD2p90fj4ePc+6/NdeumlLsHI5rds2dL1MY/nq6++cufI+r/WLmuftTM5OdmnD2w3BCwhx3sevH1yf+fCbix4/w6sL3jVVVdp2bJlPut4z43dcPA+bWDt79atmwtIZ5adV/u7S9t3tyQru56xZent2rVL/fv3V7169Vwf1crB2M2hJUuWpK5jx/vss892v1t7vPvt3U/vdcGCBQvcU712zL393PQ10S2Byf7O0+9/27Zt3d+jZbwDwJlEJjqQC1lQeM6cOe7Rwsw8Rjpjxgx9/PHHuvvuu10n0QKn1tmcN29e6vtjYmLUrFmz1KC7BTatU9a9e3fXSfU+wmgdS+vgTpkyxXW2rZO8Z88eFzi09lgHNCOZ3f5bb73l2mlZxrZtC9jbBYd1kDPqDGZW8+bNXdvSBlbTsyC7deqsU28lcezCxgL/VhrEOqfWuX3vvfdckPacc87RHXfc4d6Xfp8tWFutWjVXisOyaP7rucmszLQtfQfeHtVs06aN7rzzTld2xUqkWOfbLj7SPp5qpXGsXXazxLJdLHj84IMPuk64db5Phh1j60BbMNkuRKwMi/1t2PH4L6x0jT1CbI+U2jgBZsKECe6ixPbTguB2fO1mzcaNG90yY3U9rTNvfyN2LNOzkkBXXnmlC9Tb34pdzNm5tr8PuwgzdrFs34/69eu7x77tnNoFUtqLOSs1ZNuxR57tPNnTETbGwcsvv6y///47tQb6iZ5PAABw+lhCxY4dO3zmeZ+Is/9nW8DQ+pHPPfec63NYn8qC1osWLUoNvFofY/Xq1S44af1Mb9kT+2lP0Fk/2fpa1h+wDGPrG3g/w/rOJ5NskFG/1J5qffTRR12fzvoatl3rF1lQ1Np7rBIyVj7EbgJYYkFm2PYtIcD69vfdd5/r0w8ZMsQFVr/44gufda0vaqUZrU9mJSstEcHLAtyW6WxBYOur2+8WsLZ+qN0MsP6kZabb+DitW7d2CRTWh/LHgsIWSLaEDvtp27KnGu265IUXXnDrPPzww+68W3/RzoWxdf356aefXHvs+Fg/25I17LhaxvjChQuPSoqx4283Sux42PK3337bJUTZ31Bm2N9Kz5499fnnn7ubMcYSj2rWrOmezk3P/vasn2l/E/a5dn1mNyrsxoPdbLEbCtYvtT6sHQvrf9oNAZP2fNtNH9tPuxa0J4AtQSoj1ne242rfDbt2tadi7fOsj27fGfs8ADijPABynR9++MGTJ08eNzVv3tzzwAMPeCZPnuxJSko6al37Z8Km3377LXXeunXrPOHh4Z6rr746dV737t09pUqV8uzYscPn/TfccIMnKirKs3//fvd6zJgxbntDhw496rMOHz7s87mDBg064e1fddVVnjp16pzwMVmzZo37zBdeeMHvOrZtWycuLs69njZtmnttP82iRYvc6wkTJhzzs/Lnz+/p0qXLUfNtf+39N954o99lJ3Nu7LMqVKiQqW36a9vYsWPdunaczLZt2zyhoaGeSy65xJOcnJy63vDhw916dp69WrZs6ea9++67qfMSExM9JUuW9HTq1MlzPNb2tG3ytqVNmzY+fzP33nuv+5uOjY095va8+719+/YMl+/evdstT3sMvX9faQ0ZMsQTFBTkjrlX7969jzqm/rZh37e6det6WrdunTrv5ZdfPmbbzHvvvecJDg72zJw502f+qFGj3Htnz5593PMJAADODG+/JaPJ7Nmzx1OoUCFPjx49fN63detW18dNOz+j/shHH33ktvXzzz+nzrP+bNp+W/r+rrUpvfR9b3/90rVr17r+1tNPP+0z/48//vCEhIQcNT8t60PbNq1PnRmLFy92699+++0+8/v37+/mT5061ae/aPMmTZrks663v165cmWf42d9yGrVqnnatm3r05+0dSpVquS5+OKL/faDveul97///c8TERHhSUhISJ13+eWXZ9gPz+hcNGzY0FOiRAnPzp07U+ctWbLE9fs6d+581Lm57bbbfLZpfdeiRYt6jsf6htZHNNdcc43noosucr9bn97654MHD87w2sj2K22/37sfYWFhnieeeCJ13vz58/3+nXmvC6zfmtEym9Kya1Rb/6mnnvKsXr3aU6BAAU+HDh2Ou48AcDpQzgXIhSy71u7mWzarPX5nj1Va5os93vj1119nmIVtGRpeVtLCHi20xyUts9z63VYzr3379u53y7LxTrZdy8Cw7Ahj61lGTEaDl/orV3Ii27fMF8v2sGzoU82bOWKZ8xmxTHNjx+VEHqVMzzJCMut45+Z0sUwZy6a2JwDS1pO0rB97tDN9LUs7dmlrzVv2j2X3WEbLybLslrR/M5bpYvtsj8ye6vOctp6mlUixvz3LqLG/R8u4yoy027DMfPu7tTZ7/3aNN3PLHhG2jPOMWOa7ZflYllDa74JlTZlp06ad8D4DAIDTy0q+WSZ52snYT3ti0TKo0/5/3bJumzZt6vP/9bR9CXva0tazJzVN2v7EqZS+X2pZy9ZHsSzotO21zHjLWD9WP8RbQsXK1WR2wHZj2d5pWUa6Sd/ftOxouzbIiGUzpz1+ixcvTi1bYpnR3v2wft5FF13kyiP664uZtNuyPqO91/p1dg2wfPlynagtW7a4Nll5FiuP42VPJ9q1m/dYHOvc2OfbvniPc2bY/lsJlq1bt7qsb/vp7+lde0LS2++3Prd9lrf04In8/dl27GmKzLBxqezJAstut8x5K+9i2egAEAiUcwFyKatVZ51gC4RaIN0eh7THDO1RSevA1a5dO3Vd6xCnZ/XMrZNoj29aZ8o6//Y4qU0Z8Q5YanXPraN1IoNk2mdkdvtWIsQCvBagtZqK1vGyjqA9BvlfWf3GY3X8reNunfyhQ4e6OuXWkbUbFRY89gbYM8O2k1nHOzd2QXM6eAPVaR+T9QbH7RHU9IFsqw2f/iaJlWKxUjsny24YpN+eN0B9qs/z+vXr3WOpdpMp/fa99e6Px8q2PPXUU+77lb52udf111/vHsW1R5cHDBjgLuLsgsG+l96LFrvgs0eY7bHsjGSVwYEBAMAR1jfNaGBR+/+68d4MT8+SE9LWpLZSelYSLv3/7zPbHzlR6ful1l5LIsioD2rSlvPzty/+ElLSs/6k9X+sT5+W9W8t8SB9f/NYfeiM9sMbXPfHjqm3f5meldCxGusWeE4ftD6Zc+Gvb20secISZNIP7HqsvnDav5tjueyyy1yf18ohWh/VrhHteKcfB8nYTQUrsWLlI22A2LQJO1buMLMscetEBhG1cYUswcTaZ+Vm0o/hBQBnCkF0IJezDox1lmyy4KtlBVimq9UFzCxvloYFi/11RC2L4mSdyPatk2n1EC1gOWnSJJfBbh09C4DaRcd/YTXbrdN2rE7pSy+95DJIrKNn9fqsVrnVKbQ6lRZIzoy0mS2ngr8M/9OZqZ6eZVNl5Hg138/0Nr3n2Xgv2Ow4WQaQXbjaTRrLALcLGKt3b+f6WFlKXlZX026oWK1Q+3u0gbTsItPqbqYd9NbOvWU+WRaXZVfZ37Bd1NiFtf092T7b51ktebtZkxEbZBQAAGQP3n6E1XjOKPkhbeKJZX//8ssvbuDQhg0buixge7+NO5OZ/sjJ9AnT90vtc2w7NjZRRn2xY9X8tj601bH29rUyy1+7j9fWYy3zHi+rX27HMiP+9sWSe6wOuO2PZUjbmDOWIW3Z2NZXzMy5OBVORV/YssItYcPqztsTomkHl03P6uJbLXyrn2415i1j3m5y2JOpJ7LPJ3qtY099em8a2ThA9tQGAAQCQXQAqbzZMfY4YUaZGmnZgEU2mro3G9YyGKwDboNMHot1Mm1AoIMHDx4zUyUt+4zMbt9YgNMyem2yTHvrGNoASAMHDnQd3JNh5W8siz5tSRJ/LMBpk2Wn2IWOZcGPGjXKZSGfyIVAZmTm3FhWinX208uo7Elm22aD0xq7YWGZ5152vC0zJTPnKavyDgrqfRzYOut2TO3ionPnzqnrZTTIrL/jZzdz7G/PsojsYsXLgujp2cWIZaDbZIFyu2CxgakssG7H1b5D9vSILT/e+TqVf2sAAODU8w76bYkax+o/WXbxlClTXFKIJYccqy/o7///3kzl9P3CEymFZ+21IK1ldlsCzomyAdTtyVLrW1tZwuP1Ny04a/toiTJeNqCl7YO3P/pfjrsFwk+032rlT6yUiT3VawkSXtYHPhV96/SsPIyVw0ybhX4q2VO7Y8aMcX1QG+zTn08//VStWrXS6NGjfebbufAOYHuq+5+WfW9JXvaUtJVStDKkV199tUsAA4AzjZroQC5kwbiMMhS8tfbSP0Zondy0de42bNjgMq2tVIplQNjUqVMnFyjMKLPEyop42XpWM3D48OGZzpo4ke1bhzZ9pr11umzbFrg/GXZhYRnHti3L/PHHHuU8dOiQzzwLpluHNG35DusAZxTUPhnHOzfeiwR7rDRt6RS7UWIlfNLLbNvsYsOOx6uvvupz3qxTbZ91+eWXKzuyrHArp2IXdRakNt7jmHY/7Xd7nDU978VN+mNo27ALirSZXvaY7JdffumznmW7p+fNjvL+DVkWmmXBv/XWW0ete+DAAXexcTr+1gAAwKlnN+0tkGs3zTPqq3r7uRn1R8ywYcMy3R+xz7Fgpz31lpY9JZdZlpxibbFgfvq22Ov0ffH0HnjgAdc+K11nwfD0LGnF28eyUiMZ7aP3abz/0t+0MYWsj2ylQryl/PxdX6SX0bmwRJKMjqPta2bKu9hTitbns6SNtOfNrn3saUTvsTgdLDBumeV2fXasUpC23+nPuT3BbP3SzPz9nQzL7LeyinZc7LxXrFjRPZmc9toKAM4UMtGBXMgG9bSa2XYX30pTWKfPMqatbIR1TNIP9FK3bl3XwbfSJJZF6+0gpi2P8uyzz7rgvA2AZINLWuDaAoIW4LUa5d7goGXyvvvuu652+Lx581zdcAv62Tq9evVyg2JmJLPbt+Cxdf4s+zs6OtrVjrYOoXWyMzOIkW3v/fffd1kv1vGzAUoteG8BUMtQPlZZGquJeNddd+naa691mTkWULf3eG8CpO20W5utI2iPtFomj+3XycjMubGMEuuA2vm29ezcv/76666N6QcBymzbLMvdMvvtc+wRYitVYpkz9vmWGZKZjP1As2wae0zX/v6t829Z4rNnz1aDBg3cBYGXfUfsIqt///5uPbsAtb+JjGqvewd5teNs58XOvR1/+/uzY2rHyrJ97JFUG2DMSsakvblhjwTbha2tbxlJtp4dUysFdN5557l1br31Vn3yySduMCn7TtjfugXnLUvJ5tt+eJ8qOZV/awAA4NSzfoX1y+z/740aNXL9ButnWeDQSrvZ/+etL2vrWdazZeJasN3qSltwNaPsZ29/xJ5ks+3Z05/t27dPDV5bv9p+Wn/B+h32xF1mWZ/Inq60fqAlBHTo0MH1sa0dlqBhA79bn+lY77ekBXti1LLL7drA+rPe6xHrg1nyirE+mQVMLXPdW0LFrh8soGqfa8Hfk2VJLpY40a5dO9WpU8dd/9gxtb6e9a/seH/zzTcZvtcyoi2r39pmfT7vdUJGCUF2Luway659rI9sfU87Fxmx0jLWHkvm6N69u0uOeO2119zYSscqs/Jf2bGwJ2gz8xSB9VXtWNkxsKc1bRyotE+les+x1ay3J3Htb8P+7qz/eSLjPnmvrawfbGVG7bvhfYrzwgsvdGVl7LsAAGeUB0Cu8/3333tuu+02T82aNT0FChTwhIaGeqpWrerp06ePJyYmxmdd+2eid+/envfff99TrVo1T1hYmOess87yTJs27ajt2ntt3XLlynny5s3rKVmypOeiiy7yvPnmmz7r7d+/3/Pwww97KlWqlLreNddc41m1apXP5w4aNOiEt//GG294LrjgAk/RokVdW6tUqeK5//77PXFxccc8JmvWrHGf6Z1CQkI8RYoU8TRt2tQzcOBAz7p16456jx0DW9d7LFavXu2Oq31meHi4e3+rVq08P/30k8/7li9f7tqYL18+9/4uXbq4+ba/9nr79u1HfZZ32cmemx9++MFTt25dd65r1Kjh3pPRNv21bezYse61Hae0hg8f7v6O7HxER0d77rzzTs/u3bt91mnZsqWnTp06R7XJtl2hQgXP8dg63nakbcv8+fOPeT788e63d7JzVbZsWc8VV1zhGTNmjCchIeGo9/z111+eNm3auO9LsWLFPD169PAsWbLEvd/a43Xo0CH3PSpevLgnKCjI5/iOHj069TzZMbP3pT8HU6ZM8Vx11VWe0qVLu3NlP2+88UbP33//7dOepKQkz3PPPeeOq22vcOHCnsaNG3sGDx7s87fu73wCAIAzw1+/JT3rv7Rt29YTFRXl+ibWn+zatavnt99+S11n48aNnquvvtpTqFAht961117r2bx5c4b95ieffNJTpkwZT3BwsE8fzvrh3bt3d+8vWLCg57rrrvNs27btqG0cq19qPvvsM895553nyZ8/v5usb2P90hUrVmTquFjfxvpTFStWdH0ea8u5557ree2113z6YgcPHnT9G+91g10HWN88fX/N+ouXX355hsfV9mPChAkZtmPRokWejh07pl472HbsmFifzCujfvDs2bM9zZo1c30s66898MADnsmTJx/VF927d6/npptucufMlnn7vt5rj7T9SGPXDXYcbLuRkZGe9u3bu35oWv7Ojb/+enrWH7Rzdize9r3wwgup8+yY33fffZ5SpUq59lk758yZ4/r6NqX11VdfeWrXru2uqdLup7/rAu8y73bi4+PdsWrUqJH7G0jr3nvvdX/X9tkAcCYF2X/ObNgeQHZimRW9e/fOsPwKAAAAAAAAkNNREx0AAAAAAAAAAD8IogMAAAAAAAAA4AdBdAAAAAAAAAAA/CCIDuCYbNgE6qEDAAAAAADkfD///LPat2+v0qVLu3Hyvvzyy+O+Z/r06WrUqJHCwsJUtWpVjRs3TjkNQXQAAAAAAAAAgPbt26cGDRpoxIgRmVp/zZo1uvzyy9WqVSstXrxYffv21e23367JkycrJwnyWJopAAAAAAAAAAD/skz0L774Qh06dPC7zoMPPqiJEydq6dKlqfNuuOEGxcbGatKkScopQpTLHD58WJs3b1bBggXdHwIAAAByPssb2bNnj3ssNTiYhzEBAACQeyQmJropLSu9YtN/NWfOHLVp08ZnXtu2bV1Gek6S64LoFkAvV65coJsBAACAANiwYYPKli0b6GYgC5uYt0agm4AM5F+0ONBNQAZKPHpFoJsAP0LC8wa6CUC2Uv2jSTm6/zH/4Rs1ePBgn3mDBg3S448//p+3vXXrVkVHR/vMs9fx8fE6cOCA8uXLp5wg1wXRLQPdewEVGRkZ6OYAAADgDLBOvCVSePuCAAAAQG4xcOBA9evXz2feqchCz01yXRDdW8LFAugE0QEAAHIXyvkBAAAgtzlVpVsyUrJkScXExPjMs9cWd80pWeiGgpAAAAAAAAAAgBPWvHlzTZkyxWfejz/+6ObnJLkuEx0AAAAAAAAAsoqgvFnnacm9e/dq5cqVqa/XrFmjxYsXq0iRIipfvrwrDbNp0ya9++67bnnPnj01fPhwPfDAA7rttts0depUffLJJ5o4caJyEjLRAQAAAAAAAAD67bffdNZZZ7nJWC31s846S4899ph7vWXLFq1fvz51/UqVKrmAuWWfN2jQQC+99JLefvtttW3bVjkJmegAAAAAAAAAECDBIVknE/3CCy+Ux+Pxu3zcuHEZvmfRokXKychEBwAAAAAAAADAD4LoAAAAAAAAAAD4QRAdAAAAAAAAAAA/qIkOAAAAAAAAAAESlJc856yOMwQAAAAAAAAAgB9kogMAAAAAAABAgASHBAW6CTgOMtEBAAAAAAAAAPCDTHQAAAAAAAAACJCgvGSiZ3VkogMAAAAAAAAA4AdBdAAAAAAAAAAA/KCcCwAAAAAAAAAECAOLZn1kogMAAAAAAAAAkB2C6I8//riCgoJ8ppo1a6YuT0hIUO/evVW0aFEVKFBAnTp1UkxMTEDbDAAAAAAAAAD/ZWDR0zkhhwXRTZ06dbRly5bUadasWanL7r33Xn3zzTeaMGGCZsyYoc2bN6tjx44BbS8AAAAAAAAAIOfKcjXRQ0JCVLJkyaPmx8XFafTo0frwww/VunVrN2/s2LGqVauW5s6dq2bNmgWgtQAAAAAAAACAnCzLBdH/+ecflS5dWuHh4WrevLmGDBmi8uXLa8GCBTp48KDatGmTuq6VerFlc+bM8RtET0xMdJNXfHy8AmH79u0B+2zgWCIjI1W8eHFlZXx/kFXx/QFy9vcHAAAAALJcEL1p06YaN26catSo4Uq5DB48WOeff76WLl2qrVu3KjQ0VIUKFfJ5T3R0tFvmjwXhbTuBDmDc0u127dqzP6DtADJSpGCE3h/7dpYNZPD9QVbG9wfIud8fAAAA4EwJDqFueVaXpYLo7dq1S/29fv36LqheoUIFffLJJ8qXL99JbXPgwIHq169f6mvLxitXrpzOJPtMC2AUb95J+YtEn9HPBo5l364YbZ/zmfsbzapBDL4/yKr4/gA5+/sDAAAAAFkyiJ6eZZ1Xr15dK1eu1MUXX6ykpCTFxsb6ZKPHxMRkWEPdKywszE1ZgQUwIkuUDXQzAB/blT3w/UFWxPcHyPnfHwAAAOB0C8pDJnpWF6wsbO/evVq1apVKlSqlxo0bK2/evJoyZUrq8hUrVmj9+vWudjoAAAAAAAAAADk6E71///5q3769K+GyefNmDRo0SHny5NGNN96oqKgode/e3ZVmKVKkiBuMqk+fPi6A7m9QUQAAAAAAAADIyoLJRM/yslQQfePGjS5gvnPnTlcf87zzztPcuXNTa2W+/PLLCg4OVqdOnZSYmKi2bdtq5MiRgW42AAAAAAAAACCHylJB9PHjxx9zeXh4uEaMGOEmAAAAAAAAAAByVRAdAAAAAAAAAHKToGDKuWR1WXpgUQAAAAAAAAAAAolMdAAAAAAAAAAIkKA85DlndZwhAAAAAAAAAAD8IIgOAAAAAAAAAIAfBNEBAAAAAAAAAPCDmugAAAAAAAAAECDBeYIC3QQcB5noAAAAAAAAAAD4QSY6AAAAAAAAAARIUDCZ6FkdmegAAAAAAAAAAPhBJjoAAAAAAAAABAg10bM+MtEBAAAAAAAAAPCDIDoAAACQiwUFBenLL79UdpdT9gMAAABZD+VcAAAAgADYvn27HnvsMU2cOFExMTEqXLiwGjRo4Oade+65yqqB6i+++EIdOnQIWBsef/xxFyxfvHixcqoi5zVR5fu6K6pRXYWXLqHfOvVSzNdTjv2eC85R7RcHqEDtakrYsEUrh7yuje9+4bNOhTtvUuV+3RVWsrjif1+uP/s+qbj5f6QuDw4LVa0XBqj0dZe537f/MEtL+wxW0radp21fsyOPx6Nvxr+umT99rgP796hKjYa66Y6HFF26gt/3fP/5aC2aO0VbN61VaGiYKtdooI639lXJMhVT1zmYlKgJ77yk32ZN1qFDSardoIXbbmShokdtb++eWD3Z7zrF7tqml9/9WRH5I5XbFW53lYp2uE4hhYooce0qbXn7NSX8s8Lv+kWu6KjCl16pvMVKKHlPnOJ/+Vnb3n9bnoMHM73NvCVLKbpLT0XUqqugvHm1d9F8bX1ruJLjdp/2/c0uoi5uryLtr1GeqMJKXL9a28eNVMKqvzNct+yjzyuidv2j5u9dNE+bn3/M/V79o0kZvnf7B29r97ef+swLCsmrck8OU3jFKlo3oJcS160+JfuUU5zpcxNSLFpFO96kiDoNlKdQYR3avVN7Zk3Vzi/GS8mHTvHeAaceQXQAAAAgADp16qSkpCS98847qly5sgukT5kyRTt3ErDM7fLkj1D87yu0YdxnavLpiOOun69iWZ399Rta/+Z4Le7cX0VbN1e9N55Swpbt2vHjLLdOqWvbqdYLA7W09yDFzluiSnd3UdOJozW9zqVK2r7LrVP7pYdUol1LLbyhrw7G71HdVx5V4wnDNafljad9n7OTyV+O09TvPlTXPk+qWIky+nr8SL36ZC89/srnyhsaluF7/v5zgS689HpVrFpHyYeT9eUHr+mVJ+507wkLz+fW+WTsi/pj4Uzd0f8F5YsooI/eflajnu+nB55556jtvTvicZWtUM0F0SFFnnuhorv11JZRw3Tg7+Uq2r6jKjz2nFbe1VXJcbFHr39+a5W4tYc2D39BB5b/qdDSZVX67gfcspixr2dqm0Fh4aow6HklrF2ldY/1d+8pflM3lX/4Ka158C6726LcrkCzC1T81h7aNvo1JaxcoULtOqjMgKe19r7blRwfd9T6m4c+4QLfXnkKRqrCsyO1d+7M1Hmrevr+e5S/YRNF33Gv9s5L+bcurWI3dVfy7p1SxSqnfN+yu0Ccm9AyZe1uvGLeflUHYzYrtFxFRfe4x32XdnzwtnK7IGqiZ3mUcwEAAADOsNjYWM2cOVPPPfecWrVqpQoVKuicc87RwIEDdeWVV6auc/vtt6t48eKKjIxU69attWTJEp+M7IYNG+qNN95QuXLlFBERoeuuu05xcUcufufPn6+LL75YxYoVU1RUlFq2bKmFCxeetv16++23VatWLYWHh6tmzZoaOXJk6rK1a9e6TPbPP//c7bO11zLv58yZ47ONt956K3V/rr76ag0dOlSFChVyy8aNG6fBgwe742Dbssnmee3YscO9x95brVo1ff3118qOtk/+WX8PGqaYr37K1PoV7rhBB9Zs1LIHntPe5au1buQH2vrZZFW6p2vqOpX6dtOG0Z9o4zufa++yVfqj1yAl709Qua6d3PKQyAIq162T/rr/We2cPlfxC//UktsfUpEWjVSoaYPTtq/ZMQt9yrcf6LJreqjhOa1UtmJ1devzpGJ3b9fiedP8vu+eR0eqReurVLp8VZWrWENd73pCu3Zs0bpVf7nlB/bt0eypX+jarvepZr1zVKFKbXXtPVirVizR6r9/99nWjEmfuAz4i6/qctr3N7soeuU1iv3xO8VNnaykjetc4PtwYqIKXXRphutH1KyjA8uXKn7mVB3cHqN9SxYofuY05atWI9PbtG3kLR6tza8+r8T1a9y0+dXnFF6luvLXO+uM7XtWVvjyjoqfOknxM35U0qb1LmDrSUpU5IVtM1z/8L69LovfO0XUO0uHExO059efU9dJu9ymAo2b68BfS3Rw21afbUU0aKKI+o1cFjSyxrnZv2SBYt4Yqv1/LHTz9i2Yq93ffqYCZ2fNp++A9AiiAwAAAGdYgQIF3GRlSRITEzNc59prr9W2bdv0/fffa8GCBWrUqJEuuugi7dqVkjVsVq5cqU8++UTffPONJk2apEWLFqlXr16py/fs2aMuXbpo1qxZmjt3rgssX3bZZW7+qfbBBx+4UjRPP/20li1bpmeeeUaPPvqoy7RP6+GHH1b//v1dOZbq1avrxhtv1KFDKY9xz549Wz179tQ999zjltsNANue1/XXX6/77rtPderU0ZYtW9xk87wswG43En7//Xe3nzfffLPP8cqpCjVrqB1TfW9GbP9xlgo3a+h+tzITUY3qaMeUX46s4PFox9RfVKhZSrDPSscEh4b6rLNvxWrtX7cpdTuQdsRsUnzsDtWq3zR1Xr78BVWpWj2tXnHkJtfxHNi/1/3MXzDK/Vy3epmSDx3y2W7JspVUpFgpn+1u3rBK3054U936POVuIsHuAIW4wPW+JWluEHo82vf7QkXUqJ3hW/Yv/9O9J/zfoHne6FIq0Pgc7V0wL9PbDMobmjI7TfkXT1KSW8/Ku+R6eUIUXqma9i1d5HsMly5Svmq1MrWJqAvbas+cGfL4+f9knqhCyn/WOYqbNvmo+ZbhvHXkC+7GB7LOuUkvOCK/Du879X2S7CgoOPi0TvjvOIoAAADAGRYSEuIyqC3AbFnWVgP9oYcecsFfY0HvefPmacKECWrSpIkLfr/44otu3U8/PVLzNSEhQe+++67LSL/gggv02muvafz48dq6NSXry7LXb7nlFpcVbhnib775pvbv368ZM2ac8n0aNGiQXnrpJXXs2FGVKlVyP++9916XKZ+WBdAvv/xyF0C3oPe6devczQBj7W/Xrp1bx5bbDQF77ZUvXz5388GOX8mSJd1k87y6du3qgvJVq1Z1Qfy9e/e645jThUUXU2LMDp959jpvVEEFh4cptFhhBYeEKDFdbfPEmJ0KK1ksZRsliyk5MUmH4nyDGVYPPSy6+BnYi+zBAugmfZ3yyKgiiovNXCmmw4cP65OxL6hKzYYqU75q6nZDQvIeVds8stCR7R48mKTRLw9Up873qkjxUqdoj7K/kIJRCsqTR4fS1SE/FLvb1TLPiGWgb/9onCo9/YpqTZisaqPe176lS7Tjsw8zvc0Df/+lwwkHVKJzDwWFhrmSFNFd/+feF1L46Dr2uU2eyEh3LNKX07HXVg/7eOwmRlj5SoqflnGdbRN5QRt3DvbOn+0zv2TP+xQ35Tslrv7nP+xBzhXIc5OW3bwq1PZKd66A7IAgOgAAABCgmuibN292JUcuvfRSTZ8+3WWbW3DdypVYALho0aKpWes2rVmzRqtWrUrdRvny5VWmTJnU182bN3cBuhUrUga+szrrPXr0cEF4K+diZWFsu+vXrz+l+7Jv3z7Xru7du/u096mnnvJpr6lf/8jAZKVKpQQCLePeWLutrE1a6V8fS9pt58+f3+2vd9sZsacA4uPjfaaDnsOZ/jzkfL/+PFF339w8dUo+BYPfffTWEG1ev1I9+j13Qu/74v1XXXZ6s5aX/+c25HY2sGGxTjdpy5uvavV9PbXh2cdUsHFTFbv2lkxvw+pGb3zhCRU8u7lqfvStan7wtYLzF9CBVX/Lw78j/1nkhZe6Ejn+Bro0US3bKn72VJ+nAQq1vUrB4RHa9eXHZ6iluc/Jnpu07EaT1WC3mupxU/0H44GshIFFAQAAgACx2uFWssQmK31iNdAto9sysC3AbIH19Lz1wTPDSrnYQKWvvPKKq7seFhbmAu02oOmpZIF5bz3zpk2PlKMwefLk8XmdN++Rgcm85Sgs8H8qpN22d/vH2vaQIUNcNnxaNwYV0c15UrKzswvLOrds9LTs9cG4PTqckKikHbt1+NAhhZXwzY4Niy6qxK0pmdX2M09YqEKiCvpko4eWKKrEmO3KrRqcfaEr1eJ16GDKdyc+dqeiCh/J0I+P26VyFatnKoD+x4Kf1f/JMSpcNDp1fmShYjp06KD274v3yUaPj92lqH+z3lcsnadN61dq4bUptfI9Shm48r6urdSuU3ddecORUk65yaE9cfIkJyskyjeDNqRQYR2KzbicU4mbuil2xo+K/SklA9YCgsHh+VTqznu149MPMr1Nq6W+8s5b3SCLtv7h/ftUfcwExcdsUW6XHB/vjomV9UjLXifH+mb4pxcUFqaCLVpq54R3/a6Tr0YdhZYpp82vPnPUDZLw6jVV7b1vfOaXf/o1F9SNef0l5XaBOjepn1O4iMo++pwS/v5LMW+/cpJ7kfMEBVOiK6sjiA4AAABkEbVr13Z10i0j3UqyWNmSihUr+l3fMsotm7106dLutdU9Dw4OVo0aNVJrjNvgnlYf3GzYsMENvnmqRUdHuzasXr3a1SE/WdZuGww1rfSvQ0NDlZycrFPBBnLt16+fz7ypRRoru4mdu1jF213gM6/YRS20e+5i97tlAsYt/FPFWjdXzNdTUlYIClLRVs21buT77mXcwqU6nJTk1tn6xQ9uXv7qlRRRoUzqdnKj8Hz53ZR2YFELeC//Y57KVaqZWt98zT9/qGXba/1ux943/u1ntXjeVPUb/LaKRR95gsRUqFxLeUJCtPz3eWrUvI2bt3XTWjf4aOUaKQO79rz/JSUlHak/vHblUr074nH1f2qMipcsp1zr0CGXEZu//lnaM+/f0hFBQW5wz13ff+k3EKjDKTchvCyo6H3viW4zeU+8+xlRr6ELRO6Zl2b8gdwq+ZAS1vyjiLoNte+3f8dsCApSRJ2Giv3BN8CdXsGmFygoJK/iZ031u05kq0uVsPpvJa1f4zN/2zuvK/iTd3wynss+9Iy2vPqMElamPKWV6wXo3KSeDwugr1mpraOGulrsQHZBEB0AAAA4wyw73AYOve2221wJkoIFC+q3337T888/r6uuukpt2rRxGeMdOnRw86w+uAXLJ06cqKuvvtrVSfdmslu2udVLt1Ikd999txtY02qFGyvj8t5777n1bfn999/vU0P8ZFhJGRv0My37HMvots+3sjFWnsZKpdg+7d69+6hAtT99+vRxtd2HDh2q9u3ba+rUqW5g1bQDKNpNBW8bypYt646dZdifDHtf+vfmDQp8xcs8+SOUv2r51NcRlcoqskFNJe2KU8KGLarxVD+Fl4nWkm4PuuXr3hyvCr1uVs0h92vDuM9UrFUzlbq2neZf+b/UbawZNlYNxjyn2AVLFTf/d1W8u4tC8ufThnc+d8sPxe/VhrGfqdYLA3RwV5wO7tmrusMe0e45CxX7a+YHzMzp7G/xoitu1nefvqUSpcqrWIky+uqjESpUuLgantMqdb2hj9+hs85prVaX3eBef/TWM5o383v1GjDMBeXjdqfczMoXUUChYeFucNJzW1+tCeNeUv4CUQqPyK/xo59V5Rr1Vbl6Spmi9IHyvfEpGaOlylY6qpZ6brPz609V+u4HXSmVA/8sV9ErOik4PFyxU1IGNbRlh3bt0Lb3R7vXe+fPUZErr3GBvAN/L1NoqTIuO33P/Dn2aEymtmmiWrdV0sb1OhQfq4gadRTdvbd2ffOZkjZvDNCRyFp2T/xcJe/s72qTWwC7ULurFRwWrvgZKTfqbNmh3Tu1Y/xYn/dFtmqrvb/9osN7Mx5wMjhfhAo2PV/bP3jzqGWHdvo+OXM4IcH9PBizxf0NIHDnJiWA/rwO7timHe+/pTyRKQMrm+R04w/kRsF5yETP6giiAwAAAGeY1Qu3sicvv/yyqxl+8OBBlStXztUvtwFGLVD33Xff6eGHH1a3bt20fft2Fxi3ALNlfXvZAJo2gKdlmu/atUtXXHGFyzz3Gj16tO644w6X2W7bt8E2bdDO/yKjgPjMmTNdKZqIiAi98MILLlhvNcnr1aunvn37ZnrbNsDqqFGjXED+kUceUdu2bd3gpMOHD/epJf/555+rVatWio2N1dixY92AojlJVOO6aj7lvdTXtV98yP3c8O7n+r37QIWVKq585Y4MLHlg7UYXMK/90kBV7NNZCRu36o//PaIdP85KXWfLhO8VWryIqg+6W2Eliyt+yTLNu+J2N3Co11/3PaNahw+r0SevKjgsVDt+mKWlfXzL3UBq26GrkhIO6P1RT2r/vj2qWvMs3f3oSOUNPXJDZsfWDdq750hQaMbkCe7nS4/d7rOtLr0Hq0Xrq9zv13Xr7x7nH/Xifa5sTO2GLXRTj5Rzj2OLnz3dBeSK39BVIYULK3HNKq1/YkBqYC5v8RI+Ga/bJ7zvng6wwHlIkWJKjo/Vnt/mpgbZM7NNE1amnKJvuV15ChRU0vYYVwpm19dHBn/O7fbO/Vk7IqNU9Jpb3YCVietWa9Ozj6QOaBlSrIQ7D2nlLVVWETXrauMzA/1ut2DzllKQtGf20SXPkHXPTUS9Ru6GlU2VR37gs+zvGy89ZfsGnC5BnvTfihzOMnAsOyYuLs4NNHQm2IXRDbf1VMXLeymyRNkz8plAZsRv26i1E0dq/JhRqlKlirIivj/Iqvj+ANnr+xOIPuDp9vjjj7vSL+mzwnMau7GwfPlyF6g/EybmTSmFg6wl/6Kc/XeeXZV49IpANwF+hIT7jhEB4NiqfxTYAU6XXOpblu1UazDp59O6/dyATHQAAAAAWYaVprGBVi2T3Uq5vPPOOz7Z9QAAAMCZFviCfwAAAAACzkq9WJmZjKZ27dqdsXbMmzfPBdGtFIyVdnn11VddqRgAAAAgUMhEBwAAALJpORebTpWePXu6QUkz8l8HIz0Rn3zyyRn7LAAAACAzCKIDAAAAUJEiRdwEAACAMysomGIhWR1nCAAAAAAAAAAAP8hEBwAAAAAAAIAACQoOCnQTcBxkogMAAAAAAAAA4AdBdAAAAAAAAAAA/KCcCwAAAAAAAAAESHAeyrlkdWSiAwAAAAAAAABSjRgxQhUrVlR4eLiaNm2qefPmHXP9YcOGqUaNGsqXL5/KlSune++9VwkJCcopyEQHAAAAAAAAgADJagOLfvzxx+rXr59GjRrlAujDhg1T27ZttWLFCpUoUeKo9T/88EMNGDBAY8aMUYsWLfT333+ra9euCgoK0tChQ5UTkIkOAAAAAAAAAHAs8N2jRw9169ZNtWvXdsH0iIgIFyTPyC+//KJzzz1XN910k8tev+SSS3TjjTceN3s9OyGIDgAAAAAAAAABEhQcfFqnE5GUlKQFCxaoTZs2qfOCg4Pd6zlz5mT4Hss+t/d4g+arV6/Wd999p8suu+w/Hpmsg3IuAAAAAAAAAJBDJSYmuimtsLAwN6W3Y8cOJScnKzo62md+dHS0li9fnuH2LQPd3nfeeefJ4/Ho0KFD6tmzpx566CHlFGSiAwAAAAAAAEAONWTIEEVFRflMNu9UmT59up555hmNHDlSCxcu1Oeff66JEyfqySefVE5BJjoAAAAAAAAA5FADBw50A4WmlVEWuilWrJjy5MmjmJgYn/kxMTEqWbJkhu959NFHdeutt+r22293r+vVq6d9+/bpjjvu0MMPP+zKwWR32X8PAAAAAAAAACCbCgoOOq2TBcwjIyN9Jn9B9NDQUDVu3FhTpkxJnXf48GH3unnz5hm+Z//+/UcFyi0Qb6y8S05AJjoAAAAAAAAAwLGs9S5duqhJkyY655xzNGzYMJdZ3q1bN7e8c+fOKlOmTGpJmPbt22vo0KE666yz1LRpU61cudJlp9t8bzA9uyOIDgAAAAAAAAABYtniWcn111+v7du367HHHtPWrVvVsGFDTZo0KXWw0fXr1/tknj/yyCMKCgpyPzdt2qTixYu7APrTTz+tnIIgOgAAAAAAAAAg1V133eUmfwOJphUSEqJBgwa5KaeiJjoAAAAAAAAAAH4QRAcAAAAAAAAAwA/KuQAAAAAAAABAgGS1mug4GpnoAAAAAAAAAAD4QSY6AAAAAAAAAARIUDB5zlkdQXQAAAAAAAAACJDgPJRzyeq4zQEAAAAAAAAAgB8E0QEAAAAAAAAA8IMgOgAAAAAAAAAAflATHQAAAAAAAAACJCiYmuhZHZnoAAAAAAAAAAD4QSY6AAAAAAAAAARIUDB5zlkdZwgAAAAAAAAAAD8IogMAAAAAAAAA4AdBdAAAAAAAAAAA/KAmOgAAAAAAAAAESFBwUKCbgOMgEx0AAAAAAAAAAD/IRAcAAAAAAACAACETPesjEx0AAAAAAAAAAD/IRAcAAAAAAACAAAkKJs85q+MMAQAAAAAAAADgB0F0AAAAAAAAAAD8oJwLAAAAAAAAAAQIA4tmfQTRAQAAAOBf+RctDnQTkIF9ZzUMdBOQgdnfrwh0E+BHvjBPoJuADBxIJFCaVVUPdAOQ5RFEBwAAAAAAAIAAYWDRrI8zBAAAAAAAAACAHwTRAQAAAAAAAADwgyA6AAAAAAAAAAB+UBMdAAAAAAAAAAIliEFnszoy0QEAAAAAAAAA8INMdAAAAAAAAAAIkKBgMtGzOjLRAQAAAAAAAADwg0x0AAAAAAAAAAiQoGDynLM6zhAAAAAAAAAAAH4QRAcAAAAAAAAAwA+C6AAAAAAAAAAA+EFNdAAAAAAAAAAIkKDgoEA3Adk5E/3ZZ59VUFCQ+vbtmzovISFBvXv3VtGiRVWgQAF16tRJMTExAW0nAAAAAAAAAJzswKKnc8J/l2WP4vz58/XGG2+ofv36PvPvvfdeffPNN5owYYJmzJihzZs3q2PHjgFrJwAAAAAAAAAg58qSQfS9e/fq5ptv1ltvvaXChQunzo+Li9Po0aM1dOhQtW7dWo0bN9bYsWP1yy+/aO7cuQFtMwAAAAAAAAAg58mSQXQr13L55ZerTZs2PvMXLFiggwcP+syvWbOmypcvrzlz5mS4rcTERMXHx/tMAAAAAAAAAABky4FFx48fr4ULF7pyLult3bpVoaGhKlSokM/86OhotywjQ4YM0eDBg09bewEAAAAAAADgZDGwaNaXpTLRN2zYoHvuuUcffPCBwsPDT8k2Bw4c6MrAeCf7DAAAAAAAAAAAsl0mupVr2bZtmxo1apQ6Lzk5WT///LOGDx+uyZMnKykpSbGxsT7Z6DExMSpZsmSG2wwLC3MTAAAAAAAAAGQ1ZKJnfVkqiH7RRRfpjz/+8JnXrVs3V/f8wQcfVLly5ZQ3b15NmTJFnTp1cstXrFih9evXq3nz5gFqNQAAAAAAAAAgp8pSQfSCBQuqbt26PvPy58+vokWLps7v3r27+vXrpyJFiigyMlJ9+vRxAfRmzZoFqNUAAAAAAAAAcJKCs1TFbWT1IHpmvPzyywoODnaZ6ImJiWrbtq1GjhwZ6GYBAAAAAAAAAHKgLB9Enz59us9rG3B0xIgRbgIAAAAAAAAA4HTiWQEAAAAAAAAAALJrJjoAAAAAAAAA5FRBQUGBbgKOg0x0AAAAAAAAAAD8IBMdAAAAAAAAAAIkKJg856yOMwQAAAAAAAAAgB8E0QEAAAAAAAAA8INyLgAAAAAAAAAQIEHBDCya1ZGJDgAAAAAAAACAH2SiAwAAAAAAAECgMLBolscZAgAAAAAAAACkGjFihCpWrKjw8HA1bdpU8+bNO+b6sbGx6t27t0qVKqWwsDBVr15d3333nXIKMtEBAAAAAAAAIECyWk30jz/+WP369dOoUaNcAH3YsGFq27atVqxYoRIlShy1flJSki6++GK37NNPP1WZMmW0bt06FSpUKCDtPx0IogMAAAAAAAAAnKFDh6pHjx7q1q2bez1q1ChNnDhRY8aM0YABA45a3+bv2rVLv/zyi/LmzevmWRZ7TkI5FwAAAAAAAACAyypfsGCB2rRpkzovODjYvZ4zZ06G7/n666/VvHlzV84lOjpadevW1TPPPKPk5GTlFGSiAwAAAAAAAEAOlZiY6Ka0rG65Tent2LHDBb8tGJ5WdHS0li9fnuH2V69eralTp+rmm292ddBXrlypXr166eDBgxo0aJByAjLRAQAAAAAAACBAgoKCT+s0ZMgQRUVF+Uw271Q5fPiwq4f+5ptvqnHjxrr++uv18MMPuzIwOQWZ6AAAAAAAAACQQw0cONANFJpWRlnoplixYsqTJ49iYmJ85sfExKhkyZIZvqdUqVKuFrq9z6tWrVraunWrKw8TGhqq7I5MdAAAAAB+BQUF6csvvzxt2+/atas6dOhwzHUuvPBC9e3b95jrjBs3ToUKFTrFrQMAADgDgoNO62QB88jISJ/JXxDdAt6WTT5lyhSfTPMpU6a4uucZOffcc10JF1vP6++//3bB9ZwQQDdkogMAAABZ0Pbt2/XYY49p4sSJLvOncOHCatCggZtnFypZTbNmzdSwYUOfx3bt9zvvvFNjx451wXIv+33VqlWaOXOmXnnlFXk8nhP6rIoVK7qg+vEC69mZHZNvxr+umT99rgP796hKjYa66Y6HFF26gt/3fP/5aC2aO0VbN61VaGiYKtdooI639lXJMhVT1zmYlKgJ77yk32ZN1qFDSardoIXbbmShokdtb++eWD3Z7zrF7tqml9/9WRH5I5WbFTmviSrf111RjeoqvHQJ/dapl2K+nnLs91xwjmq/OEAFaldTwoYtWjnkdW189wufdSrceZMq9+uusJLFFf/7cv3Z90nFzf8jdXlwWKhqvTBApa+7zP2+/YdZWtpnsJK27Txt+5pdvzOzJ76qP2ZPUOKBeJWu3EgX3/C4Cpc48vd/LL/+8KZmfvWSGrXqrNbXPOzmHdgXq18mvqa1y2Zpz+4tylegiKrWb6Pz2t+jsHwFU9bZu1sTx/XX9s0rlLAvVhEFiqpK/Yt0/pX9FJavwGnd5+x0bmZ89ZoWzZyghP3xKle1kdrdMkhFo/2fm9+mfaQF0z9S7M5N7nXx0lV1QfveqlrvAvc6dsdGvTbgyKCHaXXqOUy1m1yq/Xt368u37lfMxhXuXOYvWFTVG7ZW646cm0B+Z8yLvWsctb0rug1VzSaXn8I9xH9hWetdunRRkyZNdM4552jYsGHat2+funXr5pZ37txZZcqUSS0JY/294cOH65577lGfPn30zz//uIFF7777buUUBNEBAACALKhTp07u8dd33nlHlStXdoF0ywDauTNrBs5atWqlL77wDQ5OmzZN5cqV0/Tp032C6PbaLsyM1eTE0SZ/OU5Tv/tQXfs8qWIlyujr8SP16pO99PgrnytvaMaZY3//uUAXXnq9Klato+TDyfryg9f0yhN3uveEhedz63wy9kX9sXCm7uj/gvJFFNBHbz+rUc/30wPPvHPU9t4d8bjKVqjmguiQ8uSPUPzvK7Rh3Gdq8umI466fr2JZnf31G1r/5ngt7txfRVs3V703nlLClu3a8eMst06pa9up1gsDtbT3IMXOW6JKd3dR04mjNb3OpUravsutU/ulh1SiXUstvKGvDsbvUd1XHlXjCcM1p+WNp32fs5N5P76lRdPfU7tbn1VUsbKa9c0r+nR4d3V79DuF5M34O+O1Zd3vWjJrvIqX8Q3s7Y3b5qYLOz6ooiWrKn7XJv04/nE376oer7p1goKDVbX+RTqvfV8XMIzdvl5TPhmsH8fH6YpuL53Wfc4ufpn0tuZNeU9X3fasChUrq+lfvaIPX75ddz450e+5iSwcrdad7lOR6AoW7dWSX77Ux8N7q8djn6tEmWqKLFJK97400+c9C3/+RHMmjVbVuue711YHunrDi3Th1fcoomAR7d62Xt9/8IQmvjdIHe/g3ATqO+N16S1DVKl2yrkyYRG5+0ZtVmM1zb0JHVaSpWHDhpo0aVLqYKPr169XcPCRAifW35s8ebLuvfde1a9f3wXYLaD+4IMPKqegnAsAAACQxcTGxros7eeee84FpytUqOCygKye5ZVXXpm6zu23367ixYu7R3Jbt26tJUuWpG7j8ccfdxc8b7zxhruwiYiI0HXXXae4uLjUdebPn6+LL77Y1b60YHbLli21cOHCk2qztXPFihXuQstrxowZGjBggAuae61Zs0br1q1z62dUzsWynCy7qUCBAu4R4Jdeeumo0i72frtIs1IzNqVlF3BWg9Pef+mll2rLli3KjtmBU779QJdd00MNz2mlshWrq1ufJxW7e7sWz5vm9333PDpSLVpfpdLlq6pcxRrqetcT2rVji9at+sstP7Bvj2ZP/ULXdr1PNeudowpVaqtr78FatWKJVv/9u8+2Zkz6xGXAX3xVys0OSNsn/6y/Bw1TzFc/ZWr9CnfcoANrNmrZA89p7/LVWjfyA239bLIq3XPkhlKlvt20YfQn2vjO59q7bJX+6DVIyfsTVK5rJ7c8JLKAynXrpL/uf1Y7p89V/MI/teT2h1SkRSMVatrgtO1rdvzOLJz2rppdeqeqNmij4mVq6rIuz7vA3colxz5fSQn79N24+9X2pqcUFuF7U6946eq6qsdrqlKvtQoVL6/yNZq7YPnqpVN1OPmQWyc8IkoNL7hJJSvUU1TRMqpQs7kann+TNq387bTuc3Y6N/N+elfnX9FTNc66SNHlauiq257TnthtWr7I/7mxjPFq9Vu6bPWiJSupdcd7FRoWoU2rU/4/FxycRwWiivtMyxf+pNpnt1NoeH63Tr78UWrS6kaVrlhPhYqWUaVazdXkwhu14Z8Fyu0C+Z1JGzTPH1U8dTpe4D6nsxtyp3M6GXfddZfrcyUmJurXX39V06ZNU5dZ385K6aVlpV7mzp2rhIQE98ThQw895FMjPbsjiA4AAABkMRYAtslqkduFS0auvfZabdu2Td9//70WLFigRo0a6aKLLtKuXSnZq8ZqU37yySf65ptvXPbQokWL1KtXr9Tle/bscRnhs2bNchc91apV02WXXebmnygrMWMDSln2ufnrr7904MABde/e3WXPW/Dc2PLw8HC/NTXvv/9+F3z/6quv9MMPP7iLtLSB/c8//1xly5bVE0884QLkaYPk+/fv14svvqj33ntPP//8s8uS6t+/v7KbHTGbFB+7Q7XqH7lYzZe/oCpVq6fVK47cKDmeA/v3up/5C6YEOdatXqbkQ4d8tluybCUVKVbKZ7ubN6zStxPeVLc+Tx11kwKZV6hZQ+2YOsdn3vYfZ6lws4bu96C8eRXVqI52TPnlyAoej3ZM/UWFmp3lXlrpmODQUJ919q1Yrf3rNqVuB1Lczo3aF79dFWq0SJ1npSNKVWygzWsWHfO9P33yhCrXaakKNY+891gSD+xVaHgBBefJ+MH+vbEx+nvJjypb7ewT3Iucycqu7I3brkq1jhzf8IiCKlO5vjatWpypbRw+nKyl8ybqYNJ+la2S8d/9lrVLFbNhmRqel3IDKiN7YmO0fOGPKl+dc5MVvjNTPh6sEQ801fvPX6M/fvn0hEu7AWca5VwAAACALCYkJMRl9/To0cPVFbcAuWWJ33DDDe4RWQt6z5s3zwXRvYNCWfDYgu6ffvqp7rjjDjfPMoHeffdd90itee2113T55Ze77O6SJUu67PW03nzzTTc4pwWxr7jiihNqc/78+V22vAW9b7zxRvfzvPPOc+1r0aKFe12pUiX30wLoGQ1mtXfvXo0ePVrvv/++uyFgrJyNBc29ihQp4rKaChYs6PYhrYMHD7rjVaVKldQMKgu2ZzcWQDfp65RHRhVRXGzmyvnYwF6fjH1BVWo2VJnyVVO3GxKS96ja5pGFjmz34MEkjX55oDp1vldFipfS9piNp2ivcp+w6GJKjEk5l172Om9UQQWHhylv4SgFh4QoMV1t88SYncpfo3LKNkoWU3Jikg7F+d7YsnroYdHFz8BeZA8WDDQRkb7fmYiCRbUv3vccpLX8t4natuEv3fLAp5n6nP17d2nO9yNV/9zrj1r27Zh+Wvn7FB06mKAq9Vqp7c1Pn/B+5EQWQDf5052b/JHFtDfO/7kxVst87JAbdehgostCv7bXcFcbPSOLZn2mYqWquHrr6X3+Zj+tWDxVh5ISVK1BK7Xv+pRyu0B/Z8694m6Vr95MIaH5XP30nz4erIOJ+1199dwqyAYARZZGEB0AAADIojXRLeBtZV0sS9wyzp9//nm9/fbbruSJBZyLFvW9+LXMb3t81qt8+fKpAXRjwWsLrlrZFQtAW531Rx55xAW2LSCfnJzssrktg/tkWKmVCRMmuN9tm/ba2A0Ae22DUdlPuzmQEWu71YFP+7iwBc1r1Dh6ALKMWMkabwDdWDkY2y9/LMs/faZ/UtJhNyjnmfTrzxP1wRtHgjp3PfTaf97mR28N0eb1K3X/076PWh/PF++/6rLTm7VkcDdkXX/N+1o/fjQo9XXHXm+c8Dbid2/R1E+f1rV9xmSqjIRl034+8n8qWqqKWlx+11HLW3UaqOaX9dbubWs186uhmvbZEDdIY27zx9xvXM1xrxvvPjLY9IkqVrKS7njsCyUe2KO/FkzW12MGqPMD7x0VSD+YlKClv36r86+4M8PtXHL9QF3Q/i7tjFmrqZ8P1Q8fP6vLbjnSxtwgq31nmrfrnfp7dLnaOph0QPN/Gp2rg+jI+giiAwAAAFmUlT2xmuU2Pfroo64G+qBBg1xJFgsQp6017mWZ5JllpVys1Morr7zi6q5bdrgF2i2QfTKszvnTTz+tTZs2ubZ5S6lYEN1qs1uQfMOGDUdlwJ8qVk4mLStFcqzHw4cMGaLBgwf7zOty50Pq2usRnUkNzr7QlWrxOnQw5fjHx+5UVOEj2cbxcbtUrmL1TAXQ/1jws/o/OUaFi6YMAGYiCxXToUMHtX9fvE82enzsLkX9m/W+Yuk8bVq/UguvTamJ61HK8buvayu169RdV95wpBwQjs2yzi0bPS17fTBujw4nJCppx24dPnRIYSV8b4aFRRdV4taUTFD7mScsVCFRBX2y0UNLFFViTEomaW5UtX5rV3bCK/lQyndmf/xOFYgqkTp//56dKlG2ZobbiFn/p1v+7rMdU+d5Didr48r5WjTjA937yh+u7rZJStirz0bc7mptd7hjhPLk8f23xnjrOhctWcXVSR//8s1q3q6XT3tyg+oNW6lMpfqprw/9e272xe9UwUJHjoVlO5csV+uY28oTEpoysKjdFK1Y15Vssfrql3f2fcJo2YLJLpBev8WR8TXS8tZML1aqsquT/s5zN7uAe9r25HRZ8TuTlrVt7vcj3f//QvKGKlcKouJ2VkcQHQAAAMgmateu7Uq2WHkXG8DTyr5UrFjR7/qWUb5582aVLl3avbaM9uDg4NTM7tmzZ2vkyJGuDrqxAPeOHcd+vP5YrGxLaGio26aVkmncuLGbf/bZZ2v79u0aM2ZMatmXjFgWuQXCbfAqy6I3u3fv1t9//+0C8V72GZY1/1/ZQK39+vXzmTd35WGdaeH58rvJywL/FvBe/sc8latUM7W++Zp//lDLttf63Y69b/zbz2rxvKnqN/htFYs+8hSCqVC5lvKEhGj57/PUqHkbN2/rprVu8NHKNVKCKz3vf0lJSUey89euXKp3Rzyu/k+NUfGS5U75vudksXMXq3i7C3zmFbuohXbPTakD7Tl4UHEL/1Sx1s0V8/WUlBWCglS0VXOtG/m+exm3cKkOJyW5dbZ+8YObl796JUVUKJO6ndzI6ivblPZvP39kca1bMUcl/g3MWhbslrVL1PD8GzPcRoUazdTl4W985k16b6CKRlfW2Zf0SA0G2nY+HdHdBXSv7vl6pjJwvTfvvIHK3CQsvICb0h4LC2CvWTZHJcsfOTebVv+uxhdmfG788XgOpwbl01o881MXvM9fsEimtpEbz01W/85s37jM3XzKtQF0ZAsE0QEAAIAsxrLDbeDQ2267zdVAt/rfv/32myvnctVVV6lNmzYuY7xDhw5uXvXq1V2wfOLEibr66qvVpEmT1Ex2yza3eunx8fG6++67dd1116XWEreBRG0QTlvfltugnvny5Tvpdtt7mzVr5mqv20CjVrvcG/ROOz99xriXDaZqA5FaO6xUTYkSJfTwww+7wH9aduPABg61GvGWPV+smG+2b2bZe9PXZg8NPaBAswz6i664Wd99+pZKlCqvYiXK6KuPRqhQ4eJqeE6r1PWGPn6HzjqntVpddoN7/dFbz2jezO/Va8AwF5SP251yQyRfRAGFhoW7wUnPbX21Jox7SfkLRCk8Ir/Gj35WlWvUV+XqKZmj6QPle+N3u5+lylY6qpZ6bpMnf4TyV025uWMiKpVVZIOaStoVp4QNW1TjqX4KLxOtJd0edMvXvTleFXrdrJpD7teGcZ+pWKtmKnVtO82/8n+p21gzbKwajHlOsQuWKm7+76p4dxeF5M+nDe987pYfit+rDWM/U60XBujgrjgd3LNXdYc9ot1zFir218wPMpvT2XfGykDMnfS6CpeooKiiZTX721dchm3VBik3jMwnr3RR1QYXq9GFt7iAYvHSvk925A2LUHiBQqnzXTBw+G2u1MTlXV5Q0oG9bjL5ChZxQcPVS2do354dKlmhnqvbvWPLSs344nmVqdzItSO3s3NzTpvOmjVxlIpEV1ShYmU0/ctXXRZ4zbOOnJv3Xuyqmo3a6OzWt7jXUz57SVXrXaCoIqWUmLDPlWtZu2Kebu77ts/2d8Ws07p/ftON97x51Gf/8/sMl/FeulLKudm+eaV+mvCCq5teqFjuPjeB/M6s+mOqezKhVKUGCgkJ07rlszV38hs6+6LbzvBRAE4MQXQAAAAgi7FgstUFf/nll10JFBsws1y5cq6W+EMPPeQufr/77jsXYLY645blbYHxCy64QNHRR8p3VK1aVR07dnSZ5rt27XKDhVqWuJcN4mmDkFpmu23/mWeeSS3BcrKspIsFuL310L0sk3zatGlu+bG88MILrt57+/bt3c2D++67T3FxcT7r2GCh//vf/1zmutU0P1bJluyqbYeuSko4oPdHPan9+/aoas2zdPejI5U3Tb32HVs3aO+elCC3mTE5pR79S4/d7rOtLr0Hq0Xrq9zv13Xr7wYvG/Xife6x+doNW+imHg+dsf3KzqIa11XzKe+lvq79Yspx2/Du5/q9+0CFlSqufOVKpS4/sHajC5jXfmmgKvbprISNW/XH/x7Rjh9npa6zZcL3Ci1eRNUH3a2wksUVv2SZ5l1xuxs41Ouv+55RrcOH1eiTVxUcFqodP8zS0j6+ZYggnXNxDxe4++HDx5R4IF5lqjRWp95v+2TBxu7YoAP7jnxnjidmw58uM9e8/fjFPst6PDHFBR5DQsP0x+wJmv7ZEJfdXLBwKVVrcLHOuSRlgGdILS69XQcTD2jiu48pYX+8yldrrJv6vuVzbnZvX6/9af49279nl74a/aAbmDQsX0FFl63hAuiV65zrs+3Fsz9TZOGSqlLbd76xfy8XzZzgaqDbuYksUlI1z7pE516W8bgcuU2gvjPBwSFa/PMHmvbZM1YzTIWKl1erjgNU/9zrTuHeAadekCcn9jiPwTJsoqKiXEc8MvLMZFLYhc8Nt/VUxct7KbJE7r7biawlfttGrZ04UuPHjPIZhCsr4fuDrIrvD5C9vj+B6AMG2uOPP+5KvyxenHtLPpyM6UsDn4mOo+07q2Ggm4AMbP5+RaCbAD/yheWqUE+2cSAxKNBNgB89jiTgB0T80L6ndfuR/Yad1u3nBlStBwAAAAAAAADAD4LoAAAAAI7LSr1YmZmMpnbt2gW6eQAAANmXjf9yOif8Z9REBwAAAHJoORebTpWePXu6QUkz8l8GIwUAAACyOoLoAAAAAI6rSJEibgIAAAByG/L5AQAAAAAAAADwg0x0AAAAAAAAAAiQoKCgQDcBx0EmOgAAAAAAAAAAfpCJDgAAAAAAAACBEkyec1ZHEB0AAAAAAAAAAiQomHIuWR23OQAAAAAAAAAA8IMgOgAAAAAAAAAAfhBEBwAAAAAAAADAD2qiAwAAAAAAAECgBJHnnNVxhgAAAAAAAAAA8INMdAAAAAAAAAAIlOCgQLcAx0EmOgAAAAAAAAAAfhBEBwAAAAAAAADAD4LoAAAAAAAAAAD4QU10AAAAAAAAAAiQoCDynLM6zhAAAAAAAAAAAH6QiQ4AAAAAAAAAgRIcFOgW4DjIRAcAAAAAAAAAwA8y0QEAAAAAAAAgQIKCyXPO6jhDAAAAAAAAAAD4QRAdAAAAAAAAAAA/KOcCAAAAAAAAAIESxMCiWR2Z6AAAAAAAAAAA+EEmOgAAAAAAAAAECgOLZnmcIQAAAAAAAAAA/CCIDgAAAAAAAACAHwTRAQAAAAAAAADwg5roAAAAAAAAABAoQUGBbgGOg0x0AAAAAAAAAAD8IBMdAAAAAAAAAAIkKJg856yOMwQAAAAAAAAAgB9kogMAAAAAAABAoASR55zVcYYAAAAAAAAAAPCDIDoAAAAAAAAAAH4QRAcAAAAAAAAAwA9qogMAAAAAAABAoAQHBboFOA6C6AAAAAAAAAAQIEEMLJrlcYYAAAAAAAAAAPCDIDoAAAAAAAAAAH5QzgUAAAAA/lXi0SsC3QRkYPb3KwLdBGSgdLsagW4C/MhXJizQTUAGkg8cDnQT4E/M0kC3AFkcQXQAAAAAAAAACBQGFs3yKOcCAAAAAAAAAIAfZKIDAAAAAAAAQKAEkeec1XGGAAAAAAAAAADwg0x0AAAAAAAAAAiUIGqiZ3VkogMAAAAAAAAAUo0YMUIVK1ZUeHi4mjZtqnnz5mXqfePHj1dQUJA6dOignIQgOgAAAAAAAADA+fjjj9WvXz8NGjRICxcuVIMGDdS2bVtt27btmO9bu3at+vfvr/PPP185DUF0AAAAAAAAAIAzdOhQ9ejRQ926dVPt2rU1atQoRUREaMyYMX7fk5ycrJtvvlmDBw9W5cqVldNkqSD666+/rvr16ysyMtJNzZs31/fff5+6PCEhQb1791bRokVVoEABderUSTExMQFtMwAAAAAAAACctODg0zolJiYqPj7eZ7J5GUlKStKCBQvUpk2bNM0Ldq/nzJnjdxeeeOIJlShRQt27d1dOlKWC6GXLltWzzz7rTtRvv/2m1q1b66qrrtKff/7plt9777365ptvNGHCBM2YMUObN29Wx44dA91sAAAAAAAAAMiShgwZoqioKJ/J5mVkx44dLqs8OjraZ350dLS2bt2a4XtmzZql0aNH66233lJOFaIspH379j6vn376aZedPnfuXBdgt5Px4YcfuuC6GTt2rGrVquWWN2vWLECtBgAAAAAAAICTFHR685wHDhzoapynFRYWdkq2vWfPHt16660ugF6sWDHlVFkqiJ6W3fGwjPN9+/a5si6WnX7w4EGfRwlq1qyp8uXLu0cJCKIDAAAAAAAAgI4KmGc2aG6B8Dx58hxVQjsmJkYlS5Y8av1Vq1a5AUXTJkcfPnzY/QwJCdGKFStUpUoVZXdZLoj+xx9/uKC51T+3uudffPGFK2C/ePFihYaGqlChQpl+lMBYfZ+0NX6s5g8AAAAAAAAAwJfFXxs3bqwpU6aoQ4cOqUHxKVOm6K677jpqfUtytnhuWo888ojLUH/llVdUrlw55QRZLoheo0YNFzCPi4vTp59+qi5durj65yfL6vvYqLAAAAAAAAAAkOUEBykrsdIvFpNt0qSJzjnnHA0bNsxVC+nWrZtb3rlzZ5UpU8bFXcPDw1W3bl2f93uToNPPz85CsuLdjqpVq7rf7a7H/Pnz3V2L66+/3o0OGxsb65ON7u9RAn81fywTPafcAQEAAAAAAACAU8nisNu3b9djjz3mKoA0bNhQkyZNSh1sdP369QoOPr113LOaLBdET88eF7ByLBZQz5s3r3t0oFOnTm6Z1dSxk2blX05FzR8AAAAAAAAAyEkDi54MK92SUfkWM336dB3LuHHjlNNkqSC6ZY23a9fODRZqdXM+/PBDd1ImT56sqKgode/e3WWVFylSRJGRkerTp48LoDOoKAAAAAAAAAAgxwfRt23b5mrqbNmyxQXN69ev7wLoF198sVv+8ssvu0cFLBPdstPbtm2rkSNHBrrZAAAAAAAAAHBygrJWTXRk8SD66NGjj7ncCtWPGDHCTQAAAAAAAAAAnG5Zr+AOAAAAAAAAAABZBEF0AAAAAAAAAACyQzkXAAAAAAAAAMhVgslzzuo4QwAAAAAAAAAA+EEmOgAAAAAAAAAESlBQoFuA4yATHQAAAAAAAAAAPwiiAwAAAAAAAADgB0F0AAAAAAAAAAD8oCY6AAAAAAAAAARKEHnOWR1BdAAAAAAAAAAIlGCC6FndKTlDlStX1s6dO4+aHxsb65YBAAAAAAAAAJBrM9HXrl2r5OTko+YnJiZq06ZNp+IjAAAAAAAAACDnCQoKdAtwOoPoX3/9dervkydPVlRUVOprC6pPmTJFFStW/C8fAQAAAAAAAABA9gyid+jQwf0MCgpSly5dfJblzZvXBdBfeuml/9ZCAAAAAAAAAACyYxD98OHD7melSpU0f/58FStW7FS1CwAAAAAAAACAnFETfc2aNadiMwAAAAAAAACQuwQFB7oFOBNBdGP1z23atm1baoa615gxY07VxwAAAAAAAAAAkL2C6IMHD9YTTzyhJk2aqFSpUq5GOgAAAAAAAADgOIil5o4g+qhRozRu3Djdeuutp2JzAAAAAAAAAABkCaek4E5SUpJatGhxKjYFAAAAAAAAAEDOCqLffvvt+vDDD0/FpgAAAAAAAAAAyFnlXBISEvTmm2/qp59+Uv369ZU3b16f5UOHDj0VHwMAAADgFJo+fbpatWql3bt3q1ChQsqucsp+AACAXCr4lOQ5I6sH0X///Xc1bNjQ/b506VKfZQwyCgAAABxf165d9c4777jfLSmlfPny6ty5sx566CGFhBy7227jE/Xt21exsbE5PlB94YUXumuPYcOGKScr3O4qFe1wnUIKFVHi2lXa8vZrSvhnhd/1i1zRUYUvvVJ5i5VQ8p44xf/ys7a9/7Y8Bw9mept5S5ZSdJeeiqhVV0F582rvovna+tZwJcftPu37m514PB7Nnviq/pg9QYkH4lW6ciNdfMPjKlyiYqbe/+sPb2rmVy+pUavOan3Nw27egX2x+mXia1q7bJb27N6ifAWKqGr9Njqv/T0Ky1cwZZ29uzVxXH9t37xCCftiFVGgqKrUv0jnX9lPYfkKKDcrcl4TVb6vu6Ia1VV46RL6rVMvxXw95djvueAc1X5xgArUrqaEDVu0csjr2vjuFz7rVLjzJlXu111hJYsr/vfl+rPvk4qb/0fq8uCwUNV6YYBKX3eZ+337D7O0tM9gJW3bedr2Nbspc+v1Kv+/rgotXkx7l/2tvwcN0Z4lvnEjr6CQEFXo1V2lOl2p0JIltH/1Wq16dph2zZid4foV7rxNVR7sqw1j3tc/TzzvsyyyUX1V6X+3IhvWkyc5WXv/WqHFnXvqcGLiadnP7KhstxtUsVc3hZYo5o7P8oeeUfwi/+em0t23q9T1VynMzs2qtfrnyaHaOc333Niyao/2U9HW5ylPvnDtX7tef93zqOKX/OmW13nlKZW+oYPPe3ZMnaVFN/Y8jXsKZKEg+rRp007FZgAAAIBc7dJLL9XYsWOVmJio7777Tr1793YB9YEDBwa6aTiDIs+9UNHdemrLqGE68PdyFW3fURUee04r7+qq5Lijb5REnt9aJW7toc3DX9CB5X8qtHRZlb77AbcsZuzrmdpmUFi4Kgx6XglrV2ndY/3de4rf1E3lH35Kax68yyLHZ/goZF3zfnxLi6a/p3a3PquoYmU165tX9Onw7ur26HcKyRt2zPduWfe7lswar+JlavjM3xu3zU0XdnxQRUtWVfyuTfpx/ONu3lU9XnXrBAUHq2r9i3Re+74uyB67fb2mfDJYP46P0xXdXlJulid/hOJ/X6EN4z5Tk09HHHf9fBXL6uyv39D6N8drcef+Ktq6ueq98ZQStmzXjh9nuXVKXdtOtV4YqKW9Byl23hJVuruLmk4crel1LlXS9l1undovPaQS7Vpq4Q19dTB+j+q+8qgaTxiuOS1vPO37nB2UuKKtqj1yv1Y88qTiFv2hcrfdoobvjtLc1lfq4M6UY5hW5f53qWSHy7V8wGDtW7VGRVueq3pvvKwFnTpr75/LfdYtWL+OSt90rfYsO/rmogXQG457XeteH+2C9hZEL1Crujyew6d1f7OT6KsuVY3BD2jZA08obuHvKn/HrWo0/g3NPre9Du44+txUGdBHpa65Qsvue1z7Vq5R0QvPVYOxr2j+Fbdoz9KUcxMSFamzv3lPu2bP06Kbeipp525FVKqgg7HxPtvaMWWm/rznkdTXh5OO3OzNzTwkIWd5PCsAAAAAZBFhYWEqWbKkKlSooDvvvFNt2rTR119/7YLq/fv3V5kyZZQ/f341bdrUZYYb+9mtWzfFxcW5p0Btevzxx92y9957T02aNFHBggXddm+66SZt27bttLT9WG30ZstbBvvkyZNVq1YtFShQwN002LJlS+o6hw4d0t133+3WK1q0qB588EF16dJFHTp0SM3WnzFjhl555ZXUfV27dm3q+xcsWOD2NyIiQi1atNCKFf4zt7Oyoldeo9gfv1Pc1MlK2rjOBb4te7LQRZdmuH5EzTo6sHyp4mdO1cHtMdq3ZIHiZ05Tvmo1Mr1N20be4tHa/OrzSly/xk2bX31O4VWqK3+9s87YvmeHLPSF095Vs0vvVNUGbVS8TE1d1uV5F+xeueSnY743KWGfvht3v9re9JTCIqJ8lhUvXV1X9XhNVeq1VqHi5VW+RnMXLF+9dKoOJx9y64RHRKnhBTepZIV6iipaRhVqNlfD82/SppW/KbfbPvln/T1omGK+OvY58Kpwxw06sGajlj3wnPYuX611Iz/Q1s8mq9I9XVPXqdS3mzaM/kQb3/lce5et0h+9Bil5f4LKde3klodEFlC5bp301/3Pauf0uYpf+KeW3P6QirRopEJNG5y2fc1Oyt3eWZvHf6YtE77S/pWrteLhJ3X4wAGVvs43E9mr5NVXaO2It7Vz+iwlbNikTe9/op3TZqn87Z191ssTkU91hg3R8gGP61Ccb4DWVHv0AW0Y96HWvT5G+/5Z5TLat038QR6Ctakq9Oysje9/qs3jv9S+v1dr2f1PKPlAgsrceHWG65e+tr3WvPKWC4AfWLdRG9/52P1e4c4j35mKfW5Twuat+qvvoy6jPWH9Ju2a8YsOrNvgs63DSUlK2r4zdcroHOZKQcGnd8J/dkqOoj3W2bp1a78TAAAAgBOXL18+JSUl6a677tKcOXM0fvx4V0rx2muvdQHof/75xwWLrbRJZGSkC0jbZMFsc/DgQT355JNasmSJvvzySxdwtkD06XCsNnrt379fL774ogvu//zzz1q/fn1qW81zzz2nDz74wGXjz549W/Hx8a7dXhY8b968uXr06JG6r+XKlUtd/vDDD+ull17Sb7/95krg3Hbbbcp2QkJc4HrfkoVH5nk82vf7QkXUqJ3hW/Yv/9O9J/zfoHne6FIq0Pgc7V0wL9PbDMobmjI7TfkXT1KSW8/KuyBF3M6N2he/XRVqtEidZ+VWSlVsoM1rFh3zvT998oQq12mpCjWPvPdYEg/sVWh4AQXnyfgB8r2xMfp7yY8qW+3sE9wLFGrWUDumzvGZt/3HWSrcLKVMrZUzimpURzum/HJkBY9HO6b+okLNUm4qWemY4NBQn3X2rVit/es2pW4nNwvKG6KCdWtp1+y5R2Z6PNo1+1dFNsr4JoMdz8OJST7zDickKOps3xt51Z98WDumzdTu2b8etY28RYso6qz6LtO98Wfv6rz503TWx2MU1YSbgT7npn5t7ZqZ7tz8PFdRTTI+N0EZnptEFTrnyHEtfkkrV7al/lsvqeWfM9T0pwkqc0vKTae0Crc42y1vMfsb1XzuUeUt7HtTEcjR5Vy89dC9rLO+ePFiVx/dMkcAAAAAnFi265QpU1zW9o033uiCyhZwLl26tFtugedJkya5+c8884yioqJcVrZlm6eVNohcuXJlvfrqqzr77LO1d+9elwl+qljbjtdG73XCqFGjVKVKldTA+xNPPJG6nddee82Vrrn66pRMuOHDh7uyNl62n6GhoS7TPP2+mqefflotW7Z0vw8YMECXX365EhISFB4eruwipGCUgvLk0aF0dcgPxe5WWJkjNwzSsgz0kMgoVXr6FRuUytWu3TXpa+347MNMb/PA33/pcMIBlejcQ9veH+22E33r7e59IYWLnrb9zW4sgG4iIn2PSUTBotoXv8Pv+5b/NlHbNvylWx74NFOfs3/vLs35fqTqn3v9Ucu+HdNPK3+fokMHE1SlXiu1vfnpE96P3C4supgSY3zPl73OG1VQweFhLqgXHBKixHS1zRNjdip/jcop2yhZTMmJSToUt8dnHauHHhZdXLld3sKF3TFM2uF7DC3zOKJKpQzfs/PnX1Tu9lsVO2+By14ufG5TFb/0IgUF50ldp0T7S1WwTi39dlXGJXPylS/rflbqe6dWPvOS9vy1QiU7ttdZH7ylX9t21IG165XbhRb599xsP/rc5K/m59xMn60K/+us2Dm/af/aDSpyfjOVuOwi9/8Ir3wVyqpsl+u1/o13XdZ65Fl1VeOpga5cy5ZPvnbr7Jg2W9u++0kH1m9SvorlVHXgPTrro1Gad9nN0mHK7SAXBNFffvnlDOfbY6TWQQcAAABwfN9++60Lbluw+fDhw678yjXXXONKoVSvXv2o8ilW8uRYrLyJ9cktE90GBLVtGgt2166dcVbzyfjjjz+UnJx83DZa8NsbQDelSpVKLS9j5WhiYmJ0zjnnpC7PkyePGjdunNru46lfv77Pto1t3wZpzYi1z6a0kpIPKzRP9nrsOaJOAxXrdJO2vPmqDvy9TKGlSqtk9946dO0t2jHh/UxtIzk+ThtfeEKlevZVkcuvdlmJcTOn6sCqv3N1HeG/5n2tHz8alPq6Y683Tngb8bu3aOqnT+vaPmOOWzPdm4H++cj/qWipKmpx+V1HLW/VaaCaX9Zbu7et1cyvhmraZ0PcwKZAdvfP4OdU89lBajblK3cz2cqGWCmYUv+WfwkrFa3qjz2oRbfecVRWdKp/60pv+vBT916z8s/lKtKiqdvO6udTxhjAiVnxyLOq/dLjLnvcnZu1G1wpmNJpyr/YuA2Wib7ymVfca6uVXqBmNZXtcl1qED3my+9T19+77B/t/etvnTdvkoqce7Z2zTz6yQIgxwXR/bnllltcJ9ge2QQAAABw/DKJr7/+usu2toxuK0ny8ccfu2CyBcTtZ1rHyibft2+f2rZt6yYrkVK8eHEXPLfXViLmVLLEmcy00QZJTcuy5+1i/FRJu33btjlWAH7IkCEaPHiwz7xeNSqqd62UTNNAOLQnzg2CFxJV2Gd+SKHCOhR79GBvpsRN3RQ740fF/pSStW/1zIPD86nUnfdqx6cfZHqbVkt95Z23Kk/BSLf+4f37VH3MBMXHHKlbn9tUrd/alWrxSj6U8t3ZH79TBaJKpM7fv2enSpStmeE2Ytb/6Za/+2zH1Hmew8nauHK+Fs34QPe+8oeC/820TUrYq89G3K7Q8PzqcMcI5cnj+50x+aOKu6loySquTvr4l29W83a9fNqDY7Osc8tGT8teH4zb40pUJO3YrcOHDimshO+NyrDookrcmpLBbj/zhIUqJKqgTzZ6aImiSoxJeWIhNztoN24PHVJoMd9jGFq8qJK2Z/zUxsFdu/XHHX0VbMe1UCElxWxTlQF9dWD9Rre8YL3a7v1nf/tx6nsso7rQOY1VpvMNml69iZK2pWzbaqGntW/VaoWXTrm5mtsl7fr33BQ/+twk/nv80ju4c7eWdL3HnZu8hQspces2VX3kXnejw8v+7vf9ne64/71aJS5v47ct9v6kHbuUr2J5KbcH0albnruD6FYTMTs9OgkAAAAEkg3IWbVqVZ95Z511lsvytozq888/P8P3WdDd1klr+fLl2rlzp5599tnUuuFWK/x0yEwbj8dKtURHR2v+/Pm64IIL3Dzb5sKFC33KR2a0ryfLSsf069fPZ97qW65SQB06pIRVfyt//bO0Z97slHlBQW5wz13fH6kPn1ZQWJh02PdmhAXBve890W0m70kZ5C2iXkPliSqkPfPS1IXOZawmuU1edtMnf2RxrVsxRyXK1UrNHN+ydokanp9xeYkKNZqpy8Pf+Myb9N5AFY2urLMv6ZEaQLftfDqiu/KEhOrqnq9nKmvdexPKG9xH5sTOXazi7VL+nfEqdlEL7Z67OHVsgLiFf6pY6+aK+XpKygpBQSraqrnWjUx5uiNu4VI3QKKts/WLH9y8/NUrKaJCmdTt5Gaeg4e0Z+kyFW7RVDt+mJYyMyjIvd707kfHfK9lmVsA3UpTFb+0jRsU1FgN9F8vOXIzytR64QntX7VG60aNdeVAEjZuUuLWGEVUruizXkSlCq4kCf49N7//pSLnN9X276emzAwKcq83jDn+ubEAup2b6CsuVszXk1OXxc5fpIgq6Y57lQpK2Oj/Rqw9XZC3SCElbePGE7K+UxJE79ix41H/I7dBfqyT/uijj56KjwAAAAByJSuRcvPNN6tz585u0EwLWG/fvt3VTLfyJVb3u2LFii4b3OY1aNDAlU2xEiYWcLY64z179nTjFdkgo6eidEvBggV9Mr7tM4/Xxszo06ePyw63Gwk1a9Z0bbcyNN6scmP7+uuvv7pBUi3LvUiRIie9L2FhYW5KKyuUctn59acqffeDrpTKgX+Wq+gVnRQcHq7YKSnBClt2aNeOlNrl9iTA/DkqcuU1Sliz8t9yLmVcdvqe+XNSa8web5smqnVbJW1cr0PxsYqoUUfR3Xtr1zefKWnzkUzD3M7+Fhu16qy5k15X4RIVFFW0rGZ/+4rLAq/a4Ei25SevdFHVBher0YW3uCB88dK+pY7yhkUovECh1PkugD78Nh1MOqDLu7ygpAN73WTyFSziAu2rl87Qvj07VLJCPYWGRWjHlpWa8cXzKlO5kWtHbpYnf4TyVz1StimiUllFNqippF1xStiwRTWe6qfwMtFa0u1Bt3zdm+NVodfNqjnkfm0Y95mKtWqmUte20/wr/5e6jTXDxqrBmOcUu2Cp4ub/rop3d1FI/nza8M7nbvmh+L3aMPYz1XphgA7uitPBPXtVd9gj2j1noWJ/XRKAo5D1bHj7XdV66Snt+eMvxS/+Q+W636I8Efm0eULKzbtaLz2txJiY1BIrkQ3rKSy6hPb8tVxhJaNdXXMrEbL+jbFuefK+/dr390qfz0g+cEAHY+N85q978x1V7nun9i77W3v/Wq6Sna50ddiX3nnfGd3/rGzdqHdV59WnFb/4T8UvWqryd/x7bsannJs6rz3jguUrnx7mXkc2qqfwktHa86edmxKqfH8vKThIa4ePSd3m+jfe09nfvqeK9/RQzFeTFNWonsreeo3+6p/yxJdtv3L/Xto28UeX8R5RsZyqPdpP+9esd7XScztPmr4OcnAQ3bJG0goODlaNGjXcIEGXXHLJqfgIAAAAINeywTmfeuop3Xfffdq0aZOKFSumZs2a6YorrnDLW7Ro4QLl119/vcs+HzRokKuFbrXUH3roITegaKNGjVyZxSuvvPI/tcWbJe5l5VsOHTp03DZmxoMPPqitW7e6YLxt94477nDlZ9KWiLEBS7t06eJquh84cEBr1qxRThM/e7ryREap+A1dFVK4sBLXrNL6JwYo+d+BQfMWL+Fqlnttn/C+S2SywHlIkWJKjo/Vnt/mpgbZM7NNY4OMRt9yu/IUKKik7TGuFMyurzM3EGZucs7FPVyw+4cPH1PigXiVqdJYnXq/7ZM5Hrtjgw7s8x3I9VhiNvzpstnN249f7LOsxxNTXJA8JDRMf8yeoOmfDXGZ5wULl1K1BhfrnEvuUG4X1biumk95L/V17Rcfcj83vPu5fu8+UGGliitfuSOlPA6s3egC5rVfGqiKfTorYeNW/fG/R7Tjx1mp62yZ8L1CixdR9UF3K6xkccUvWaZ5V9zuBg71+uu+Z1Tr8GE1+uRVV+Zixw+ztLSPb4mo3Gzbt5OVt0hhVb63l0KLF9OeZSu0pMudOrgjpYxUeJmSVtsodX07hpX736Xw8mVdwHzntFn6696HdCjed/DW49k45n1Xaqfao/crb6Eo7V22Qotv+V9qWRjIBblDixZWlQfuUliJYi44vvDGnqmDjYaXKeUz0GeesDBVGdDHDR5q52bHlJn6s/dAn3MTv3iplnTrq6oP36PK/Xq6wUNXPPqctn420S33HD6sArWrq/T1VyokMtIF6XfO+EWrnhsuT9LBABwF4MQEeU5lEcJsID4+3gX9beCiyMjIM/KZq1at0g239VTFy3spskTuzhBA1hK/baPWThyp8WNG+QzylZXw/UFWxfcHyF7fn0D0AfHfWT3zWrVq6brrrjslWfSZ8dfVF52Rz8GJmd3735IayFJKt6sR6CbAj3xljl8OCGde8oHcO1BzVndxzNKAfv7+GeNP6/YjWt5wWrefG5zSmug2kNCyZcvc73Xq1HGPcQIAAABAZqxbt04//PCDWrZsqcTERA0fPtxlmt90002BbhoAAABysVMSRLcBhG644QZNnz5dhQoVcvNiY2PVqlUrjR8/XsWLFz8VHwMAAADgNGnXrp1mzpyZ4TIrCWPT6WZlIa0EjZVssQdm69atq59++sllowMAAORYQYEfkwVnIIhuAwDt2bNHf/75Z2oH96+//nK1Cu+++2599NGxR/cFAAAAEFhvv/22qzGekf8yeOeJKFeunGbPZnAxAAAA5MAg+qRJk47KELGBfkaMGMHAogAAAEA2UKZMmUA3AQAAIHcKCgp0C3AcwadqwJ+8efMeNd/m2TIAAAAAAAAAAHJtEL1169a65557tHnz5tR5mzZt0r333quLLmJ0ewAAAAAAAADIUHDw6Z3wn52Sozh8+HDFx8erYsWKqlKlipsqVark5r322mun4iMAAAAAAAAAAMieNdFtAKCFCxe6uujLly9386w+eps2bU7F5gEAAAAAAAAACIj/lIk+depUN4CoZZwHBQXp4osvVp8+fdx09tlnq06dOpo5c+apay0AAAAAAAAA5CCeoKDTOiHAQfRhw4apR48eioyMPGpZVFSU/ve//2no0KH/5SMAAAAAAAAAAMieQfQlS5bo0ksv9bv8kksu0YIFC/7LRwAAAAAAAABAzhUUfHon/Gf/6SjGxMQob968fpeHhIRo+/bt/+UjAAAAAAAAAADInkH0MmXKaOnSpX6X//777ypVqtR/+QgAAAAAAAAAALJnEP2yyy7To48+qoSEhKOWHThwQIMGDdIVV1zxXz4CAAAAAAAAAICACfkvb37kkUf0+eefq3r16rrrrrtUo0YNN3/58uUaMWKEkpOT9fDDD5+qtgIAAAAAAABAjuKhbnnODqJHR0frl19+0Z133qmBAwfK4/G4+UFBQWrbtq0LpNs6AAAAAAAAAADkuiC6qVChgr777jvt3r1bK1eudIH0atWqqXDhwqemhQAAAAAAAACQUwUFBboFON1BdC8Lmp999tmnanMAAAAAAAAAAOScIDoAAAAAAAAA4MRQEz3r4wwBAAAAAAAAAOAHQXQAAAAAAAAAQKoRI0aoYsWKCg8PV9OmTTVv3jy/67711ls6//zzXblvm9q0aXPM9bMjgugAAAAAAAAAAOfjjz9Wv379NGjQIC1cuFANGjRQ27ZttW3btgzXnz59um688UZNmzZNc+bMUbly5XTJJZdo06ZNyikIogMAAAAAAABAoAQFnd7pBA0dOlQ9evRQt27dVLt2bY0aNUoREREaM2ZMhut/8MEH6tWrlxo2bKiaNWvq7bff1uHDhzVlyhTlFATRAQAAAAAAACBQbGDR0zmdgKSkJC1YsMCVZPEKDg52ry3LPDP279+vgwcPqkiRIsopQgLdAAAAAAAAAADA6ZGYmOimtMLCwtyU3o4dO5ScnKzo6Gif+dHR0Vq+fHmmPu/BBx9U6dKlfQLx2R2Z6AAAAAAAAACQQw0ZMkRRUVE+k807HZ599lmNHz9eX3zxhRuUNKcgEx0AAAAAAAAAcqiBAwe6gULTyigL3RQrVkx58uRRTEyMz/yYmBiVLFnymJ/z4osvuiD6Tz/9pPr16ysnIRMdAAAAAAAAAALEExR0WicLmEdGRvpM/oLooaGhaty4sc+goIf/HSS0efPmfvfh+eef15NPPqlJkyapSZMmymnIRAcAAAAAAAAAOJa13qVLFxcMP+ecczRs2DDt27dP3bp1c8s7d+6sMmXKpJaEee655/TYY4/pww8/VMWKFbV161Y3v0CBAm7KCQiiAwAAAAAAAECgBGWtYiHXX3+9tm/f7gLjFhBv2LChyzD3Dja6fv16BQcfafPrr7+upKQkXXPNNT7bGTRokB5//HHlBATRAQAAAAAAAACp7rrrLjdlZPr06T6v165dq5yOIDoAAAAAAAAABIhHQYFuAo4jaz0rAAAAAAAAAABAFkIQHQAAAAAAAAAAPwiiAwAAAAAAAADgBzXRAQAAAAAAACBAPEHkOWd1nCEAAAAAAAAAAPwgEx0AAAAAAAAAAoVM9CyPMwQAAAAAAAAAgB8E0QEAAAAAAAAA8INyLgAAAAAAAAAQIJ6goEA3AcdBJjoAAAAAAAAAAH6QiQ4AAAAAAAAAAeJhYNEsjyA6AAAAAPwrJDxvoJuADOQL8wS6CchAvjJhgW4C/DiwKTHQTUAGwqJDA90EACeJIDoAAAAAAAAABAo10bM8nhUAAAAAAAAAAMAPgugAAAAAAAAAAPhBEB0AAAAAAAAAgOwQRB8yZIjOPvtsFSxYUCVKlFCHDh20YsUKn3USEhLUu3dvFS1aVAUKFFCnTp0UExMTsDYDAAAAAAAAwMnyBAWf1gn/XZY6ijNmzHAB8rlz5+rHH3/UwYMHdckll2jfvn2p69x777365ptvNGHCBLf+5s2b1bFjx4C2GwAAAAAAAACQM4UoC5k0aZLP63HjxrmM9AULFuiCCy5QXFycRo8erQ8//FCtW7d264wdO1a1atVygfdmzZoFqOUAAAAAAAAAcOI8Cgp0E5CdMtHTs6C5KVKkiPtpwXTLTm/Tpk3qOjVr1lT58uU1Z86cgLUTAAAAAAAAAJAzZalM9LQOHz6svn376txzz1XdunXdvK1btyo0NFSFChXyWTc6Ototy0hiYqKbvOLj409zywEAAAAAAAAgc6hbnvVl2TNktdGXLl2q8ePH/+fBSqOiolKncuXKnbI2AgAAAAAAAABytiwZRL/rrrv07bffatq0aSpbtmzq/JIlSyopKUmxsbE+68fExLhlGRk4cKArC+OdNmzYcNrbDwAAAAAAAADIGbJUEN3j8bgA+hdffKGpU6eqUqVKPssbN26svHnzasqUKanzVqxYofXr16t58+YZbjMsLEyRkZE+EwAAAAAAAABkCUFBp3dCzqqJbiVcPvzwQ3311VcqWLBgap1zK8OSL18+97N79+7q16+fG2zUAuJ9+vRxAfRmzZoFuvkAAAAAAAAAgBwmSwXRX3/9dffzwgsv9Jk/duxYde3a1f3+8ssvKzg4WJ06dXIDhrZt21YjR44MSHsBAAAAAAAA4L/wZK1iIcjqQXQr53I84eHhGjFihJsAAAAAAAAAADiduM0BAAAAAAAAAIAfBNEBAAAAAAAAAMgO5VwAAAAAAAAAIDfxBAUFugk4DjLRAQAAAAAAAADwg0x0AAAAAAAAAAgQTxB5zlkdZwgAAAAAAAAAAD/IRAcAAAAAAACAAPGImuhZHZnoAAAAAAAAAAD4QRAdAAAAAAAAAAA/CKIDAAAAAAAAAOAHNdEBAAAAAAAAIEA8QeQ5Z3WcIQAAAAAAAAAA/CATHQAAAAAAAAACxBMUFOgm4DjIRAcAAAAAAAAAwA+C6AAAAAAAAAAA+EE5FwAAAAAAAAAIEI8o55LVkYkOAAAAAAAAAIAfZKIDAAAAAAAAQIB4gshzzuo4QwAAAAAAAAAA+EEmOgAAAAAAAAAECDXRsz4y0QEAAAAAAAAA8IMgOgAAAAAAAAAAfhBEBwAAAAAAAADAD2qiAwAAAAAAAECAeILIc87qOEMAAAAAAAAAAPhBJjoAAAAAAAAABIhHQYFuAo6DTHQAAAAAR5k+fbqCgoIUGxt72j6jYsWKGjZs2DHXsTZ8+eWXx1yna9eu6tChwyluHQAAAJCCTHQAAAAgi7Mg8TvvvON+z5s3r8qXL6/OnTvroYceUkjIsbv048aNU9++fU9bMHzv3r0qXLiw3nvvPd1www2p8+33jz/+WGvWrHHBci/7/dZbb9WTTz6p+fPnK3/+/Jn+rLVr16pSpUpatGiRGjZsqJws6uL2KtL+GuWJKqzE9au1fdxIJaz6O8N1yz76vCJq1z9q/t5F87T5+cfc79U/mpThe7d/8LZ2f/upz7ygkLwq9+QwhVesonUDeilx3epTsk85hcfj0YyvXtOimROUsD9e5ao2UrtbBqlo9JG/8/R+m/aRFkz/SLE7N7nXxUtX1QXte6tqvQvc69gdG/XagDYZvrdTz2Gq3eRS7d+7W1++db9iNq7QgX2xyl+wqKo3bK3WHfspLF8B5XZlbr1e5f/XVaHFi2nvsr/196Ah2rNkaYbrBoWEqEKv7irV6UqFliyh/avXatWzw7RrxuwM169w522q8mBfbRjzvv554nmfZZGN6qtK/7sV2bCePMnJ2vvXCi3u3FOHExOV2xU5r4kq39ddUY3qKrx0Cf3WqZdivp5y7PdccI5qvzhABWpXU8KGLVo55HVtfPcLn3Uq3HmTKvfrrrCSxRX/+3L92fdJxc3/I3V5cFioar0wQKWvu8z9vv2HWVraZ7CStu08bfuaHZXtcoMq9PR+Z1ZoxaNDFL/Y/3em4l23q9Q1Vyrs3+/Mymde1s7pvt8ZW1b1oXtVtNV5ypMvXAfWbtCf/R7Rnt//csuLt7tIZW+5TgXr11Zo4UKae8k17jsDZAcE0QEAAIBs4NJLL9XYsWOVmJio7777Tr1793YB9YEDBwa0XQUKFFCTJk1c5nraILq9LleunPtpNwGMBdTXrVun1q1bu9fFixcPWLuzsgLNLlDxW3to2+jXlLByhQq166AyA57W2vtuV3J83FHrbx76hAt8e+UpGKkKz47U3rkzU+et6nmjz3vyN2yi6Dvu1d55s47aXrGbuit5906pYpVTvm85wS+T3ta8Ke/pqtueVaFiZTX9q1f04cu3684nJyokb1iG74ksHK3Wne5TkegKFoXXkl++1MfDe6vHY5+rRJlqiixSSve+dOR8mYU/f6I5k0arat3z3eugoGBVb3iRLrz6HkUULKLd29br+w+e0MT3BqnjHS8pNytxRVtVe+R+rXjkScUt+kPlbrtFDd8dpbmtr9TBnbuOWr9y/7tUssPlWj5gsPatWqOiLc9VvTde1oJOnbX3z+U+6xasX0elb7pWe5YdHeizAHrDca9r3eujXdDegugFalWXx3P4tO5vdpEnf4Tif1+hDeM+U5NPRxx3/XwVy+rsr9/Q+jfHa3Hn/iraurnqvfGUErZs144fU/6tKnVtO9V6YaCW9h6k2HlLVOnuLmo6cbSm17lUSdtTznXtlx5SiXYttfCGvjoYv0d1X3lUjScM15yWvv8O5mbR7duq+mP3a9nAJxW/6HeVu/1WnfX+G/qlZfsMvzNVHuijkh0v17IHBmv/yjUq0rKF6r89TL9ddav2/PudCYmKVJMv3tXuX+Zr8a13KmnnbkVUKq9DcfGp28kTkU+x8xcp5tvJqv3C4DO6z1kdA4tmfZwhAAAAIBsICwtTyZIlVaFCBd15551q06aNvv76axdU79+/v8qUKeOyups2beoC18Z+duvWTXFxca4sik2PP/64W2aZ4xb8LliwoNvuTTfdpG3btp1U21q1apX6mWbZsmVKSEhw7Uw73363/WjevHmG5Vz++ecfXXDBBQoPD1ft2rX1448/+nyOZaGbs846y+3LhRde6LP8xRdfVKlSpVS0aFF3k+HgwYPKjgpf3lHxUycpfsaPStq03gXTPUmJirywbYbrH963V8lxu1OniHpn6XBigvb8+nPqOmmX21SgcXMd+GuJDm7b6rOtiAZNFFG/kctQR8ZZ6PN+elfnX9FTNc66SNHlauiq257TnthtWr7oJ7/vs4zxavVbumz1oiUrqXXHexUaFqFNq5e45cHBeVQgqrjPtHzhT6p9djuFhqc8rZEvf5SatLpRpSvWU6GiZVSpVnM1ufBGbfhngXK7crd31ubxn2nLhK+0f+VqrXj4SR0+cEClr8u4zFPJq6/Q2hFva+f0WUrYsEmb3v9EO6fNUvnbO/usZwG/OsOGaPmAx30CgV7VHn1AG8Z9qHWvj9G+f1a57NxtE3+QJyl7/ttzqm2f/LP+HjRMMV/5/26kVeGOG3RgzUYte+A57V2+WutGfqCtn01WpXtSbsSaSn27acPoT7Txnc+1d9kq/dFrkJL3J6hc105ueUhkAZXr1kl/3f+sdk6fq/iFf2rJ7Q+pSItGKtS0wWnb1+ym/B2dtemjz7Tlky+175/VWj7gCSUnHFDpG67OcP1SHa/Q2tfe1s6pM3Vg/UZteu8T93v5/3VJXadir9uUsHmr/rrvUZfRbt+tXT/P0YF1G1PX2frZt1ozbJR2zZx7RvYT/82IESNcX836ZU2bNtW8efOOuf6ECRNUs2ZNt369evVc0kdOQhAdAAAAyIby5cunpKQk3XXXXZozZ47Gjx+v33//Xddee63LWreAdIsWLVyQOjIyUlu2bHGTBdyNBZitpMqSJUtczXErleLNGD+ZIPqKFSvc9s20adN03nnnuYzztEF0m28BdLu4Su/w4cPq2LGjQkND9euvv2rUqFF68MEHfdbxXrz99NNP7rM+//xzn22vWrXK/bTSN1bGxqZsJ0+IwitV076li47M83jc63zVamVqE1EXttWeOTPk8VNOIk9UIeU/6xzFTZt81PzoHvdo68gXKEXhh5Vd2Ru3XZVqtUidFx5RUGUq19emVYsztY3Dh5O1dN5EHUzar7JVMi5LtGXtUsVsWKaG56UEBjOyJzZGyxf+qPLVz1ZuFpQ3RAXr1tKu2WmCch6Pds3+VZGNMg6aBoeG6nBiks+8wwkJijr7LJ951Z98WDumzdTu2b8etY28RYso6qz6Lmu38Wfv6rz503TWx2MU1cR3G8i8Qs0aasfUOT7ztv84S4WbpXxPgvLmVVSjOtox5ZcjK3g82jH1FxVqlnLcrXSMnd+06+xbsVr7121K3U5u574z9Wr7BrLtOzNzrgr5+c4EhYUe9f+F5IREFUrznSl28YWubEu9US/pgsXT1XTSJyp9k/9/w3D0wKKnczpRVpKvX79+GjRokBYuXKgGDRqobdu2fhMufvnlF914443q3r27K7tnY9XYtHRpxiWCsiOC6AAAAEA2y4S1IPLkyZNVv359V+LFMn/OP/98ValSxQXJLYBt8y0gHRUV5bK2LdvcJiu/Ym677Ta1a9dOlStXVrNmzfTqq6/q+++/dzXOT9S5557rPittBnzLli3VuHFj7dixw5VxMTNmzHAB94zYPi1fvlzvvvuuu1CzjPRnnnnGZx1v+RfLNLd9KVKkSOoyq8s+fPhwlwF1xRVX6PLLL9eUKceuvZsV5YmMVFCePEqO861hb6/zFCp83PeHV6musPKVFD8t4xroJvKCNjqccEB75/vWsi3Z8z7FTflOiav/+Q97kLNZAN3kjyzqMz9/ZDHtjdtxzPdaLfNnezfSMz3r67v3Hte1vYa72ugZWTTrMxUrVcXVW0/v8zf7aUivhhrWv6VC8xVQ+65PKTfLW7iwgkNClLTDt9510vadrtZzRnb+/IsrX5GvYnmrk6PC5zVT8UsvUliaElMl2l+qgnVqafXzr2S4jXzly7qflfre6bLgF3e9U3uWLtNZH7yVsl2csLDoYkqM8f0e2eu8UQUVHB6m0GIp5zoxXW3zxJidCiuZcq7tZ3Jikg7F7fFZx+qhh0VTQszkLfLvd2Z7uu/Mjp0KLeH7b5vXrhm/qHyPzspXKeU7U+T85irR7iKFlSju850oc+t12r9mnRbd3FMb3/tENZ4Y4OqoI/sZOnSoevTo4Z5otKcDR40apYiICI0ZMybD9V955RWXxHH//ferVq1aLlGjUaNGrm+WUxBEBwAAALKBb7/91gXALYvbgt/XX3+9rrnmGiUnJ6t69epumXeyYLVlZR/LggUL1L59ezdIqZV0saC3Wb9+/Qm3zS6qzj777NQgun2+lVqxQU8tG97mr1692m3bXxDdSsBYDfXSpUunzvOWfcmMOnXqKE+ePKmvrazL8crTWCmc+Ph4nykpOXvXMo688FIlrl/jdxBSE9WyreJnT5UnTbmbQm2vUnB4hHZ9+fEZamn28Mfcb1zg2zsdTj500tsqVrKS7njsC3V/6GM1vvAGfT1mgLZvXnnUegeTErT012/9ZqFfcv1A9Xj0c11310jt3r5BP3z87Em3Kbf6Z/BzOrB2vZpN+UoX/rNA1Qc/5ErBeGuZh5WKVvXHHtSffQcclbGeKigls3PTh5+691ot9ZVPvuBKupTyU0YGyK5WPPas9q9ZrxbTv1brNQtV46mB2vzxke+MCQoOdjeSVj33qquTvumDT7Xpw89cYB3H5wkKOq3TibAnHa2faKUDvYKDg91re/oxIzY/7frGMtf9rZ8dMbAoAAAAkA1Y8Pn11193Gd8WaLYAtT1qa4Fju9BJG0A23ozzjOzbt89d2Nj0wQcfuAxvC3Dba7twOtn2WXv+/PNPHThwwGUfGQvOW4kVK9diwXarqXk62CCraVn2vX3msQwZMkSDB/sObHZXnSrqUy/j7OAzITk+3g1OaKVV0rLXybG7j/neoLAwFWzRUjsnvOt3nXw16ii0TDltftU3yz+iTgOFV6+pau994zO//NOvuYB7zOu5c+DK6g1bqUyl+qmvDx1K+X7si9+pgoVKpM7fF79DJcsdu9xOnpDQlIFF7SZPxbquZIvVV7+88xM+6y1bMNkF0uu3yDgQ662ZXqxUZVcn/Z3nbtb5V9zp057c5ODu3Tp86JBCi/lm0IYWL6qk7Rk/HXBw1279cUdfBYeFKqRQISXFbFOVAX1drWdjpS7s/Wd/e+SmkmXuFjqnscp0vkHTqzdR0raUbVst9LT2rVqt8NKlTsOe5nyWdW7Z6GnZ64Nxe3Q4IVFJO1LOdVi6bOmw6KJK3JpyPuxnHjuvUQV9stEtwzoxJuVJktzO/v7dd6Z4uu9MsaIuY9/fe36//R73nclbuJASt25T1Yfu9al3nrht+9Hfh39Wq8RlvoFVBIYlDtiUlo1TY1N69hShJWlER0f7zI+OjnZPDWZk69atGa5v83MKMtEBAACAbMAGDa1atarLHLcAuneATbvIsYxrW5Z2snInxoLutk5adgG0c+dOPfvss64MjJVAOdlBRdMG0a0O+4cffujKyXiD+laWxTLTLRvdW/YlI/bo74YNG1Lrqpu5c30HHvO+N/3+nKyBAwe6QVfTTv+rXVkBlXxICWv+UUTdNLV7g4IUUaehDvyz7JhvLdj0AgWF5FX8rKl+14lsdakSVv+tpPUpJXa8tr3zutY92EvrBqRMm5571M3f8uoz2vnxO8qtwsILuMC3d7LyKxbAXrPsSGZd4oG92rT6d5XxU9/cH8vg9Abl01o881MXvM9fsEimtmGSM9hObuE5eMhlvxZukeYGnZVoadFU8QtTBm71x7LMLYAeFBKi4pe20Y4fU56msRrov17SUfMvuy51il+yVDFfTnS/6/Dh/7N3H+BRVF8fx09ooYbeO4g0EWkCNlRQmiJiQ1CKAqKiIlaQLoKKKIoFFUFQEUVFUf+iiAVEqjSVjjSV3kJv2ff5Xd5dd0M2hJJMkv1+nmchOzs7e3dmN7lz5txz7dDf/9jhzVsse7kyIdvMXra0Hfrnv99jSLrdsxdZ/qvrhSwr0PAS2zX7xHwDGj2zZ8GfVuDqoFFKUVGW/6r6tnv2iXkk9iz4w+KOHAlZJ8f5ZS176eKB7UQ69535fanluyz0O5Pvsnq2OwnfGQXQ9Z1RcHzbdz8GHtszf9FJ34cc5crYob/5PqQGShxQib/gm5Yh6chEBwAAANIolXFp27attWvXzoYNG+aC6tu2bXO1wFUvXXXBy5Qp4+qca5lqjSsbXIF4BaRHjBhhXbt2dZM+qXbl2VDZFmUzaZtPPfVUYPnFF1/sAvRffPGFC1qHoyHAej/t27e3oUOHutIqwduRQoUKuQlVp0yZYiVKlHClbXQSeKYSysDKktH7PKNdX39mRe591NUmP7R6heVpeqNliM5qsT9/5x7XY8d27bDtE8aEPC/mqsa2b/6vFrcvtBawX4Zs2S1X3ctt2wdvnfTYsR3bTppkUY5u2WTHdiZe6zuSaITDxY3a2S9fj7R8hctYngLF7afPX3FZ4JVq/Jdt+d4LHaxSzUZW5+o73P1pnw6z86pdYbnzFbXDh/a7ci3rVsy1tt1HhWx/55b1tn7VfLv9oZOP0aolP7uM92Jlq1mW6OyuFMz3E4e6uul5Cpyozx2pNo4aZ5WHDXKBwdhFv1vJu++wjNmz2b8TP3ePVx72jB3essX+ev4Vdz/momoWXbiQ7V263KKLFHZ1zVWKYsObJ75Tx/cfsP0rQ0vtHD940I7u3hOyfP1bY61c93tt37KVtm/pcityUwvLXr6s/XHvIyn6/lOrjDmyW47z/qsPn71sCYupXsmO7NxjhzZusoqDeljW4oVtcccTk0ivf2uClb6vrVUa8phtfPdTK3BVPSt6S1Ob1+KewDbWDh9j1Uc/Z7t/+8P2zFtiZR5sb5lyZLONY09MNH0sdp9tHPOpVR76pB3duceO7t1nFwzvbbtmLbDdcxIPEEeSDW+NsyovPWOxi/+0PYt+t1Kd7rSM2bLZpo9OfGeqDn/GDm3eamuePTEnQEyNahZdpJDt+3OF+79cj3tVv8XWv/Hf36ENb4+z2p+/Z2W6dbItX33rvmfF295ky574b7RNpjwxbqSGtiE5yp8IumvUSPwa7Ti31AfTRKHBEspClwIFCrhkiC1btoQs37JlSyBJIz4tP5310yKC6AAAAEAapglEBw0aZI888oj9888/7sRHE4Vqck1/cFuBctVQV/Z5v379rH///vbuu+9ar1693ISiKr3ywgsvWIsWZz75lwLael1/PfTgEzQtVyZ6uHro/lqbkyZNsrvvvtsF3hX8V9s0SZWfMvC1bODAgda3b1+XRe+vw56e7Js93bbH5Lb8N9/pJhM9vP4v++fZ3oHJRjMVKOQmmA2WuWgJy17pAvt7cPgLFbnqNzCLMts7M/3ts5R0SZNOdvTwQft6XF87dCDWSlWoZW26v22ZMv8XjNi1bYMd2Ptf+Z0De3faF+884SYmjc6WywqXqOgC6OWqXhqy7UUzP7WYvEWsfJXQ5ZI5S7QtnDHR1UBX5nlMviJWqca1dmmzzhbptn71rZsssdzD97nJRPcuW2GL299rR7fvdI9nLV7ELKh2s0pSlHu0m2UtVcIFzHf8+IstfbiXHYtN+AJUOH+Pft+VDqnQ5zHLnCe37Vu2whbdcU+gLEyky13rAqs/7b3A/Sov9HL/bxz3mS25u6dFFy1o2Ur+V/rm4Lq/XcC8yrCeVuaBdnbo7832+z29bfvUXwLrbJr4jWUpmM/O7/egRRcpaLGLl9nc6zqFlCFZ+shgqxwXZzU/fsUd6+3f/WJ/PBBauivSbfnyW8ucP5+Ve/R+i9Z3ZulyW3hn18AEvVmLFzVf3H9/ZzJER1v5xx5wk4ceP3DAdvwww/54KPQ7o4D8kk7d7bye3a1s9652aOM/tqL/87Z50teBdQpec5VVfem/yZCrvfGC+/+vF1+3v158wyKZz3d6dctPV7jSLQlRooUmh1cCRsuWJ0qLxcXFufvdunVL8Dmax0aPd+/ePbBs6tSppzW/TWoX5Yvf+0rnlNGibBUN1YyJiUmR19SkTq3v6mplmt9nMYUiO0MAqUvs1r9t3dev24TRI618+fKWGvH9QWrF9wdIW98fL/qASJtW3v5f0B6px9z7vvG6CUhAsTure90EhHHwn9Dax0gdogsnXNIM3mv09++evv7qNaFl1s6188qXPa31Nc+NRge++eabLrlh+PDh9vHHH7uSgKp1rlGQxYsXD5SE+fXXX908OCoVqJGQEyZMsMGDB9uCBQvsggsusPSATHQAAAAAAAAA8IgvlU1bqRGMKhGokX+aHPSiiy5y5fT8k4dqQnqNIvTTyEfNi9O7d2830rFChQr2+eefp5sAuhBEBwAAAJCopk2b2owZMxJ8TCdKugEAACD9UOmWcOVbfkqgnN4tt9zibukVQXQAAAAAiRo1apQdPHgwwcfy5cuX4u0BAAAAUhJBdAAAAACJUs1LAAAAIFIRRAcAAAAAAAAAj/gsyusm4BRSV9V6AAAAAAAAAABSETLRAQAAAAAAAMAjZKKnfgTRAQAAAAAAAMAjBNFTP8q5AAAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAY1EQHAAAAAAAAAI9QEz31IxMdAAAAAAAAAIAwyEQHAAAAAAAAAI/4fGSip3ZkogMAAAAAAAAAEAZBdAAAAAAAAAAAwiCIDgAAAAAAAABAGNREBwAAAAAAAACP+Iya6KkdmegAAAAAAAAAAIRBJjoAAAAAAAAAeIRM9NSPTHQAAAAAAAAAAMIgEx0AAAAAAAAAPEImeupHJjoAAAAAAAAAAGEQRAcAAAAAAAAAIAzKuQAAAAAAAACAR3w+yrmkdmSiAwAAAAAAAAAQBpnoAAAAAAAAAOCROCYWTfXIRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQAAAAAAAACAMKiJDgAAAAAAAAAe8VETPdUjEx0AAAAAAAAAgDDIRAcAAAAAAAAAj/h8ZKKndmSiAwAAAAAAAAAQBpnoAAAAAAAAAOARaqKnfmSiAwAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAY1EQHAAAAAAAAAI/4fNRET+0IogMAAAAAAACAR5hYNPWjnAsAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAApIWa6NOnT7ehQ4fab7/9Zps2bbJJkyZZy5YtA4/7fD7r16+fvf3227Z792679NJL7Y033rAKFSp42m4AAAAAQPI5eJhasanR8YNxXjcBYUQXzuJ1E5CAw1uOeN0EpFJMLJr6papM9P3791v16tXttddeS/Dx559/3l555RUbOXKkzZkzx3LkyGGNGze2Q4cOpXhbAQAAAAAAAADpX6rKRG/atKm7JURZ6MOHD7fevXvbDTfc4JaNGzfOChcubJ9//rm1bt06hVsLAAAAAAAAAGeHcT2pX6rKRE/M2rVrbfPmzdaoUaPAsty5c1vdunVt1qxZYZ93+PBhi42NDbkBAAAAAAAAAJCugugKoIsyz4Ppvv+xhAwZMsQF2/23kiVLJntbAQAAAAAAACCpNdGT84YICqKfqZ49e9qePXsCt40bN3rdJAAAAAAAAABAGpFmguhFihRx/2/ZsiVkue77H0tIdHS0xcTEhNwAAAAAAAAAAEhXQfSyZcu6YPm0adMCy1TffM6cOVa/fn1P2wYAAAAAAAAASJ8yWSqyb98+W716dchkoosWLbJ8+fJZqVKlrHv37jZo0CCrUKGCC6r36dPHihUrZi1btvS03QAAAAAAAABwJnxG3fLULlUF0efPn29XXXVV4H6PHj3c/+3bt7d3333XHn/8cdu/f7916dLFdu/ebZdddplNmTLFsmbN6mGrAQAAAAAAAADpVaoKol955ZXm8/nCPh4VFWUDBw50NwAAAAAAAABI63w+MtFTuzRTEx0AAAAAAAAAgJRGEB0AAAAAAAAAgLRQzgUAAAAAAAAAIgkTi6Z+ZKIDAAAAAAAAABAGmegAAAAAAAAA4JE4n9ctwKmQiQ4AAAAAAAAAOC07d+60tm3bWkxMjOXJk8fuvvtu27dvX6LrP/DAA1axYkXLli2blSpVyh588EHbs2ePpXZkogMAAAAAAACAR9JqTfS2bdvapk2bbOrUqXb06FHr2LGjdenSxcaPH5/g+v/++6+7vfDCC1alShVbv369de3a1S375JNPLDUjiA4AAAAAAAAASLJly5bZlClTbN68eVa7dm23bMSIEdasWTMXJC9WrNhJz7ngggvs008/DdwvX768PfPMM3bHHXfYsWPHLFOm1BuqppwLAAAAAAAAAKRThw8fttjY2JCblp2NWbNmuRIu/gC6NGrUyDJkyGBz5sxJ8nZUykXlYFJzAF0IogMAAAAAAABAOjVkyBDLnTt3yE3LzsbmzZutUKFCIcsUCM+XL597LCm2b99uTz/9tCsBk9oRRAcAAAAAAAAAj/h8Ucl669mzp8v4Dr5pWUKefPJJi4qKSvS2fPnys37PyoZv3ry5q43ev39/S+1Sd548AAAAAAAAAOCMRUdHu1tSPPLII9ahQ4dE1ylXrpwVKVLEtm7dGrJcdc137tzpHkvM3r17rUmTJpYrVy6bNGmSZc6c2VI7gugAAAAAAAAA4BGfz1KNggULutup1K9f33bv3m2//fab1apVyy374YcfLC4uzurWrZtoBnrjxo1dUH/y5MmWNWtWSwso5wIAAAAAAAAASLLKlSu7bPLOnTvb3LlzbebMmdatWzdr3bq1FStWzK3zzz//WKVKldzj/gD6tddea/v377d33nnH3Vf9dN2OHz9uqRmZ6AAAAAAAAACA0/LBBx+4wHnDhg0tQ4YMdtNNN9krr7wSePzo0aO2YsUKO3DggLu/YMECmzNnjvv5vPPOC9nW2rVrrUyZMpZaEUQHAAAAAAAAAJyWfPny2fjx48M+rqC4L6hWzZVXXhlyPy0hiA4AAAAAAAAAHomzKK+bgFMgiA4AAAAAAAAAHvH5CKKndkwsCgAAAAAAAABAGGSiAwAAAAAAAIBH0miZ8IhCJjoAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEFNdAAAAAAAAADwiM+ivG4CToFMdAAAAAAAAAAAwiATHQAAAAAAAAA8EufzugU4FTLRAQAAAAAAAAAIgyA6AAAAAAAAAABhEEQHAAAAAAAAACAMaqIDAAAAAAAAgEd8viivm4BTIBMdAAAAQKoUFRVln3/+udfNAAAAQIQjEx0AAADASbZt22Z9+/a1r7/+2rZs2WJ58+a16tWru2WXXnppirRh06ZN7nUjUe5rrrd8199sGXPntcMb/rJt775uh9asTHDdEn2et+xVLjxp+b6Fc+3f5/u6n8//cEqCz932wSjb9dUnlqlAYcvfqo1lr1rdMubJa8d27bC9v/xgOyZNMDt+7By/u7TN5/PZzK9fsd9nTrTDB2OtWLmadk3r/pa3UJkkPX/Od2/ZjC+GWc2r2tnVNz/llh3cv9t+/XqErVv2i+3dtcmy5cxn513YyC67/iGLzpYr8NwX7q940vau6/iiVard3CJdiY6trcx9HS1LoQK2b+kKW95rsMUu/CPBdaMyZbKyD3ayorfdYNFFCtmBNets1dMv2o4fZ4asp8cq9Olh+a++zDJmy2oH1m2wpQ/1sdjFf7rHq748yIq1bhnynO0//GILb++ajO80bSnRvrWV7trBshQsYPuWrbAVfYZY7KLwx6VMt05W9OYWJ47LX+ts9eCXbMdPJx+X83o9bPmvOnFcDq7baH/26G17lyx1jxds2tBK3HGr5bqwimXJm8dmX3uz+0zghHyX1bZyj9xtuWteYFmLFbL5N91nWyZPS/w5V1xsVV540nJWqWCHNm6y1UPesL/HTQpZp/S9baxcj7stukhBi12y3P7s/rTtmfd74PEM0Vms8tAnrditzdzP2777xf54YIAd2boj2d5rWuLzed0CnApBdAAAAAAnuemmm+zIkSM2duxYK1eunAukT5s2zXbsSLmT3SJFilgkylnvCit4Z2fb+s4IO7R6heVp2tKKP/mMrXukkx2P3XPS+v++ONCiMmUO3M+YK8ZKP/u67Zs9I7BsTdfbQ56T46LaVrjLw7Zv7i/ufpbiJZT6b1tGvWJHt/xrWUqWscKdH7Ko6Ky2/YNRyfp+05q5U9+2hT+9Z03vfNZyFyhhv3z5sn3y6t3Wsc//LFPm6ESfu2n9Elv8ywQrWDw0GL5vz1Z3u7LVE5a/yHkWu/Mfmzqhv1t2Q+dXQtZtcscQK1vl8sD96OwxFukK39DEKg543JY9PtD2LFhipbrcaTUnvGkzL73ejm7fedL65Z98wIrefJ0te6S/7V+91vJfealVH/OyzbvuDtv7x3K3TqbcMVbny/ds58y5trBNVzuyY5dlL1vaju6ODdnW9mkz7M+Hegfuxx05mgLvOG0ofH1jO7/vY7as59MWu3CJlex0p9V4/037tcH1dnRHAsfl8QesSKvmtuzxAXZg9VrL1+ASu3DUcJt/w52298//jkvtSeNs16/zbNGd9/7/cSllx/b8d1wyZs9mu+cttC1ffWtVhg5I0fecFmTMkd1il6ywje9+arU/ee2U62crU8LqTH7TNrw1wRa1e9TyX13fqr05yA5t2mbbp574G1L0lqZWeWhP++P+frZ77mIr+2B7q/v1O/ZT1SZ2ZNuJY11lWC8r1LSBLWjd3Y7G7rULXu5jtSa+arMahP59ilRxRjmX1I5yLgAAAABC7N6922bMmGHPPfecXXXVVVa6dGm7+OKLrWfPntaiRYtAqZU33njDmjZtatmyZXOB9k8++SRkOxs3brRbb73V8uTJY/ny5bMbbrjB1q1bF7LO6NGjrWrVqhYdHW1Fixa1bt26hS3ncqrt/fTTT66dOXLkcOsoY379+vWW1uRt3spif5hisT9PtSP/bHDBdN+RwxZzZeME14/bv8+O79kVuGWvVsPiDh+yvXOmB9YJfly3nLXq28Gli+3o1s3u8QOLf7Mtb75oB35f4Jbt/2227frqU8tZJ2VGHaSlLPQFP46zek3utfOqN7KCxStZs/bPu2D36sXfJ/rcI4f22//efcwatxlk0dlzhzxWsNj5dkPnEVa+2tWWp2ApK1Wxvl12fXf7648fLC7eSAAFzXPkLhi4nSpwHwlKd21nf7//if074XPbv/IvW/bYQDt+8JAVv/3GBNcvdsv1tvblt10A/OD6v+3vsR+5n0vf2yGwTpkH7rJD/262pd37uIz2Qxv+sZ0//2oH128M2VbckSN2ZNuOwC04mBvpSnVpZ/98+Klt+vhz27/qL1v+5EA7fuigFWud8HEp2uo6WzdilO34YYYd3PC3/fPex+7nUve0D6xT5r7/Py6P9HEZ7Yc2/mM7p89yx9Fv86df2drhI23njNkp8j7Tmm3fTreV/Ybbli8S/53lV7pLazu49m9b9vhztm/5X7b+9Q9s86ffWtmH/vu+lO3e0Ta+87H9PfYz27dsjf1+Xz87fuCQlexwk3s8U0xOK9nxJlv62LO246fZFrvgT1vcqZflu6Sm5albPdneK3AuEUQHAAAAECJnzpzupgD24cOHw67Xp08fl7G+ePFia9u2rbVu3dqWLVvmHjt69Kg1btzYcuXK5QLyM2fOdNts0qSJy3AXBeHvv/9+69Kli/3+++82efJkO++88xJ8rVNt79ixY9ayZUtr0KCBLVmyxGbNmuW2q0B8mpIxk2UtW8H2/7Hwv2U+n7ufrULlJG0i95WNbe+sn80X5thlzJ3HctS42Pb8+G2i28mQPYfF7d97eu1P5/bs+Nv2x26z0hUvCSxTuZWiZarbv2uDjlkCvv94oJWr2sBKV/rvuYk5fHCfZcma0zJkDB1APu2jAfba43Xt/edvtt9//cQF9iNZVOZMrmxHSMDU57Od02db7toJB+eismSxuMMnfg/5xR06bHkurhG4X/Daq1zZlgvfHmYN/vzZ6n4/0YrfcSIgGCzvJXXc45fM/NIqPdfHMucNvUAS0celWgLHZcZsy1MzzHGJ1nEJ/b11XMelzn/HpcA1V7qyLdVGDrMrFv1kdad8bMXanHxccO7kqXeRbf9hVsiybVN/sbz1LnI/R2XObLlrVrXt0379bwWfz7b/8KvlqXfi2Kl0TIYsWULW2b/iLzuw/p/AdoDUjnIuAAAAAEJkypTJ3n33XevcubONHDnSatas6YLTCpJfeOF/tbdvueUW69Spk/v56aeftqlTp9qIESPs9ddft48++sji4uJs1KhRgUD2mDFjXIa4MsavvfZaGzRokD3yyCP20EMPBbZZp06dBNt0qu3Vrl3b9uzZY9ddd52VL1/ePV65ctKCzqlJxpgYi8qY0Y7v2R2yXPezFCt5yudnLX++RZcqa1veeinsOjFXNLK4Qwdt37zQOsPBMhcuankat7DtH7x9mu8gfVMAXbLH5A9Znj1Xftsfuz3s85bP/9q2blxqdzweOlojnAP7dtqsb163Cy+9LWT5pdc9aKXOr2eZsmRz9dO//2iAHT18wNVXj1RZ8uW1DJkyuSzwYLqfo0LZBJ+jGtul72lnu2fNtwPrNlq+y+tZoWYN3XfPL1vpElai/W224c1xLms9psYFVnFQT1euZdPHk90623+caVv/970d3PCPZStT0s7r+ZDV+HCkzW3W1iwuziJZ5nDHZfsOy3FewsdFmf6lOrezXXN+c3XO811Wzwo1bWhRGYKOS6kSVvzOW23D2+Ns3Yi3LeaiC6ziwCfNp+PyyYnjgnMrunABO7wl9Peb7mfOncsyZI12F450rA/Hq21+eMsOy1Gx3IltFClgxw8fsWN7Qi/Mqh56dOGCKfAugLNHEB0AAADASZRh3rx5c5f1PXv2bPvmm2/s+eefd0HsDh1ODOGuX79+yHN0f9GiRe5nZaevXr3aZY4HO3TokK1Zs8a2bt1q//77rzVs2DBJ7TnV9hSUV7uUrX7NNddYo0aNXOkXlYgJR1n28TPtjxyPsywZ0+6A3Zgrm9jhDWvDTkIquRs0ttiZP5jvaMK1mzPlze9qsKum+p4fEp6QNFIsnTvZpn7YL3C/1X1vnvY2Yndtsh8+ecZueWB0kkqvKAP9s9fvsfxFy9slzf8rbyT1m94f+LlwySp29MhBm/f9OxEdRD8TK3o/a1WG9XfZ48rkV8BWpWCKBZV/icqQwWWirx78sruvWuk5K1WwEu1vDQTRt3z+TWD9fctW2b6lK+2yuVMs36V1bOeMOR68s7RtRd9nrfLz/e2SnyafOC7rN9q/H30RMnmrOy5L/rQ1z52YK0C10nNUPM8F1gmiIy2L8EFFaQJBdAAAAAAJypo1qwtI66bSLco679evXyCInph9+/ZZrVq17IMPPjjpsYIFC1qGDKcXqD7V9vyZ6Q8++KBNmTLFZa737t3bZcfXq1cvwW0OGTLEBgwInXSuW9Xy9kC1hEvKpITjsbHmO37clVwJpvvHd+9K9LlR0dGW65IGtmPiuLDrZKtY1bIUL2n/vjI4wccz5s1nJfo8Z4dWLrUto04EDyPZeRde7Uq1+B0/dqIEyIHYHZYzd6HA8gN7d1ihEpUS3MaWDX+6x8c92yqwzBd33P5ePc8W/vyBPfzy75bh/zNtjxzaZ5++1smyZM1hLbu8Zhkz/jdhbELUttnfvG7Hjh6xTJmzWCQ6snOXxR07ZlkKho4O0P3DWxMeHXB0xy5b3OEhyxCdxTLnzWOHN2+183o/HFJX+/CWbbZ/5ZqQ56neeqHmjcK2Rc8/sn2nZStTyizCg+hHwx2XAvld9nG45yzpFO+49Ip3XLZus/2r4h2XVX9ZoWbhjwvOjrLOlY0eTPeP7tnryiAd2X7iWEcXCj3W0YXz2+HNJ76D+j9jdBbLlDtXSDZ6lkL53XcNSAvSbooFAAAAgBRVpUoV279/f+C+MtSD6b6/hIpKwKxatcoKFSrk6pwH33Lnzu0yysuUKWPTpk1L0mufant+NWrUcBOg/vrrr3bBBRfY+PHjw25T66kETPDtnionhp575vgxO7R2lWW/IKhGbFSUZa96kR1cdaLefDi56l5hUZkyW+wvP4RdJ+aqJnbor5V2ZMPaBDPQS/Z53g6tXW2bR75IWpwCPFlzWt5CpQO3/EXPsxwxBW39ilkhmeOb1i22YmX/q9scrHTFetb+qS+tXc/PA7fCpS6wKrWvdz/7A+jazsRX77YMmTLbjV3fSFLW+ra/l1nW7LkjNoAuvqPHXI3sfJfX/W9hVJS7v2f+4kSfq7roCtRGZcpkha+7xrZ9+2Pgsd3zFlr28mVC1s9evrQd+ntT2O1FFy1smfPlsSNbCQq64/L7Ust3Wbzjclk9270g6cdFwfFt3/13XPbMX2TZy4UelxzlyiR6XHB2ds9eZPmvDr0YXaDhJbZr9omRZxrVtGfBn1bg6qDRaVFRlv+q+rZ79om5IvYs+MNNwhu8To7zy1r20sUD24l0Pl9Ust5w9giiAwAAAAixY8cOu/rqq+399993k3SuXbvWJk6c6Mq53HDDDYH1tGz06NG2cuVKl6E+d+5c69btRPkJTTRaoEABt75Kwmgbql2uTPG//z6RVdi/f38bNmyYvfLKKy5AvmDBAldTPSGn2p7uKyiuCUXXr19v3333ndtmYnXRo6OjLSYmJuSWGkq57Pr6M8t9VVNXu1x10Avd9YBliM5qsT9/5x4vcu+jVqB1x5OeF3NVY9s3/1eL25fwZKAZsmW3XHUvtz0/TkkwgF6iz/N2dPs22/7+25YxJrdlzJ3X3fAf1eNX6ZTZU96w1Uum2bZ/Vtg34x53WennVf8vE/bjl9vbgp/eDwTiCxY7P+SWOTq7Zc2Zx/3sD6B/8updrr55k7bP2JGD+2z/nm3uFhd33K2z5vcfbMnMibbt35W2a+t6WzR9vM3+9k2r0eAOi3TrR46z4m1vtqK3trAcFcpZ5ef7WMbs2VyJFqk6YrCd91T3wPoxNau54KzqnuepW9NqTBhpliHK1r06OrDOhjffs9y1LrQyD3V29c6LtGpmJe682TaO+dA9ru1X6PuIWydryWIuaH/R2FfswNoNrlY6zDa8Nc6K3X6TFb25hWU/r6xVGtLHMmbLZps++v/jMvwZK//kf3NixNSoZgWbNnR1z/NcXNNqvP+G6rfY+jfG/LfNt8dZ7poXWplundxxKdyymRVve5P9PXZCYJ1MeWIsZ5WKluP8E/Nj5Chfxt2PnxUfqTLmyG4x1Su5m2QvW8L9nLXkifJnFQf1sOpjngusv/6tCZa9bEmrNOQxV+O8dNc2VvSWprb25XcD66wdPsZK3n2rFb+zpeWsVM4ueK2/ZcqRzTaO/cw9fix2n20c86lVHvqk5W9Q12JqVrXqowbbrlkLbPecxC+qAKkF5VwAAAAAhMiZM6fVrVvXXnrpJVdv/OjRo1ayZEk30WivXr0C66kUyoQJE+y+++5ztcc//PBDl60u2bNnt+nTp9sTTzxhrVq1sr1791rx4sVdDXQFq6V9+/auprle59FHH3VB8ptvvjnBNp1qewcPHrTly5fb2LFj3UUAtef++++3e+65x9KafbOn2/aY3Jb/5jstY568dnj9X/bPs70Dk41mKlDI1QsOlrloCcte6QL7e3DPsNvNVb+BWZTZ3pk/nfRY9mo1LUvR4u5W7vXQkjkrb29yzt5benDxNZ1dLfLvxve1wwdjrXj5WnbT/aNCMsd3b99oB/cnXn4n2JaNf7psdhnV/5qQxzoPnGa585ewDBky2aLpH9iPnw4285nlKVjKrmr1pF146a0W6bZ8McWy5M9r5R/vZtGFCrg62Qtu7xqY1DJr8aIhE31mjI628k8+4ILox/cfsO3TZtif9/e0Y7H/XYCKXfSHLe7Y3c576iEr16Ormzx0RZ/nbPOnX7vHfXFxlrPK+VbsthaWKSbGZU7v+PlXW/Pcq26SS5ht+fJby5w/n5V79H6LLljA9i5dbgvv7OomF/UfF1/cf7/LMui4PPaAC6IfP3DAdvwww/54qFfocVn8py3p1N3O69ndynbvaoc2/mMr+j9vmyedOC5S8JqrrOpLgwL3q73xgvv/rxdft79efMMiXe5aF1j9ae8F7ld54cTf9Y3jPrMld/e06KIFLdv/B9Tl4Lq/bV6Le6zKsJ5W5oF2dujvzfb7Pb1t+9RfAutsmviNZSmYz87v96BFFylosYuX2dzrOoWU7ln6yGCrHBdnNT9+xZXs2f7dL/bHA6El1YDULMoXv/eVzsXGxrrhnhqq6e+8JzedeLS+q6uVaX6fxRQqkSKvCSRF7Na/bd3Xr9uE0SOtfPkTV+lTG74/SK34/gBp6/vjRR8wEjJyJ02aZC1b/jfhW3pAwDh1+vnuyJ7gNLUq0/YCr5uAMKIyU74hNTq85cS8Ckh9mh9d4enrT55/YtRRcmlR+0TpMJw5MtEBAAAAAAAAwCNBgzKQSnlf8A8AAAAAAAAAgFSKTHQAAAAApy3CqkICAAAkG7pVqR+Z6AAAAAAAAAAAhEEmOgAAAAAAAAB4xGdMBpzakYkOAAAAAAAAAEAYBNEBAAAAAAAAAAiDci4AAAAAAAAA4JE4JhZN9chEBwAAAAAAAAAgDDLRAQAAAAAAAMAjPjLRUz0y0QEAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDGqiAwAAAAAAAIBHqIme+pGJDgAAAAAAAABAGGSiAwAAAAAAAIBH4nxRXjcBp0AmOgAAAAAAAAAAYZCJDgAAAAAAAAAeoSZ66kcmOgAAAAAAAAAAYRBEBwAAAAAAAAAgDILoAAAAAAAAAACEQU10AAAAAAAAAPAINdFTP4LoAAAAAAAAAOCROILoqR7lXAAAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDGqiAwAAAAAAAIBHfL4or5uAUyATHQAAAAAAAACAMMhEBwAAAAAAAACP+HxetwCnQiY6AAAAAAAAAABhEEQHAAAAAAAAAI/E+ZL3llx27txpbdu2tZiYGMuTJ4/dfffdtm/fviQ91+fzWdOmTS0qKso+//xzS+0IogMAAAAAAAAATkvbtm3tzz//tKlTp9pXX31l06dPty5duiTpucOHD3cB9LSCmugAAAAAAAAAgCRbtmyZTZkyxebNm2e1a9d2y0aMGGHNmjWzF154wYoVKxb2uYsWLbJhw4bZ/PnzrWjRopYWkIkOAAAAAAAAAEiyWbNmuRIu/gC6NGrUyDJkyGBz5swJ+7wDBw5YmzZt7LXXXrMiRYpYWkEmOgAAAAAAAAB4xJeMdcvl8OHD7hYsOjra3c7U5s2brVChQiHLMmXKZPny5XOPhfPwww/bJZdcYjfccIOlJWSiAwAAAAAAAEA6NWTIEMudO3fITcsS8uSTT7pa5Yndli9ffkbtmDx5sv3www+uHnpaQyY6AAAAAAAAAKTTTPSePXtajx49QpaFy0J/5JFHrEOHDolur1y5cq4Uy9atW0OWHzt2zHbu3Bm2TIsC6GvWrHFlYILddNNNdvnll9tPP/1kqRVBdAAAAAAAAABIp06ndEvBggXd7VTq169vu3fvtt9++81q1aoVCJLHxcVZ3bp1w2a5d+rUKWRZtWrV7KWXXrLrr7/eUjOC6AAAAAAAAACAJKtcubI1adLEOnfubCNHjrSjR49at27drHXr1lasWDG3zj///GMNGza0cePG2cUXX+wy1BPKUi9VqpSVLVvWUrM0WxNdM7iWKVPGsmbN6q5uzJ071+smAQAAAAAAAMBpifMl7y25fPDBB1apUiUXKG/WrJlddtll9tZbbwUeV2B9xYoVduDAAUvr0mQm+kcffeTq+OgqhwLoKkbfuHFjd1DizwoLAAAAAAAAADi38uXLZ+PHjw/7uBKgfaco+H6qx1OLNJmJ/uKLL7qhAh07drQqVaq4YHr27Nlt9OjRXjcNAAAAAAAAAJJMceTkvCECM9GPHDniCtZrVlm/DBkyWKNGjWzWrFknrX/48GF389uzZ4/7PzY2NoVabLZ37147fuyY7d60zo4eSvvDF5B+7N+11X029RlNye/E6eD7g9SK7w+Qtr4//tdJK5kuAAAAAFKPKF8aO5P4999/rXjx4vbrr7+6WWD9Hn/8cfv5559tzpw5Iev379/fBgwY4EFLAQAAkNps3LjRSpQo4XUzgGSnRKIhQ4a45KPo6Givm4P/x3FJvTg2qRPHJfXi2CDSpPsgevxM9Li4ONu5c6flz5/foqKiUrTtOHeZZCVLlnQnwTExMV43B0hT+P4AZ4bvTtqnLq8y34sVK+ZGMQKR8Hsrd+7cbiQuv7dSD45L6sWxSZ04LqkXxwaRJs2VcylQoIBlzJjRtmzZErJc94sUKXLS+roaFv+KWJ48eZK9nUh++iXNL2rgzPD9Ac4M3520TSd6AAAAAHC60lwaTpYsWaxWrVo2bdq0kOxy3Q/OTAcAAAAAAAAAIOIy0aVHjx7Wvn17q127tl188cU2fPhw279/v3Xs2NHrpgEAAAAAAAAA0pE0GUS/7bbbbNu2bda3b1/bvHmzXXTRRTZlyhQrXLiw101DClB5nn79+jFxBXAG+P4AZ4bvDoC0ht9bqRPHJfXi2KROHJfUi2ODSJPmJhYFAAAAAAAAACClpLma6AAAAAAAAAAApBSC6AAAAAAAAAAAhEEQHQAAAAAAAACAMAiiAwAAAAAAAAAQBkF0pCmvvfaalSlTxrJmzWp169a1uXPnet0kIE2YPn26XX/99VasWDGLioqyzz//3OsmAWnCkCFDrE6dOpYrVy4rVKiQtWzZ0lasWOF1swAAAAAAKShTSr4YcDY++ugj69Gjh40cOdIF0IcPH26NGzd2wQwFNgCEt3//fqtevbrddddd1qpVK6+bA6QZP//8s91///0ukH7s2DHr1auXXXvttbZ06VLLkSOH180DgJPs3r3bJZps3brV4uLiQh5r166dZ+0CAKR9GzdudElZJUqUcPf192b8+PFWpUoV69Kli9fNA5JVlM/n8yXvSwDnhgLnCmK8+uqr7r5OCkqWLGkPPPCAPfnkk143D0gz1OmZNGmSy6gFcHq2bdvmLtwquH7FFVd43RwACPHll19a27Ztbd++fRYTE+P+5vvp5507d3ravki1ZcsWe/TRR23atGnu4kb8U/Djx4971jaccOTIkQQvPJUqVcqzNgGp0eWXX+6C5Xfeeadt3rzZKlasaFWrVrVVq1a52Ezfvn29biKQbMhER5rp1Pz222/Ws2fPwLIMGTJYo0aNbNasWZ62DQAQOfbs2eP+z5cvn9dNAYCTPPLII27U2eDBgy179uxeNwf/r0OHDrZhwwbr06ePFS1aNOTiBrylwJ++M7/++mvIcl3o0HHiAod3tO/ffffdwMWn+Bc4fvjhB8/aFsn++OMPu/jii93PH3/8sV1wwQU2c+ZM++6776xr164E0ZGuEURHmrB9+3b3R7Rw4cIhy3V/+fLlnrULABA5dPLWvXt3u/TSS90JAwCkNv/88489+OCDBNBTmV9++cVmzJhhF110kddNQQIXODJlymRfffUVFzhSmYceesgF0Zs3b+76XRyb1OHo0aMWHR3tfv7++++tRYsW7udKlSrZpk2bPG4dkLwIogMAACSBaqMr+0bBEABIjTRf0Pz5861cuXJeNwVBVIKSKqqp06JFi9yIZwUAkbpMmDDBZTo3a9bM66YgiEq3aJ46XdyYOnWqPf300275v//+a/nz5/e6eUCyIoiONKFAgQKWMWNGV08wmO4XKVLEs3YBACJDt27dXJba9OnTAxMpAUBqMHny5MDPCmo89thjbvLjatWqWebMmUPW9WcMImUNHz7czeH05ptvWpkyZbxuDoJoMkSNekbqkyVLFjvvvPO8bgbiee655+zGG2+0oUOHWvv27a169eqBv0X+Mi9AesXEokhTE4vql/KIESMCw+o10YsCG0wsCiQdE4sCSadukiZJ0nfmp59+sgoVKnjdJAAIoXmCkoL6zikrb968IeUn9u/fb8eOHXOlduJf3GDC15QVGxsb+FkjN3r37u3mEUjowpMm6IU3hg0bZn/99Ze9+uqrlHJJZfS3RN8j/Z7zW7dunfv9VqhQIU/bBiQnMtGRZvTo0cNd6axdu7YLpiujQ53Rjh07et00INXbt2+frV69OnB/7dq1bviqJkfUxSgA4Uu4jB8/3r744gvLlSuXbd682S3PnTu3ZcuWzevmAcBJk+0hddC5ClKnPHnyhARldcG8YcOGIeswsag3WrVqddLkod98840rIRL/Asdnn32Wwq1D8PdDZZDWrFljbdq0cX1kjRxgPg6kd2SiI03RVWgNG1IQQxPzvPLKKy5DHUDilEF71VVXnbRcF6Y0YQ+AhIXLfBozZoybjAwAUpNx48bZbbfdFpj0ze/IkSOuvnC7du08axuQWvz8889JXrdBgwbJ2haEOp0EOfXFkPLWr19vTZo0sQ0bNtjhw4dt5cqVbh4OTQSr+6qXDqRXBNEBAAAAIB3QHEKbNm06aTj9jh073DKyar3BcUm9FAjUxK/xL5orTLJx40ZGbALxqCSoMs/feecdN5Ho4sWLXRBdSVudO3e2VatWed1EINkkrYAeAAAAACBV85egiO/vv/92ZajgjXB5a8raVAkEeKds2bK2bdu2k5arTr0eg3euvvpq271790nLVYtbj8EbM2bMcPMIxP/dpUmT//nnH8/aBaQEaqIDAAAAQBpWo0YNFzzXTbWdM2X67zRPWc6aC0XD75GyVHpSdFxGjRplOXPmDDku06dPt0qVKnnYQoS78KT5hLJmzepJm3CCMptViiq+Q4cOuUAuvJuHI6HRM7pYqwx1ID0jiA4AAAAAaXx4vWjS8MaNG4cEa5UtqAzBm266ycMWRqaXXnopEKhVnWCVdYl/XKgf7I0ePXq4/xVA79OnT8iEiAoQzpkzx83BhZS3ZMmSwM9Lly4NTOruPzZTpkyx4sWLe9Q6XHvttW7i5LfeeivwHdJFp379+lmzZs28bh6QrKiJDgAAAADpwNixY93EomTQpi6a3P2zzz6zvHnzet0UBB0T/ySj9evXDylN4b/A8eijj1qFChU8bGVkypAhQ2B0QELhqmzZstmIESPsrrvu8qB1UMa5Ltbq2Kj+ee3atd3/BQoUcKNr4s/9AKQnBNEBAAAAAEDE6dixo7388ssWExPjdVPw/9avX+8CtJqscu7cuVawYMGQCxwK0gaP6kDKO3bsmE2YMMGNGlAWes2aNa1t27buAgeQnhFEBwAAAIB0QJnOCdV31jJlp5933nnWoUMHFzhEypQLSYoXX3wxWdsCAADOHjXRAQAAACAd6Nu3rz3zzDPWtGlTu/jii90yZXKqhvD999/vJhi99957XRZh586dvW5uurZw4cKQ+wsWLHD7vWLFiu7+ypUrXTZtrVq1PGohpFWrVgkuD77w1KZNm8BxQ/KaPHlyktdt0aJFsrYFocdFf1cyZ858ymPEcUF6RiY6EKHUMZw0aVJgIqrk8M4779hHH31k3333XbK9BlK/n376ydWd3LVrl+XJkyfVbS81uvLKK91kVpq052z079/fPv/8czfRXFKpBmj37t3d7Vxo3bq11alTxx555JFzsj0AQHiaPPSaa66xrl27hix/8803XX/s008/dbWENSHc77//7lk7I40yzdV/Uc16f1109WM0IuDyyy/nb6SHNDJDfSX1Kf0XNHTBY/fu3W4CxcWLF9u6dets2rRpdumll3rd3Iiohx7/nDU4ZBU80kaTjCLljosmeFUpnfjHKJiOD8cF6Vn4Tz+AZLFt2zaXAVSqVCmLjo62IkWKuIk5Zs6cmaLt2LRpk7uanFwOHTrkZrrXLN3BJk6caJUqVXKZHdWqVbP//e9/Z/U6uhBQr149y507t+XKlcuqVq162sE//bFX5zm10TFS5sv555/vOitnE9Q8cuSIm+zl2WefTfDxp59+2goXLmxHjx61c+2SSy5x70XHKK3RCe8NN9xgRYsWtRw5crjA9gcffJDsx0CTj+n+2dKEWDrpOx3z5s2zLl262LnSu3dvlxW5Z8+ec7ZNAEDCvv32W2vUqNFJyxs2bOgek2bNmtlff/3lQesi17Bhw2zIkCEhE4vq50GDBrnH4B2di6m/re+ELjLptmbNGrvjjjusfPnytmzZMmvfvr098cQTXjc1IsTFxQVuuvCnvvc333zjLmropnNH1d/W6BqkHB0P/4Shwcco/o0AOtI7guiABxlCGt6pTBQN49RwKGWd7tixI8U7jAriJ5dPPvnETdATnLHx66+/2u23325333232wfKgtftjz/+OKPXUHDwtttuc/tUQ5V/++03F6xLjkCwFw4fPuwm0lEQsnr16me1LU3Co5OBMWPGnPSYsjveffdda9eunRuid7pOtb/12vq8JVSj1SsKaCeFPrMXXnihO6HSxDnKGNN++uqrr5L1GOTLl89dFDrb9ufMmdPy589/Wu3UZy579ux2rlxwwQXuJPT9998/Z9sEACRMfz++/PLLk5ZrmR6T/fv3J/o3BudebGysS6SJT8v27t3rSZvw38hZJaoEZ9fq5wceeMCN2FD/tVu3bmd8voIzp+OiSV+VcKbzSt30s0Z2PPjgg143D0AkUjkXAClj165dGovm++mnnxJdT+u8/vrrviZNmviyZs3qK1u2rG/ixIkh62zYsMF3yy23+HLnzu3Lmzevr0WLFr61a9eGrPPOO+/4qlSp4suSJYuvSJEivvvvvz/kNSZNmpTk7f3444++OnXq+LJnz+7WueSSS3zr1q0L+x6aN2/ue/TRR0OW3XrrrW55sLp16/ruuece35l46KGHfFdeeeUp1/v88899NWrU8EVHR7t92b9/f9/Ro0fdY6VLl3b7wn/TfT8dg3LlyvkyZ87sO//8833jxo0LPBYXF+fr16+fr2TJkm7/Fi1a1PfAAw8EHte6tWrV8uXMmdNXuHBh3+233+7bsmWL70w1aNDAvd+zsWTJEvceZ8yYEbJcx1bLly1b5u6//fbbvkqVKrn9VbFiRd9rr70WWFefCa07YcIE3xVXXOHWGTNmjPssXHfddb48efK4z4g+d19//XXI9vX59/vll1/ce8qWLZt7zrXXXuvbuXOne+zQoUNuXxYsWNBt/9JLL/XNnTv3pPYGb++TTz4JfNZ1DF944YWQ96hlAwcO9N15552+XLly+dq3b3/G+7FZs2a+jh07JusxiH+8w7X/rbfe8pUoUcLtx5YtW/qGDRvmvp9++oxWr149cF/Pu+GGG3xDhw51vxPy5cvnu++++3xHjhwJea2XXnopcF/7uUuXLr5ChQq541G1alXfl19+6R7bvn27r3Xr1r5ixYq5NlxwwQW+8ePHn/S+BwwY4LvsssvOaJ8BAJJOfxcyZszou/76631PP/20u6lPlylTJt+oUaPcOvobqT4ZUo7+fpcpU8b36aef+jZu3Ohu6ruoX9quXTuvmxfR1A/94osvTlquZXpMVq5cGfgZKUfnwb///vtJyxcvXuwegzd0nvbyyy+ftHzEiBFnfb4KpHZkogMpSFmhuql0iLKME6NSKMqwVh2+tm3burrCGk7oz/zVVXhlEc2YMcOVgtF2mzRpEshQfeONN9wEUirLoJqXynjXxDgJOdX2NAmSMsYbNGjgsnFnzZrltptYZvEvv/xitWvXDlmm58UfYqzX1XI/1fD076dwNz9lN//555+JZobo/Si796GHHrKlS5e6mqDK+FXGur90hSg7WCVH/PdVJkbPUY1Kbf+ee+5xWcg//vije1yZyS+99JLb3qpVq9wxVXma4H2qchw6fnpMtRRVc/FcU2mRU+0v7QNR+1SbevTo0SHb0HtXyRWV2dH2/JOS6fM2ePBg91nUyIlgTz75pNs/WkfHUJ81faanT5/uPm/PPfdcyLEKpvrcGlZepUoVd+z1Wbn++usDw/8ef/xxt3/1mqpJqc+tXmPnzp0Jbk8jEG699Vb3HdFrqw642qzjHOyFF15wGf0aBaHHz5TKkviz+ZLjGIQTv/36nur7ouOgfaoauP7PdWL0GdYwZf2vfaz9FH9f+WlYpso+6bWUSa7vkMrRaCI0f9km1Q/9+uuv3fdEvxfuvPNONzIkmCa307JT/d4DAJwdTRb6888/uxJkKg2mm0YXaZlGAor6NpqzBiln5MiR7u+pyoaULl3a3fSz+tqvv/66182LaOq36Luhfr36pLrpZy3TOYTo+6OSkUhZ6jP36NHDtmzZElimnx977LHAxMlIeTpPS2h+AJ3LaDQ6kK55HcUHIo2yTpTpravnyubu2bOnu5oeTF/Nrl27npSxfe+997qf33vvPZchrGxov8OHD7tM0G+//dbdV2boU089FbYdwZnop9rejh07kpRBHz/jfvr06SHLldEdP0tVWc7KcPVTtvaqVasSvfnt27fPZQX7M8hvu+02l32vTGa/hg0b+gYPHhzymnq/yhxPaF/46dh07tw5ZJky9fV6ooxfZacHZ/AmZt68ee519u7d6zuXmeixsbGn3F8HDhwIrD9y5EiXHe9vh56vzHF/dlr58uVPOkbKYqtfv35IJvrw4cND1qlWrZrL8E9I/MxxZeUruzwhOqb6nHzwwQeBZdrH+jw///zzCW6vTZs2vmuuuSZkO4899pjLTPfT50OZ2mfro48+ctnuf/zxR7Idg3CZ6PHbr897/JEdbdu2PWUmurZ17NixkM+1tpVQJrq+/xkyZPCtWLEiyftIbXrkkUdClul3nI5ZYqNXAABI79TP0d9E3fQzvKc+0aBBg9wIvaioKHfTz88880ygv7R+/Xo3egApS31ojXJU31vnKLrpZ42KDD4nRMrSyNSE9r+W6TEgPcvkdRAfiDTKLm/evLnLTJ09e7abKOX555+3UaNGhWQq169fP+R5uq9sU1F28+rVq0+qZ6msUGWYbt261f7991+X7ZsUp9qeZqZX25QNrGxXZZMr81eTLSbk4MGD7n9NHnq6NGGJf9KSU1GWlTJg/Vm12p/KrlLtPGU4K/NK701ZtMEZusp41ns7cOBA2NrPyrCOP7mirrhr23LLLbfY8OHDrVy5ci6LSJN0KZs6U6ZMgexoZUTr9Xft2uUyemXDhg0uA/tc0TE7nbqmqkn/8MMP28cff2x33XWXy0RT3UfVlleNVO1LZd4ok81PIxHiTwoaf5SB6hJqwlxNAKTPhz7nqiWeEH2Otf8SotdXFn9wdoNqhCvbxD8SIz4t1+SfwfR8HR8da3/WdPw2ny59xjQa4e233w7JRjqXxyAx8du/YsUKu/HGG0OWaT+dql672u7fJ6LvsTL4wx2rEiVKuMltE6L9q9EKei///POPG7mibPP436ts2bK5//WdAwAkL/U51K9Tf9Df//C74oorPGsXTvRdw/WP4A31iZ566il3U+16Ue3tYKVKlfKodZFNo1E1Cnrq1Km2fPlyt6xy5cruXCM1zbUUicdFE7tqroBgimvo3BhIzwiiAx5QcFnBaN1UlqFTp07Wr1+/JJf72LdvnyuhoDISCU0KGDwxzrnYnr/chAKl+oOpoJ8mu1SHpl69eic9RxMZqmOj4HEwlV8JHo4nuq/lfipPcaoJCNXeYJq0UDftR3WAFfBTGxXw1LoDBgywVq1anbSdMwny+5UsWdIFMb///nu3H+677z4bOnSoG+6pQKIuOOimfap9qOC57id1Qsik0vZVaiYx6tBcfvnlgZOCm2++2R1PBXD1vy6IqOSI/9goSFy3bt2QbQQHXf0ngcG07/X+dFFDgfQhQ4bYsGHD3KRM8fkDqiktfptPh46rLpJoeK9/aG9yHIPkan+w+JPH6rsaP8iS1GOlz7wuLOmChUrVqI2aBCr+59xfisf/+wQAkDyUUKAyIevXr3eTVsf/fe8vnYbkp76nyqXp735C/dBgKrsD78UPnsN7+r2lhC7dkDqoxI4C6JoY+eqrr3bLpk2b5s79dE4ApGcE0YFUQJnJqpsd/yQoOFin+zVq1HA/16xZ0wWJlbEdrrNXpkwZ98fsqquuOuXrJ2V7otfXrWfPni4zfvz48QkG0bNkyeLek+onB3d49By1SUE2PwWgg7PuBw4caI8++qidKb1vZcEqq9r/3hTsDlcP3h9UjH9SqSwHZbC3b98+sEz3g7PIFWBUYFU31QRXPWtl9OqkdceOHa52tILtMn/+fEsOLVq0OCngHV/x4sVD7ivT/Morr3QZy7/++qsLhErhwoWtWLFi9tdff7k6/KdL71UXQXTTZ0TB+ISC6MrA0udAFzfi08UQfX60r1UvVJSZrlr1wZ+bhI5VMN3XxZT4wf8z8dNPP9l1113n6rzHH51wro/B6ahYsWKghr9f/PtnS8fq77//tpUrVyaYja79rFEAd9xxh7uvYLzWjT/aQvXSldFeoECBc9o+AEAo/Q3WyCVd1NZII7I1vaNRfP79H39EH1IPJZHo3EN9U43eiH/xiQtPKeuVV15x/W0lO+nnxCjBCylPSUAaeaqR3poDzH8OrjnZ4icbAekNQXQgBSmwqjIW+sOj4JRKQCi4qnIu8ctRTJw40Z0EXXbZZS7TVZPyvfPOO+4xBTgVdNNzFHRWcEoZR8pi0aSMuq9SIjqRUmBcExnt3bvXBbwSCmqeansKYr711lsuWKggq4LSmkwzsT+SykrWxDzBgU9NgKjJSXWVWiVtJkyY4N6/tn0m5Vz0HlUeQqVUFHDdvXu362ypvcryF02SqQCohmEq+1dZ+iqxoqDeoEGDQi44qARIdHS05c2b101Yo+xgXTTQkMEvv/zS7Q9lnosyi9SpVvBUQXtlzyuornYokKhA8IgRI9wx0Gv5Oxiny1/CRxn1utqv+/6LFGdSSsQ/lFsXFXT8FPjXJDB+CmyrQ6qTPZWpUQdJx0ijCpR1EI6Osz5nCrRqXZU+UXA7IQqwK2tZ2fvaP3o/Wl/fDQVZVRZG+1+Td+q46fuh4+yfEC0+lfDRxEPaxyqJolI+r7766jmZqEvt0udHn12VqNm8ebNbrjb7Jxc918cgqfRd1nZefPFFdyHnhx9+cBnv5zJgou+rXkPvXa+jNms4rV5Dn48KFSq4CYR0IUDfG62jk9H4QXSVryKDCACSn/pn+r2cWPIAUoZGmiX0M1IXjQTWiFGNDubCk/c06lPnpgqi6+dwdJwIontH52u66fxU58CnGlELpBteF2UHIokmvHzyySd9NWvWdJP/aTJBTejZu3fvkIkH9dXUhJuaLFGTc5QpU8ZNaBhs06ZNvnbt2vkKFCjg1ilXrpybCHPPnj0hExhq+5qoURNpPvDAA2En00xse5s3b3aTGmobmsxFEw/27dvXd/z48bDv9c8//3QTk+7evTtk+ccff+wm5PRPCvP111+f8f784YcffDfddJOvZMmSbnuFCxf2NWnSxDdjxoyQ9aZMmeImClV7YmJifBdffLHvrbfeCjw+efJk33nnnefLlCmTe29+r7/+utsP2n9q87hx4wKPad9psldtL0eOHL569er5vv/++8DjmpxTx037UpNy6jW0zxcuXBhYR6+liR8To+fEvwW38UxpslVtyz9ZZzBN6nnRRRe5fapJcK+44grfZ599FjKxaPD7kG7durnJfvR+CxYs6Lvzzjt927dvT3AiUNEktTomWj9Pnjy+xo0bBx4/ePCg+6z6P4uahHTu3LmB5ya0PU3Yq4lEdaxKlSrlGzp0aEj7gifLDKYJPDXZZjh6LKFjoOcl5zFIaGLRhNqvz3Hx4sXdZ1vfUf/EWIlNLHrDDTeEbEOvE/x+4r+WJhbu2LGjL3/+/G5CZE3w9NVXXwUe0/Y0UaomCNbvMv0eCX4NHU/9vps1a9YZ7ikAQFJdddVVvm+++cbrZuD/qQ81YMAA3/Tp05M8GT1Slvow8fu1ABJ39OhR39SpU128ITY21i37559/fHv37vW6aUCyitI/XgfyAZx8ZX3SpEnWsmVLS8uUWaxyKso8RihlVqt2vDKHVdYD3tDIAWXfJ3U+gtROE8IqU1yZ36mFhnbq95lq5QMAkpd+32reGo3o0qiv+PNgMKllylL/QvOqaISnsjVVwlClFlVHWJOBn4uyczg7Gj2nUb/+spnwnuYKa9iwoSsbqtGfSF30+0wjUjWCQ6OWVcpRE4pq5K7ujxw50usmAsnm9GYfBIDToBIxDO0KXyZEJ1AE0L3z559/urI1abl23wsvvODKE61evdqVDxo7dmxIHf/UQAEctQ0AkPxUfmvZsmWudKBKnV100UUuOOj/HylL5f/Wrl3r5pvR30LNkaIyhiohqDJoKoV3JvOi4NzRRIhPPvmkrVu3zuum4P+NGzfOnSPlyZPHBdNVglNlSY8dO+Z10/D/JVpVdlYlPHVx0O/GG290JVKB9IxMdCAVSi+Z6ACSl+r2a+JTzXmgDBDVSVedeQBA5GYIJsY/aTe8paD66NGjXWBd894weaV3dDFDI0QVoNU8R/FHb+zcudOztkUyXdRQ0pH6uRrNoaznHDlyuAtQGs2hm0ZzIOVpNLXmQ6pYsaKbF0oJPToP0THTyA59n4D0iolFgVSIa1sAkuLjjz/2ugkAgFSEIHnqvsChgKD/tnXrVleuQpN4w9tMdKQ+ZcqUsY4dO7qbaESHP6g+ePBge+qpp8hM90hcXFyCF/7+/vtvF1QH0jMy0QEAAAAgnXjvvfdcTVoFnWbNmuUC6woUli1b1m644QavmxdxZSn8QfPt27fbJZdc4oLmuqncTvysZwDhL0D98MMPLivdfwFK95HybrvtNlcSU6WpFDRfsmSJFSxY0P19KVWqlI0ZM8brJgLJhiA6AAAAAKQDmsy5b9++1r17d3vmmWfsjz/+cMPsVZtb82YokxMpJ0OGDC6opJrbd999N0HzVGrNmjUu8Kf/X375ZStUqJB988037thVrVrV6+ZFHJVuUdDcn3kefAHqiiuucGVcmHDUO8o4b9y4sRs9v2rVKlcfXf8XKFDApk+f7r4/QHpFEB0AAAAA0gHVo1WpA82rE1yrVsF0TdSnYBRSjkYE+Gs6Hzp0yC677DJ3HBQMrFWrlpsHCd7SsdEEr6q1rQCgJubVd+bZZ5+1+fPn2yeffOJ1EyP24tO9997rap/ru5IxY0avm4UgKqUzYcIEl4WueR1q1qxpbdu2DZloFEiPCKIDAAAAQDqgAMby5ctdCZfgILqyBC+88EI7ePCg102MWEuXLnUBW395l8OHDwcmSXz00Ue9bl7Eql+/vt1yyy3Wo0ePkO/M3LlzrVWrVi7rFimrdevW7rui74guPOmik74nNWrU4MITAE8RRAcAAACAdJKJPmTIEFebNjggOGLECFeuYsGCBV43EWb277//2uuvv+6Oi7I4E5qkDykjZ86c9vvvv7s5A4K/M+vWrbNKlSq5EQTwhi4I+ku6BI/mUFBdIzo0rwC8sWLFCvf7SyM3pHLlytatWzf3nQHSs0xeNwAAAAAAcPaUTXv//fe7YJNypZRN++GHH7rA+qhRo7xuXsTSRIj+YKBuK1eudPXRNTmiMmzhnTx58timTZtcED3YwoULrXjx4p61C+YCsrqprIt/NMf48eNt0KBB1rNnT1dSBCnv008/daMFVAtdIzlk9uzZVq1aNVfi5aabbvK6iUCyIRMdAAAAANKJDz74wPr37+8mSZRixYrZgAED3MSWSFn33XefC5orazNTpkxuQkRl0CpwrokSs2bN6nUTI55K6cyZM8cmTpxo559/vhutsWXLFmvXrp279evXz+smRjQdC//FJ12I0gWo6OhodwGKiZK9Ub58eVf/fODAgSHL9V15//33A397gPSIIDoAAAAApDMHDhxwpUIKFSrkfl60aJEL3CLlKEtTAXPdVP88e/bsXjcJ8Rw5csSN3nj33XddWR1d7ND/bdq0cSWQdB8p6+OPPw4EznUBSqM2VLrF/13S7zEF0uEN/R7ThKLnnXdeyHLNvVG9enX39wZIrwiiAwAAAEA6pjrPNWvWpPZ2Kte8eXNXdqdo0aJeNyXibNy40dVG14UnTWBZoUIFr5sUsbJkyeJKhQRfgNKkyUgdmjVr5ibj7dixY8hyXXRSOZdvv/3Ws7YByY3LqgAAAAAAeGz69Ol28OBBr5sRkUqWLOlufsq0VSBXmepIWbt27bIcOXIkef1nn33Wunbt6urbI/m1aNHCnnjiCfvtt99cWR1/TXSVRFLpsMmTJ4esC6QnZKIDAAAAQDpGJnrakCtXLnesypUr53VTIh7fmbQjJibGlavie5MyMmTIkKT1oqKi+P4g3SETHQAAAAAAAGkOeaEpKy4uzusmAJ4hiA4AAAAAaVjw8PmErF27NsXaAgBIf2bNmmU7duyw6667LrBs3Lhx1q9fP9u/f7+1bNnSRowYwaSvSNcIogMAAABAGqbgRVKG1gM4ITY2NtHH9+7dm2JtAdKCgQMH2pVXXhkIomsi3rvvvts6dOhglStXtqFDh1qxYsWsf//+XjcVSDYE0QEAAAAgDWN4PXB6NAllYheWVCKEC0/Af1R3/umnnw7cnzBhgtWtW9fefvttd18T8yornSA60jOC6AAAAAAQQZo3b26jRo2yokWLet0UBOnVq5fly5fP62ZEhB9//NHrJgBpyq5du6xw4cKB+z///LM1bdo0cL9OnTq2ceNGj1oHpAyC6AAAAAAQQaZPn24HDx70uhkRXac+WIsWLdz/PXv2TMYWIViDBg1Oa/1nn33Wunbt6jLYkbpcfvnlli1bNq+bke4pgK75NZRxfuTIEVuwYIENGDAgpARS5syZPW0jkNwIogMAAAAAkMJ16kUlQ44fP57s7cHZGTx4sN16660E0T2uVR8sJibG/f+///0vGVsEv2bNmtmTTz5pzz33nH3++eeWPXt2dwHDb8mSJVa+fHlP2wgkN4LoAAAAAACcQ9SpT19UIx3e16oPrlfPxaeUpXrorVq1cqM4cubMaWPHjrUsWbIEHh89erRde+21nrYRSG4E0QEAAAAAAOApatWnXgUKFHClwPbs2eOC6BkzZgx5fOLEiW45kJ4RRAcAAAAAIBnt37/fTcS3YcMGV0842IMPPuhZu4C0XKseKS937twJLmdSZEQCgugAAAAAACSThQsXunrCBw4ccMF0BZu2b9/uagoXKlSIIDqQCH1vErr4dOGFF3rWJgCRiSA6AAAAAESQXr16kTWYgh5++GG7/vrrbeTIkS6Lc/bs2ZY5c2a744477KGHHvK6eUCqtG3bNuvYsaN98803CT5OTXQAKY0gOgAAAACkUZMnT07yui1atHD/9+zZMxlbhPgWLVpkb775pmXIkMHVET58+LCVK1fOnn/+eWvfvr2brA+p2+WXX27ZsmXzuhkRpXv37rZ7926bM2eOXXnllTZp0iTbsmWLDRo0yIYNG+Z18wBEIILoAAAAAJBGtWzZMknrRUVFkbnpEWWdK4AuKt+i0hSVK1d2WekbN270unkRJzY2NsnrxsTEuP//97//JWOLkJAffvjBvvjiC6tdu7b7/pQuXdquueYad0yGDBlizZs397qJACIMQXQAAAAASKPi4uK8bgJOoUaNGjZv3jyrUKGCmzixb9++rib6e++9ZxdccIHXzYs4efLkcReVEuPz+bjw5DHNH6CLTpI3b15X3uX888+3atWq2YIFC7xuHoAIRBAdAAAAAIBkMnjwYNu7d6/7+ZlnnrF27drZvffe64Lqo0eP9rp5EefHH3/0uglIgooVK9qKFSusTJkyVr16dVcSST9rboGiRYt63TwAESjKp0usAAAAAIB0kb35888/u5IhR44cCXnswQcf9KxdAHA63n//fTt27Jh16NDBfvvtN2vSpInt3LnTsmTJYu+++67ddtttXjcRQIQhiA4AAAAA6cDChQutWbNmduDAARdMz5cvnysbkj17dlcW4a+//vK6iRFt69atLrNWKlWqZAULFvS6Sfh/+s4kdOHpwgsv9KxNOPkYLV++3EqVKmUFChTwujkAItCJ2U0AAAAAAGnaww8/bNdff73t2rXLsmXLZrNnz7b169dbrVq17IUXXvC6eRFLpVzuvPNOK168uKuJrluxYsXsjjvusD179njdvIimOtvXXXed5cqVy6pWrerq1wff4J2BAwe6wLmfLgbWrFnTcuTI4R4DgJRGEB0AAAAA0oFFixbZI488YhkyZLCMGTPa4cOHrWTJkvb8889br169vG5exOrUqZPNmTPHvvrqK9u9e7e76ef58+fbPffc43XzIlr37t3d8dDx0YWnKVOm2NixY129+smTJ3vdvIg2YMAA27dv30nLFVjXYwCQ0phYFAAAAADSgcyZM7sAuqh8i8pTVK5c2XLnzm0bN270unkRSwHzb7/91i677LLAssaNG9vbb7/t6jzDOz/88IN98cUXVrt2bffdKV26tF1zzTUWExNjQ4YMsebNm3vdxIilysNRUVEnLV+8eLErVQUAKY0gOgAAAACkAyo/MW/ePJdFq5Ihffv2dTXR33vvPbvgggu8bl7Eyp8/v7uQEZ+W5c2b15M24QTNHaALTqJjofIu559/vlWrVs0WLFjgdfMiko6Dgue66VgEB9KPHz/ustO7du3qaRsBRCaC6AAAAACQDgwePNjV35ZnnnnG2rVrZ/fee68Lqo8ePdrr5kWs3r17W48ePdzFjCJFirhlmzdvtscee8z69OnjdfMiWsWKFd1kr2XKlLHq1avbm2++6X4eOXKkFS1a1OvmRaThw4e7LPS77rrLlW0JvgCVJUsWd3zq16/vaRsBRKYon347AQAAAACAZBkhsHr1alejvlSpUm6ZSu1ER0e7CxzByH5OWe+//74dO3bMOnToYL/99psrr7Nz504XrH333Xfttttu87qJEevnn3+2Sy+91DJlIvcTQOpAEB0AAAAA0pGtW7e67FqpVKmSFSxY0OsmRbTTmQSxX79+ydoWJE6TVi5fvtxd7ChQoIDXzYl4a9assTFjxrj/X375ZVd655tvvnHHp2rVql43D0CEIYgOAAAAAOmASrncd999NmHCBFc7WDJmzOiyaV977bUE63IDkWzgwIH26KOPWvbs2UOWHzx40IYOHermFYB3mehNmzZ12ejTp0+3ZcuWWbly5ezZZ5+1+fPn2yeffOJ1EwFEmBNTtwMAAAAA0rROnTrZnDlz7KuvvrLdu3e7m35WwOmee+7xunkRTcdi1KhR1rNnT1cuxF+65Z9//vG6aRbpowQ0UWVCGemnM4IA596TTz5pgwYNsqlTp7ryOn5XX321zZ4929O2AYhMFJcCAAAAgHRAAfNvv/3WLrvsssCyxo0b29tvv+1qPcMbS5YssUaNGrmRAOvWrbPOnTtbvnz57LPPPnO10ceNG+d1EyOWBuZHRUWdtHzx4sXuGME7v//+u40fP/6k5Srpsn37dk/aBCCykYkOAAAAAOlA/vz5EyzZomV58+b1pE0w69Gjh5u4ctWqVZY1a9bA8mbNmrkyFUh5+j4oSK4A+vnnn+9+9t/0fbnmmmvs1ltv9bqZES1Pnjy2adOmk5YvXLjQihcv7kmbAEQ2MtEBAAAAIB3o3bu3C9i+9957VqRIEbds8+bN9thjj1mfPn28bl7Emjdvnr355psnLVcgUMcHKW/48OEuC/2uu+5yZVuCLz6pdEiZMmWsfv36nrYx0rVu3dqeeOIJmzhxorvYERcXZzNnznQ17Nu1a+d18wBEIILoAAAAAJAOvPHGG7Z69WorVaqUu4nKhURHR9u2bdtCArmqx42Uof0fGxt70vKVK1dawYIFPWlTpGvfvr37v2zZsm7iykyZCI2kNoMHD7Zu3bq532XHjh2zKlWquAmT27Rp4y4YAkBK4y8FAAAAAKQDLVu29LoJSECLFi1s4MCB9vHHH7v7yqrVxQ1l2d50001eNy+iNWjQwNasWWNjxoxx/7/88suu5vY333zjgrdVq1b1uokRRxnnQ4cOtcmTJ9uRI0fszjvvdN8TTQBbo0YNq1ChgtdNBBChonwawwQAAAAAAM65PXv22M0332zz58+3vXv3WrFixVytZ5ULUbA2R44cXjcxYv3888/WtGlTl42u+vTLli2zcuXK2bPPPuuO1yeffOJ1EyPO008/bf3793eT8WbLls1Nlnz77bfb6NGjvW4agAhHEB0AAAAA0ondu3e7wJ+yalULXRMlqnRL4cKFmYzPY7/88ostWbLEZdTWqlXLGjZs6HWTIp4uZNxyyy1uLoFcuXLZ4sWLXRB97ty51qpVK/v777+9bmLEUaa56p7fc8897v73339vzZs3t4MHD1qGDBm8bh6ACMZvIAAAAABIBxSgPf/88+25556zF154wQXU5bPPPrOePXt63byIM2vWLPvqq68C9y+77DKXdf7666+7zNouXbrY4cOHPW1jpPv999/txhtvPGm5Srps377dkzZFOpU6atasWeC+MtJVAunff//1tF0AQBAdAAAAANIBZdN26NDBVq1aZVmzZg0sV0BKpSqQslQH/c8//wwJ2Hbu3NmuueYae/LJJ+3LL7+0IUOGeNrGSJcnTx5XWie+hQsXMnLDI5pENPj3l2TOnNmOHj3qWZsAQJhYFAAAAADSgXnz5tmbb7550nIFAzdv3uxJmyLZokWLXH1nvwkTJtjFF19sb7/9trtfsmRJ69evn6v/DG+0bt3aTfA6ceJEl+2sSS1nzpzpyom0a9fO6+ZFJFUc1sXA6OjowLJDhw5Z165dQ+YP0AgbAEhJBNEBAAAAIB1Q0Ck2Nvak5StXrrSCBQt60qZItmvXLleLPv4kln516tSxjRs3etQ6yODBg61bt25WqlQplwFdpUoVO378uLVp08Z69+7tdfMiUvv27U9adscdd3jSFgAIRhAdAAAAANKBFi1auBIiH3/8sbuvzFrVF1am7U033eR18yKOAuhr1651GedHjhxxE7wOGDAg8PjevXtdmQqkPGWcDx061CZPnuyOzZ133um+I5r0tUaNGm5yS3hjzJgxXjcBABJETXQAAAAASAeGDRvmgoCaFPHgwYPWoEEDK1++vOXMmdOeeeYZr5sXcVSLXrXPZ8yY4SZ2zZ49u11++eUhE8Hq+CDl6fvQq1cv991QuaPx48fbJ598YrfeeisBdABAgqJ8KjgFAAAAAEgXfvnlFxegVUC9Vq1a1rBhQ6+bFJG2b99urVq1csdDwdqxY8fajTfeGHhcx6VevXpc4PCAAuWqe37PPfe4+99//701b97cXXzKkIFcQwDAyQiiAwAAAEAaNmvWLNuxY4ddd911gWUK2GrSygMHDljLli1txIgRIRP1IeXs2bPHBdEzZswYsnznzp1ueZYsWTxrW6TSd2H16tWu1I5f1qxZ3bISJUp42jYAQOrEJVYAAAAASMNUB/3PP/8M3P/999+tc+fOds0117hyIl9++aUNGTLE0zZGsty5c58UQJd8+fIRQPeIJhFV0DyY6tMfPXrUszYBAFI3MtEBAAAAIA0rWrSoC5TXrl3b3X/qqafs559/dmVEZOLEiS4rfenSpR63FEgdVLKladOmIaMz9B26+uqrLUeOHIFln332mUctBACkNpm8bgAAAAAA4Mzt2rXLChcuHLivALoChH516tSxjRs3etQ6IPVp3779ScvuuOMOT9oCAEgbCKIDAAAAQBqmAPratWtdfecjR47YggULbMCAAYHH9+7d60pVADhhzJgxXjcBAJDGUBMdAAAAANKwZs2audrnM2bMsJ49e1r27Nnt8ssvDzy+ZMkSK1++vKdtBAAASMvIRAcAAACANOzpp5+2Vq1aWYMGDSxnzpw2duzYkAkrR48ebddee62nbQQAAEjLmFgUAAAAANKBPXv2uCB6xowZQ5bv3LnTLQ8OrAMAACDpCKIDAAAAAAAAABAGNdEBAAAAAAAAAAiDIDoAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQAAAAAAAACAMAiiAwAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAYBNEBAAAAAAAAAAiDIDoAAAAAAAAAAGEQRAcAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQAAAAAAAACAMAiiAzhr+/bts06dOlmRIkUsKirKunfv7nWTkIgOHTpYmTJlvG5Gurdu3Tr3fXj33Xe9bgoAAECa6afmzJnT62bAzDZu3GhZs2a1mTNnJvu5iPrM/fv3P6evg3Pvp59+csdK/5+uevXq2eOPP54s7QJSCkF0AC7Ipz+G8+fPP6PnDx482G3j3nvvtffee8/uvPNOi2Tal8G3mJgYa9CggX399deWGh04cMB1Ws+kM3QqixYtsjvuuMNKlixp0dHRli9fPmvUqJGNGTPGjh8/fs5fDwAAID320xXM/Oeff056/Morr7QLLrjgjLY9fvx4Gz58uKUnv/zyizVt2tSKFy/u9lmpUqXs+uuvd+81Jfq+SZUa2nAqAwcOtLp169qll16a4OO33nqr+2w+8cQTKd62SEnG0W3QoEEJrtO2bVv3+JledErp778+J6+99ppt3rw5xV4TONcIogM4az/88IO7styvXz8XMK1Vq5ZFumuuucZdUBg3bpy74r569WrXgf/2228ttVEnfsCAAee8Ez9q1CirXbu2/fjjj66T9/rrr1vfvn0tW7Zsdvfdd9tzzz1n6Vnp0qXt4MGDEX9RCQAAnL3Dhw/bs88+e063md6C6BMnTrQrrrjCtmzZYg899JCNGDHCnZvs2rXL3n777WTv+56O1NCGxGzbts3Gjh1rXbt2TfDx2NhY+/LLL11G+Ycffmg+n++sXk995t69e5/VNtIjXQjS/o1v//799sUXX7jHU/L7r++XjpX+P1033HCDSy7TOSGQVmXyugEA0r6tW7dalSpVztn24uLi7MiRI2fVKfDa+eef7zrtfjfddJPbRy+//LI1btzY0rvZs2e7Tnf9+vXtf//7n+XKlSvwmMr9aNTDH3/8YenRsWPH3Gc4S5YsafozDAAAUo+LLrrIBYJ79uxpxYoVs/RGQcEcOXKc1TaU2a3+tvqh6ofFP1/xsm1e9EPPxvvvv2+ZMmVySUAJ+fTTT92o0tGjR9vVV19t06dPdyNvzxR95oQ1a9bMPvvsM1u8eLFVr149sFwBdJ0vN2nSxCW0JbdDhw65z1SGDBnO+FjpuTfffLNLMtMFJGXRA2kNmegAEq1HqGGjLVu2dD8XLFjQHn300UAZDn9NtLVr17pSJf4hZxp+5s+YUXb6eeed50p5qKSHsrK1PJie061bN/vggw+satWqbt0pU6a4x/T6d911lxUuXNgt1+PqrAXzt+Pjjz+2Z555xkqUKOH+uDds2NBlgMc3Z84c1yHJmzev6xBfeOGFLrgdbPny5e6PvMqPaFvKqJ48efIZ78/KlStbgQIFbM2aNSHLk7qPpk6dapdddpnlyZPHHYuKFStar169Thrq69/38fdNuCwXra/jKv7OTHBNQg2369ixo9unal/RokVdFkH814nPvy0d0+AAup/2pz5jwScnjzzySKDsi97fCy+8cFJWi/+zokwjnSQpq12B+t9//909/uabb7p9qWOm4c3x2+kf8vzbb7/ZJZdc4p5ftmxZGzlyZMh66pQqa16jKnLnzu0+J5dffrnLqo+//9QmtVWZHOXLl3ftX7p0aYI10ZO6P5Wh4f8u6ET5/vvvt927dyf4XvRaV111lWXPnt0NXX7++ecTPTYAACDtUb9PffCkZqMrCKp+jPo66s+2bt3a1bgO7keo/75+/fpA/09Zxep7qc/ao0ePwLoKyqoPmjFjxpD+iEYVKtCq+ZH8FNBTn0l9Jz1H/Zxly5aFtE39TL2e+jBt2rRxfXL1cxMrD6j+qtoc/FrxqZ9dp06dBAPIhQoVSlLf138OpG3pfEH9WI2oFO2f4P5r8L7ULX7QUdtUYo36perztWrVym33VG1IaHsJ1RJPrB96tuczn3/+uSvlEq5UiPr4GnmrPqjOc3Q/3HbUX9Xr6/9JkyYluF78muj6XN53333unECf4fz589stt9yS4DmIPpMPP/yw2zd6/+pnt2vXzrZv3x5Y53TPS/3t9p9/+s9Ng+k8VaNr1VfXejqnUHlTnUf89ddfblsvvfTSSc/79ddf3WMJZZjHp/McbTe4HJFofyuArmMbnwLszZs3D7RLn4unn346pJRmuO9/8PnjhAkT3OgAnV/oPEOjD+KfW+q7reOj/R2/rJJ+X8Qv9aPPjF5T32kgLSITHUBY+kOrrGl1oNQ5+/77723YsGHuD7E6COowqWSJOi3qrCgIKuoUqrPdokUL9we0S5cubl0FOtWRWLlypeuYBFOHW0FwdVrUcdcfcQ3FVJkYf2dG2/3mm29cZ0V/xONPYKqTCl3hVqB/z549LpioTq+C5sHB6Ouuu851ZDXMU5Oh6o//V1995e7Ln3/+6Wr/qcPw5JNPupMAtU0XE5R1ceONN572vlR7NJRU+84vqftI7VGbFexXbUJ1hnRx4FxM8qN9+sYbb7jjqfelzr3otfwZ9Hr9Bx54wB0TZfFoH27YsCHs5KQanjpt2jQ3zE91KE9FJ2vaDwpQ69gq00plbx577DHXOY3f+ZwxY4Y7AVBgWYYMGeL2jzrCCj6rw619reOvCzDxszP0mE6KVMfx9ttvd8dW718nXFpf9PlSORo93rlzZ9u7d6+988477vswd+5c18ZgqvGukyUdR3/tdx3f+JKyP3UCoRMq1Y5Xu1asWOGO0bx589wxz5w5c8h7UQdax03v55NPPnGd1WrVqrl6oAAAIH1QIE2BKmWjq3+aWDa6kkr69Onj+gadOnVypTlU2kR9s4ULF7rg9lNPPeX6p3///Xegr6WAqfrd6gcrs9hvyZIlbl31s9UXUYDO3yerUaNGINCqcwX1P8qVK+f6Myr7oNfV9hYsWHBS31FB0QoVKrj5lcKVA1H/R/0vBYAVHFTALrFSeuqD6j3p3ORM+r7+bG69pgL7OgdSAPF0z6HUN1VbdPFC5xjqS6rPp5GY6uOdqg2nI6F+6Nmczxw9etTtd7UvIf/++6/rt6vci6i/rM/Qq6++GnIB47vvvguMxlV/fceOHYFkklPR6yvYrP2n9RU81z5T8FcXCfzHRBdVdNFG53Pqx9esWdMFz3WuoM+BzitP97xU6yn7W+cUuojyyiuvuPeh/rqC+f59cPHFF7sAvrZZqVIld96ivrjOhfQd0P5XsFvnysH8SUa6wJQU2r+6KKZzXX0/9f60b3UenlBwXwk8+k7qQpj+17mQkoN0fjN06FC3TrjvfzAF3nU8dW6tiw0JXZzSvtR6Om/TBRvtZyVH6YKP9onOXYP5y77q94h+dwBpjg9AxBszZox6rb558+YFlrVv394tGzhwYMi6NWrU8NWqVStkWenSpX3NmzcPWfbee+/5MmTI4JsxY0bI8pEjR7rtzpw5M7BM97Xun3/+GbLu3Xff7StatKhv+/btIctbt27ty507t+/AgQPu/o8//ui2UblyZd/hw4cD67388stu+e+//+7uHzt2zFe2bFnX3l27doVsMy4uLvBzw4YNfdWqVfMdOnQo5PFLLrnEV6FChUT25H/vR23ftm2bb+vWrb758+f7mjRp4pYPHTr0tPfRSy+95O5re6c6hmvXrg1Z7t83+j/42Gof+Gm7Wqdfv34hz9U+it/mpFi8eLF73kMPPZSk9T///HO3/qBBg0KW33zzzb6oqCjf6tWrA8u0XnR0dMj7fPPNN93yIkWK+GJjYwPLe/bsedI+adCggVs2bNiwwDJ9Zi666CJfoUKFfEeOHAl8VoI/S/79UbhwYd9dd90VWKZta3sxMTHuWAfzP6Zjk9T9qW1kyZLFd+211/qOHz8eWP7qq6+6544ePfqk9zJu3LiQ96L9cNNNN4V9DQAAkDb76WvWrPFlypTJ9+CDD4b0B6pWrRq4v27dOl/GjBl9zzzzTMh21B/Wc4OXq/8e3Cf0U19F2/D3q1555RW33sUXX+x74okn3DL1U/LkyeN7+OGHA8/z96d27NgR0i9Uf7ddu3aBZepz6j3dfvvtJ722+qk5cuRwP//yyy+uj6V2BvfLw3nnnXfcdtWXuuqqq3x9+vRx/ezgPlVifV//6+uxJ5988qTHtA/0eHw6Brr5qb+mbbz44osnres/50isDfG3F9y24OOVWD/0bM5n1PfWdkeMGJHg4y+88IIvW7Zsgc/HypUr3fqTJk0KWU+fB53L7d69O7Dsu+++c+vG/9zF3xf+87xgs2bNOqnv27dvX7fss88+C7uvT/e8VJ+f4PMP/7lN8P7Q51nbDD5/jv+6/nOUZcuWBR7TuUaBAgUS/BwF8x9bfRf/+OMP97O//a+99povZ86cvv3794d8XxLbd/fcc48ve/bsIZ+HcN9///ljuXLlTtpWQueW+n5ddtll7jxJ5+3333+/+12T0L4R7d9777030fcPpFaUcwGQqPiTyehKv4annYrKbejKtK5A62q5/6aaeRK/LIZq6AXXVVcfRlkSqsOnn4O3ocwQXTlXRkswZTYEXyFXW8XfXmXeqPSMMtiVgRPMX5Nt586d7mq9MneUMeJ/TWVO6HVXrVrlsgxORVnLynTR0FFlzigTRZnSwUNjk7qP/G1V9k1C2c3JRZk+2p8arqeM56RSloMkVMYlIaqZruF+Dz74YMhyjWzQsdfog2Aq0xOcyaSREqIMkeDX9C+P/3nVsON77rkncF/vUfeVFa4yL6L2+D9L2uf6XCgrSccy/ufO/9r+Yblnsz+VwaUhoPqMKtvLT9nwmohHwy6DKWMkuPa+tq+smKR8RwEAQNqi7FZNWP7WW2/Zpk2bElxHGbTqu6gvG9y/1OhLZX3H74MnRH1oZVMrE9ifca5luulnUUa1snD9/W21RyUalIEaXGJC2dUq4aD+XnzhJq0UtVN9b/X79J6UYX0qykRWZq6ylZVNrAxZtU/v2/9ekipcFnZS6BxGGdAaeRhfctSBjt8PPdvzGa0nKrOTEGVSazSCv9+t/asM4+CSLv7PQ/v27V1pRD99FpIyl1bwiANlxqtNKsWi86Lgvrj2tWqFJ5RZ79/Xp3teqpECwaOH9RlWP9zfv9b3S9nrOk/VuUG419X+Vxmb4P2i0bZ67eD++6monIza4C//otIuymIPN0IieN/5j7++B8qQV4mfpNKxS2zkh5/OWZT9rlEBGomikcGauyGhfeP/XAWX2gHSEoLoAMLSH/34gUH90UtKQFWdMw0j1PODb6oLmNDkPhqiGkzDTtUx10lC/G0oWJ7QNuKXDvF3/Pzt9dcjV327cFQmRYFbDYGN/7qqo5fQ6yZEHRsN2VTQ01/3UR2X4MBoUvfRbbfd5oYDajiuasNrWKOGYyZ3QF0nK6p1qSC2XldDgFUiRXW9E6NOpr/TlhSqi6chyfGD7urs+h9P7Dj7O+aqbZjQ8vifV71W/Mmh/Ps8uM6ihqiqw6rvgYZu6tjoeOoCTnzxP79nuj/971X1H4MpOK4T5/j7QsNb45+MJfU7CgAA0h7VKNaF/XC10dW/VF9Wgc34fUyVvEhKP1YlMRSg8wfM/UF09V00ObxKh/gf89cyD9eH8ffpFDRTmYek9J+0fQVpVe5Bfd7TmSRTQWIFKnUeoZI0Kv+ntqm8SlInF1XCRVJKjoSjcw7tB20nJcTfj+fqfCahEjv6DCkxSecmeh3/TRcuVB7Tn0zj/zzocxhfQp+R+FQKSCVI/PMl6aKE2q/jGtwX175O7NzuTM5LEypHGdy/1nmq3uepXlcBfwXag+uZK6CuEjv+AH5Sae4AXQzQvtYFId0PR+9VFxV0LqTzMr1Xf9A+ofOYcJJyfuOniw4651UZHgX99dlL7HPFpKJIq6iJDiAsZeOeKQV4VZf5xRdfTPDx+AHP+Fe5/QFi/cHXVfCExK8bGK694Woshmu3qPabOuEJURbEqajjrSwGUf1tdfxU112T7/jrHiZ1H2nf6CRAWRIK4irD5qOPPnKdL9XD0/sO1xEJnkDmTCgjWp0/ZVvohEQdItU0VHZLuDp22j86afBP9nmuhTvO5+L4+6nuoDKpVDdSNf40okDb13uPPzmsJCVL40z3Z2LO5XsGAACpny6qq3+sRBPVuo5P/Uv1C3XRPqF+QriJIoNp/kuHTQ8AAJFJSURBVBWN6FP/U0E7XfBXEF1JAMoK1nxDCqIrs/dUI/ESE67/pKCp+s8ahal+rwLgp0sXAfzZ8+qHa74Z7ZNw5xXxXz848cUvsf722Zw3JfQ6CfXlwvXrw51Hnen5jL/ud0JJGeoji+p8x6/17c8M9yc8nQ1l8avWu/rOmlxTAWHtFyUTnW4i0emel57L/rXmMVDwW4FvtUG12lVrPaHP16nqoiu7W6NTdXyuvfbaBNfTRQaN8FbwXPXIFdxWQpCy9zVv0unsu6Se3/jpvNRfL14jBzT6JVwb9Z0E0iKC6ACShf5gL1682A3BPJMrzeqQKzNZnUV/MPpctEn8E/qEOzHxnzycq9cVlQvRpC3KHlJmgPbJ6ewjdbS0nm7qAGoCJk0Io8C62unPulenJFj8zOWEnOq11U6VVtFNmRyaVFMTzPo70QmdtCjAr8Dwxo0bT+qYJjQJlMqYKHM9OBvdP9xQj59L6tgpEyo4G12TCom/TIwmBdJnQcOHg/ePP3vnbCS2P/3vVZOJ+j+LohIvKkV0Lj+TAAAgbVJ/Uv0GjXBLqJ+hYJ+ySP2ZtmfSB1TwWdtXH00BLwXMtb6yTBVA1y04uB3ch4lPfTptI/5IwMTapYxdjezU5KMKfivT+Uz5y0r4S+CcaRas+tvx+9r+/nZwv03HQBcadMEheEL4YIm1Qa+TUGm+pPTrz8X5jDKxFUBV3zOYPlfKqlZSkALB8al8jo6bguj+z4P6uvEl9BmJT31xXfBQHzl4hEL8/a99rXO75DwvTeg8VUHqU72uNGnSxK2v/aILUxqZrJJMZ3JMlP2vspAqNRRulIMeVwBb5zAaOeIX/1jKucwGHzlypBuFrUmNlSCkc19dBItPZYR0XuMfcQykNZRzAZAsVANOfyTffvvtBIfnxR/OGZ8yAFTfT9kMCXVQNIzudGloqk4ohg8fflIHzJ9ZoIxjddLffPPNBGtNnsnrijo6CppqCKS/Q5HUfaS6hvEp8CqaKT34AoEyhvx0AUJZSqfir6cXf5+ok6fOajC9jgLd/tcNR8Fm7VN1ElUfLz7VHle5FFGmkdr66quvhqyjiw7q3Km23rmkIdA6vn7qyOm+Orj+GeP9GSjBGSc6GZo1a9YZv25S9qdOdDRk+ZVXXgl5bdXY1/BLDW0GAACRTf0HZaOr/xK/zJ5GPKofo8zr+Jmzuu+vdy0Kaocr76Aguvon6jerZIs/4Kbl7733nktK8NdDl6JFi7r+qfp3wX1K9eOVoar+3ulQf0iBwDp16rhRfHPnzj3lczQHUUL89dj9ZUTC9X2Tst9nz57t+o5+KmGipJFgOodR+Zr4fVvxH5PE2qDX0YWH4PMOBYFnzpyZpHae7fmMgu+68KDSPcH0+ip9qCD5zTfffNJNJSiV4KPPRvDnIfgzpkDr0qVLT/ke9BmO//kdMWLESdn42tfaN5MmTTppG/7nn+15aULJTRqt+uWXX560j4Jf138OqCxylSVS3XBlo8cfTZ1UgwYNcudYCdXa90voHEafV9Upjy+x7//pUIBeI3d1LHr16mUvvPCCy7gfN27cSev655+65JJLzvp1AS+QiQ4gWSh4qs6CJgxSZ0pXztXpUYdQy1XKItxkI36q9ajn6qq9hq5pEhoFlDUcTVkxCQWXT9XheeONN1xHXJ06dQDVwVObVDtObZLXXnvNnSyok6PXVTbHli1bXAD177//dh21M6HyIKrtp6wedbySuo80FE/BcQVQldWhun3qCKlkjL8OpbKC6tWr54b5ab9oQqcJEya4gPGpKNNE+1YlYpSxpOeqxp+eq4wNdTz1uDqB6qBqX2goZWLUMdJ+VJaKMpf0XlUTUdnmypBQx0odQdHxUEaLMuvVMdfkQDrZ0sUGDeEMntjnXFBNdB0DvZber963Jj7SBQd/tpAyq3TiplED2u/qHCrDQvshoYsCSaFs91PtTwXydQx14qvMlRYtWrhsHR1vnUSeziREAAAg/VK/ScFs9RPUD/RTv0l9LPUn1NdRn1MX7NWXUb+jS5cursyHKHlA/SBNfK9+hkq9qF8mKqGhvoq2r+f4KbtV/WkJDqLL0KFDXfKDnnv33Xe7AKUCnyrFoXrJp0t9VAWpNcJR2/35558TrUOtzHUlzOg9aD8oOKpzBgU7/cH4xPq+p6pxrfmJlCGtPpr6cyrxpxEB8fuqKuGhAKL2q4L/2k/+tqhvrHYm1gZNkKqRpyrFov2ovr/6oTrO/prjp3K25zNqoz5jej3/fEfKplaQNlxSh/qteo7OQfTelZGsddUOvSedo+jzoPdxqv60+uL6fOuzo/2kdmv/+UvN+Cl4q2OiEQt6DX2m9To619A+03nFuTgvjU+jgnW+otIp+n4os1oXLFS6RZPaqh568OdBCTJ67YRGjySVXku3U52DaSSDsvgffPBBd/FL+zGhUjSJff+TStvVftfn2f97QVnoSoR76KGHXIKQzr2CL6Ioq/5MylgCqYIPQMQbM2aM/qr65s2bF1jWvn17X44cOU5at1+/fm7dYKVLl/Y1b978pHWPHDnie+6553xVq1b1RUdH+/LmzeurVauWb8CAAb49e/YE1tP27r///gTbtmXLFvdYyZIlfZkzZ/YVKVLE17BhQ99bb70VWOfHH39025g4cWLIc9euXeuW6/0F++WXX3zXXHONL1euXO49Xnjhhb4RI0aErLNmzRpfu3bt3OvpdYsXL+677rrrfJ988kkie/LU76d///7ucbU5qfto2rRpvhtuuMFXrFgxX5YsWdz/t99+u2/lypUntblRo0ZuO4ULF/b16tXLN3Xq1JDX8x9bHbNgv/76q3tdbV/r6zhv377dvY9KlSq5/ZQ7d25f3bp1fR9//LEvqX777TdfmzZtXJu1H/X+dPzGjh3rO378eGC9vXv3+h5++OHAehUqVPANHTrUFxcXd8p96z/OWj9YQp+LBg0auH09f/58X/369X1Zs2Z1++LVV18Nea5ed/Dgwe4x7c8aNWr4vvrqq5P2XbjXTujzdzr7U+3RetoXOpb33nuvb9euXSHr+N9LfAkdXwAAkH766cF/8/VYQv2BTz/91HfZZZe5Podu6leoH7JixYrAOvv27XP9tDx58rjtxO8/1KlTxy2fM2dOYNnff//tlqlvnpDvv//ed+mll/qyZcvmi4mJ8V1//fW+pUuXJng+sW3btgTfU/xzEPWhqlSp4vrlq1atCruvPvzwQ1/r1q195cuXd6+vfp6e99RTT/liY2NP2fcN9/rBhg0b5s4L1D/U+1SfUn0y3YIdOHDAvW7ZsmUD5zA333yz66+fqg3y/vvv+8qVK+ceu+iii3zffvvtafVDz/Z8RudgmTJl8r333nuBc5b8+fP7Lr/88kSfp/erfnPw57By5cpuf+lYfPbZZwn2VeO/f/V7O3bs6CtQoIAvZ86cvsaNG/uWL1/unqfnB9uxY4evW7du7v1pf5UoUcKto8/NuTovTeh1169f7/ZvwYIF3TZ1vPTcw4cPn/R8vW6GDBnc9ycpTnVs/RL6vM6cOdNXr1499x3QudXjjz/uPj/xzwnDff/DnVsHP+bfzssvv+zu6zgH27Bhg/v+N2vWLLBM535Fixb19e7dO0n7AEiNovSP14F8AABSgoa2anhtUmoYAgAAAJFKWfAaSan698lJWeEa9aCa6qr3nx4p81qjDcKVHIoEn3/+ubVp08aN4NBocCAtoiY6AAAAAAAAAlR/e968eUmuxX6m/HXbNflseqS66SodqbIukUylbLp160YAHWkaNdEBAAAAAAAQoNrVhw4dStbXUD1z1Y9X7W7NkZSeaOSrJtIcNmyYCxxr4tVIprr2QFpHJjoAAAAAAABS1OOPP25//vmnvfPOO1axYkVLT3SBoGPHjnb06FH78MMPLWvWrF43CcBZ8rQm+vTp090M3ro6pyE8mi1cs4cn5qeffnKzB+sXbcmSJV3NrA4dOqRYmwEAAAAAAAAAkcPTTPT9+/db9erV7bXXXkvS+mvXrrXmzZu7YT6qKdW9e3fr1KmTffvtt8neVgAAAAAAAABA5PE0Ez2YamCdKhP9iSeesK+//trVlvJr3bq17d6926ZMmZJCLQUAAAAAAAAARIoMaW0igkaNGoUsa9y4MRMUAAAAAAAAAACSRSZLQzZv3myFCxcOWab7sbGxdvDgQcuWLdtJzzl8+LC7+cXFxdnOnTstf/78LvsdAAAA6Z8GX+7du9eKFStmGTKkqTwSAAAAAB5LU0H0MzFkyBAbMGCA180AAABAKrBx40YrUaKE181AKnbomNctgJfy1unmdRMAAEAKO7jw1fQVRC9SpIht2bIlZJnux8TEJJiFLj179rQePXoE7u/Zs8dKlSrlTqD0PJy5fWPGWHqTs2NHr5sAAACSgUYulixZ0nLlyuV1UwAAAACkMWkqiF6/fn373//+F7Js6tSpbnk40dHR7hafAugE0c9OhjAXLtKynHwmAABI1yjnBwAAAOB0eVoQct++fbZo0SJ3k7Vr17qfN2zYEMgib9euXWD9rl272l9//WWPP/64LV++3F5//XX7+OOP7eGHH/bsPQAAAAAAAAAA0i9Pg+jz58+3GjVquJuo7Ip+7tu3r7u/adOmQEBdypYta19//bXLPq9evboNGzbMRo0aZY0bN/bsPQAAAAAAAAAA0i9Py7lceeWV5vP5wj7+7rvvJvichQsXJnPLAAAAAAAAAABIYzXRAcBPF+COHTtmx48f97opiAAZM2a0TJkyUUsZAAAAAIAIRBAdQJpz5MgRV+7pwIEDXjcFESR79uxWtGhRy5Ili9dNAQAAAAAAKYggOoA0JS4uzk1CrMzgYsWKuYAm2cFI7lEPunCzbds299mrUKGCZcjg6ZQiAAAAAAAgBRFEB5CmKJipQHrJkiVdZjCQErJly2aZM2e29evXu89g1qxZvW4SAAAAAABIIaTSAUiTyARGSuMzBwAAAABAZCIiAAAAAAAAAABAGATRASCFXHnllda9e3evm5GqlSlTxoYPH+51MwAAAAAAAAIIogMAzjlN9vr555973QwAAAAAAICzxsSiANKNd5fvTtHX61ApT4q9ls/ns+PHj1umTPzaBgAAAAAASElkogOAB9577z2rXbu25cqVy4oUKWJt2rSxrVu3Bh7/6aefXDb3N998Y7Vq1bLo6Gj75ZdfbO/evda2bVvLkSOHFS1a1F566aWTysQcPnzYHn30UStevLhbr27dum57SfHuu+9anjx5XBZ5hQoVLGvWrNa4cWPbuHFjyHpffPGF1axZ0z1erlw5GzBggB07dixQkkVuvPFG9x7899esWWM33HCDFS5c2HLmzGl16tSx77//PtELB/3797dSpUq591+sWDF78MEHT3NPAwAAAAAAnB2C6ADggaNHj9rTTz9tixcvdgHrdevWWYcOHU5a78knn7Rnn33Wli1bZhdeeKH16NHDZs6caZMnT7apU6fajBkzbMGCBSHP6datm82aNcsmTJhgS5YssVtuucWaNGliq1atSlLbDhw4YM8884yNGzfOvdbu3butdevWgcf1mu3atbOHHnrIli5dam+++aYLvus5Mm/ePPf/mDFjbNOmTYH7+/bts2bNmtm0adNs4cKFrk3XX3+9bdiwIcF2fPrpp+4igbavtms/VatW7TT2MgAAAAAAwNmjLgAAeOCuu+4K/KxM7ldeecVlZivQrCxtv4EDB9o111zjflYW+tixY238+PHWsGHDQKBaGdp+Ckhrmf73L1dW+pQpU9zywYMHJynA/+qrr7oMdtFrVq5c2ebOnWsXX3yxyzpXcL99+/aB9uuCwOOPP279+vWzggULuuXKaFeWvV/16tXdzU/PmTRpkrsgoMB/fHoPen6jRo0sc+bMLiNdrw8AAAAAAJCSyEQHAA/89ttvLgtbgWGVdGnQoIFbHj8rWyVf/P766y8X4A4OJOfOndsqVqwYuP/777+72unnn3++C8b7bz///LMrp5IUqruugL5fpUqVXEBc2fCi7HkF94O337lzZ5d1riz2cHSBQAF9BeS1PT1P2wyXia4M+oMHD7ogvbavgLu/ZAwAAAAAAEBKIRMdAFLY/v37XZ1x3T744AOXua1Asu4fOXIkZF3VND8dClRnzJjRBen1f7DgDPezoddQNnqrVq1Oekw10sNRAF0laF544QU777zzLFu2bHbzzTef9J79SpYsaStWrHB10/W8++67z4YOHeouCCgzHQAAAAAAICUQRAeAFLZ8+XLbsWOHq3WuQLHMnz//lM9TRraCx6oxrgx22bNnj61cudKuuOIKd79GjRouE12TlF5++eVn1D5le6s9/ox3BbJVF10Z5KIJRbVMgfBw1E61I5jqq6vuuyYc9QfjVQs+MQq0K2Nft/vvv99lxSvbXm0AAAAAAABICQTRASCFKQCeJUsWGzFihHXt2tX++OMPVx/8VFT2RXXIH3vsMcuXL58VKlTI1SDPkCGDRUVFuXVUxqVt27Zu4s9hw4a5oPq2bdvcZJ6amLR58+anfB0FwB944AFXp12lXVSvvF69eoGget++fe26665z70OZ5Hp9lXjR+xg0aJBbp0yZMu41L730UouOjra8efNahQoV7LPPPnMBcbW3T58+FhcXF7YdmqxUgXjVZs+ePbu9//77LqheunTp09jbOJV3l++29KZDpTxeNwEAAAAAkI5QEx0AUpjKtyhAPHHiRKtSpYrLSFeJk6R48cUXrX79+i6IrQk3FaRWhnhwGRVNIKog+iOPPOLqpbds2TIke/1UFLB+4oknrE2bNm77KgPz0UcfBR5X2ZmvvvrKvvvuO1c7XQH2l156KSS4rQC+SrAo016BfH/bFUy/5JJLXCBd20kso1x1099++23XBl0AUFmXL7/80vLnz5+k9wEAAAAAAHAuRPl8Pp9FkNjYWDcRn0ogxMTEeN2cNG3fW29ZepOzSxevm4BTOHTokK1du9bKli2baP3tSKqvXrx4cRe0vvvuu896ewrud+/e3ZVvQWR89shER6SgD4ikOsQc1hEtb51uXjcBAACksIMLXz3lOpRzAYA0ZOHCha6mukqrKBA0cOBAt/yGG27wumkAAAAAAADpEkF0AEhjVPpFE3uqrnqtWrVsxowZVqBAgSQ9t2nTpm79hPTq1cuKFSt2jlsLAAAAAACQthFEB4A0RPXFf/vttzN+/qhRo+zgwYMJPqbJSnXr0KHDWbQQAAAAAAAgfSGIDgARRPXTAQAAAAAAkHQZTmNdAAAAAAAAAAAiCkF0AAAAAAAAAADCIIgOAAAAAAAAAEAYBNEBAAAAAAAAAAiDIDoAAAAAAAAAAGEQRAeAdKx///520UUXBe536NDBWrZsaandTz/9ZFFRUbZ7926vmwIAAAAAACIcQXQAQLJ59913LU+ePF43AwAAAAAA4IxlOvOnAkDqsu+tt1L09XJ26ZKirwcAAAAAAICURyY6AKSgTz75xKpVq2bZsmWz/PnzW6NGjWz//v2BMiuDBw+2woULu+ztgQMH2rFjx+yxxx6zfPnyWYkSJWzMmDEh23viiSfs/PPPt+zZs1u5cuWsT58+dvTo0XPS1iuvvNK6devmbrlz57YCBQq47ft8vsA6hw8ftkcffdSKFy9uOXLksLp167pSLKL/O3bsaHv27HGlWXRTeRl57733rHbt2pYrVy4rUqSItWnTxrZu3Rq2LevXr7frr7/e8ubN616natWq9r///e+cvE8AAAAAAIDEkIkOAClk06ZNdvvtt9vzzz9vN954o+3du9dmzJgRCEr/8MMPLlA+ffp0mzlzpt19993266+/2hVXXGFz5syxjz76yO655x675ppr3HqiILRKphQrVsx+//1369y5s1v2+OOPn5M2jx071rVj7ty5Nn/+fOvSpYuVKlXKvY4owL506VKbMGGCa8OkSZOsSZMmri2XXHKJDR8+3Pr27WsrVqxw6+fMmdP9r0D/008/bRUrVnTB8x49ergLCeEC4/fff78dOXLE7RsF0fWa/m0BAAAAAAAkJ4LoAJCCQXRllrdq1cpKly7tlikr3U/Z5q+88oplyJDBBZcVbD9w4ID16tXLPd6zZ0979tln7ZdffrHWrVu7Zb179w48v0yZMi4rXAHtcxVEL1mypL300ksui1xtUnBc9xVE37Bhg8uM1/8KoItef8qUKW65suqVwa7nKts82F133RX4WRn0et916tSxffv2JRgc12vcdNNNgf2l5wAAAAAAAKQEyrkAQAqpXr26NWzY0AWCb7nlFnv77bdt165dgcdVokQBdD+VdQkOsmfMmNGVgAkue6Ls9EsvvdQFqRV8VlBdAedzpV69ei4I7le/fn1btWqVHT9+3AXU9b/Kyei1/beff/7Z1qxZk+h2f/vtN1eeRVntypxv0KCBWx6u7Q8++KANGjTIvdd+/frZkiVLztl7BAAAAAAASAxBdABIIQqCT5061b755hurUqWKjRgxwmV3r1271j2eOXPmkPUVvE5oWVxcnPt51qxZ1rZtW2vWrJl99dVXtnDhQnvqqadc2ZOUoKxxvScFxBctWhS4LVu2zF5++eWwz1MN+MaNG1tMTIx98MEHNm/ePFcGRsK1vVOnTvbXX3/ZnXfe6YL3qqeu/QcAAAAAAJDcCKIDQApSEFzZ1AMGDHBB7yxZsgQCyKdL9dJVFkaBcwWVK1So4CbgPJdUiz3Y7Nmz3esoeF6jRg2Xia7M+PPOOy/k5i/fovendYItX77cduzY4UrTXH755VapUqVEJxUNLi3TtWtX++yzz+yRRx5xmfwAgPT/d/Pzzz/3uhkAAACIcATRASCFKCCtOuGaoFNlSxQM3rZtm1WuXPmMtqdgtrajGugqn6K64mcakA9H29ekn5oY9MMPP3TZ3w899JB7TGVclAnfrl07916UUa8JSIcMGWJff/11oE67MtanTZtm27dvdzXeVcJFwXVtS9nlkydPdpOMJqZ79+727bffutdYsGCB/fjjj2e83wAASaO/Uffee6/7vR0dHe0ukGokkSa/Tsn5RJo2bZpirxfJJoz/wJpec7XVqVHN2ra+xX6ndFrEuLRmeftk+D3213fP2MGFr9r1V17odZOQgjj+kY3jH9k4/qeHIDoApBCVL5k+fborv6IAtOqXDxs27IyDAy1atLCHH37YunXrZhdddJHLTO/Tp885bbMC5AcPHrSLL77Y7r//fhdA79KlS+BxTSCqdZQZrtI0LVu2dOVZFHCRSy65xGWP33bbbVawYEE3War+f/fdd23ixImurI0y0l944YVE26Fsdr2+AudNmjRx++/1118/p+8VABBKEzpr1NTYsWNt5cqV7qLnlVde6UYTpRQF7hXAR/Ka8s3/7IXnh9g9991vEyZOsooVK9m999ydosca3smRLdp+X/mPdR/ykddNgQc4/pGN4x/ZOP6nJ8rn8/ksgsTGxlru3Lltz549LqCFM7fvrbcsvckZFBxE6nTo0CGXjVy2bFnLmjWr181J1xQoUXB++PDhXjclVUivn713l++29KZDpTxeNwGpEH3A07N7927Lmzev/fTTT4HJnxMqtaILmgqua72iRYu6i6U333xzYJ2NGze6C63fffedmzxbZbw0b4ZGKvmNHj3aXVRevXq15cuXzwXvX3311cBraJSVLtImZXtqx+OPP25//vmnm1dEk3aPHz/elT9LqkPHLOIo87zqBdWsV+++7r7mX7m2YQO7vc2ddnfnyOof563TzSKZMhFvffgt+/InRiJEIo5/ZOP4R7ZIP/4HF57oeyaGTHQAAAAAIXLmzOluqkd++PDhsOtpBJSC3osXL3Ylvlq3bu0mmJajR4+68i+5cuWyGTNmuDIw2qZGFPknkn7jjTfcSCONctLE0QrIa26NhJxqe8eOHXPBdgX9lyxZ4ibg1nYViEd4R48csWVL/7R69S8JLNMFinr1LrElixd62jYAAIDUIpPXDQAApDzVOlcplXCWLl2aou0BAKQumTJlcqW3OnfubCNHjrSaNWu64LSC5Bde+F+9zFtuucU6derkftb8FlOnTnVzXihD/aOPPnIZzaNGjQoEslUGLE+ePC5j/Nprr7VBgwa5zHL/fBtSp06dBNt0qu1pkm2NNLjuuuusfPny7nHmzzi1Xbt3ubJp+fPnD1mu+2vX/uVZuwAAAFITgugAEIGKFStmixYtSvRxBSQAAJFLGebNmzd3Wd+zZ8+2b775xpVrURC7Q4cObp369euHPEf3/X9flJ2uEi3KHI9fHksTYm/dutX+/fdfa9iwYZLac6rtKSivdilb/ZprrrFGjRrZrbfe6srMhKMs+/iZ9r6M0dRhBwAAQAiC6AAQoRmG4YbLAwDgpzkgFJDWTaVblHXer1+/QBA9Mfv27bNatWrZBx98cNJjmmRaJUNOx6m2589Mf/DBB23KlCkuc12TeCs7vl69egluc8iQITZgwICQZU/16We9+/a3SJE3T17LmDHjSZOI6n6BAgU8axcAAEBqQk10AAAAAEmiUmD79+8P3FeGejDd95dQUQmYVatWWaFChdyF2+CbJnlVRrkmBJ02bVqSXvtU2/OrUaOG9ezZ03799Ve74IIL3MSi4Wg9lYAJvj32RE+LJJmzZLHKVaranNmzAstUNmfOnFl2YfUanrYNAAAgtSCIDgAAAOCkLOSrr77a3n//fTdJ59q1a23ixImunMsNN9wQWE/LRo8ebStXrnQZ6nPnzrVu3bq5xzTRqDKZtb5KwmgbKhWmTPG///7brdO/f38bNmyYvfLKKy5AvmDBAldTPSGn2p7uKyiuCUXXr19v3333ndtmYnXRVbYlJiYm5BaJpVzubN/RPvvkY5v8+ST7a80aGzSwvx08eNBa3tjK66YhBeTIlsUuPL+4u0mZ4vndzyWL5PW6aUgBHP/IxvGPbBz/00M5FwAAAAAhcubMaXXr1rWXXnrJ1Rs/evSolSxZ0k002qtXr8B6KoUyYcIEu++++1zt8Q8//DAwcXX27Nlt+vTp9sQTT1irVq1s7969Vrx4cVcDXcFqad++vatprtd59NFHXZD85ptvTrBNp9qegr7Lly+3sWPHuosAas/9999v99xzTwrttbSrSdNmtmvnTnv91Vds+/ZtVrFSZXv9zVGWn3IuEaFmldL23aj/Jvd9/tGb3P/vTZ5tXfq972HLkBI4/pGN4x/ZOP6nJ8rn8/ksgsTGxrrhnhqq6e+848zse+stS29ydunidRNwCjrRVqZZ2bJlXZ1WIKWk18/eu8t3W3rToVIer5uAVIg+4LkXFRVlkyZNspYtW1p6cuiY1y2Al/LWOTGSAgAARI6DC1895TqUcwEAAAAAAAAAIAyC6AAAAAAAAAAAhEEQHQDSmSuvvNK6d+8euF+mTBkbPny4RboOHTqku5IDAOAlVYXk9yoAAAAiAROLAkg3Poz9MEVf7/aY2y0tmDdvnuXIkcPrZgAAAAAAAKRJBNEBIJ0rWLCg100AAAAAAABIsyjnAgApWGblgQcecKVW8ubNa4ULF7a3337b9u/fbx07drRcuXLZeeedZ998803gOX/88Yc1bdrUcubM6da/8847bfv27YHH9dx27dq5x4sWLWrDhg076XWDy7msW7fOoqKibNGiRYHHd+/e7Zb99NNP7r7+1/1vv/3WatSoYdmyZbOrr77atm7d6tpWuXJli4mJsTZt2tiBAweS9N4/+eQTq1atmttW/vz5rVGjRq7tfqNGjXLbzZo1q1WqVMlef/31wGP+Nk+YMMEuueQSt84FF1xgP//8c2Cd48eP2913321ly5Z1r1GxYkV7+eWXz6pNAAAAAAAAQhAdAFLQ2LFjrUCBAjZ37lwXUL/33nvtlltuccHhBQsW2LXXXusC5QpOK7it4LUC2fPnz7cpU6bYli1b7NZbbw1s77HHHnPB5C+++MK+++47FwDXds6F/v3726uvvmq//vqrbdy40b2ugvHjx4+3r7/+2r3eiBEjTrmdTZs22e2332533XWXLVu2zLWxVatWrpaufPDBB9a3b1975pln3OODBw+2Pn36uH0VTO/1kUcesYULF1r9+vXt+uuvtx07drjH4uLirESJEjZx4kRbunSp216vXr3s448/PqM2AQAAAAAA+FHOBQBSUPXq1a13797u5549e9qzzz7rguqdO3d2yxT8feONN2zJkiX2/fffuwC6gsp+o0ePtpIlS9rKlSutWLFi9s4779j7779vDRs2dI8r8Kxg8rkwaNAgu/TSS93PyvJWe9esWWPlypVzy26++Wb78ccf7Yknnkh0OwpYHzt2zAWpS5cu7ZYpA9yvX79+LoNej4uyyRUIf/PNN619+/aB9bp162Y33XST+1n7SBcV9P4ff/xxy5w5sw0YMCCwrrYxa9YsF0QPvuiQ1DYBAAAAAAD4EUQHgBR04YUXBn7OmDGjKyMSHLxVyRZR6ZTFixe7ILVKtcSnYPbBgwftyJEjVrdu3cDyfPnyuVIm57qtalf27NkDAXT/MmXUJ+XCgYL8ep+NGzd22fYKwKukjcqn6L0oSO+/kCAKcOfOnTtkO8o+98uUKZPVrl3bZZH7vfbaa+4iw4YNGwL75qKLLjrtNgEAAAAAAASjnAsApCBlTAdTre/gZbrvL0+yb98+V7JE9cuDb6tWrbIrrrjijF4/Q4YTv/aDy5YcPXr0lG2N307/MrXzVHSxYOrUqa6eepUqVVwJGAX6165d696jqDZ88HtULfjZs2cn+X2pXvqjjz7qgvEqM6NtqM68Aumn2yYAAAAAAIBgBNEBIJWqWbOm/fnnn25iUE04GnzLkSOHlS9f3gW258yZE3jOrl27XKmXcAoWLBgoZ+IXPMloclHAXaVhVHJFNc2zZMlikyZNctnsKkvz119/nfQeVZIlWHBQXZnqv/32m5uMVGbOnOnqyt93332uBI6erwz3M2kTAAAAAABAMMq5AEAqdf/997sMbU2AqbrfKtWyevVql3U9atQoV+ZFmdeacFNlYQoVKmRPPfVUINs8IdmyZbN69eq5WuwKUqtsjL9Ge3JRkH/atGmuZIraqPvbtm0LBMAVxH7wwQdd+ZYmTZrY4cOH3USquiDQo0ePkHItFSpUcM976aWX3OOaGFS0fNy4cfbtt9+69/Xee+/ZvHnzTgrEJ7VNAAAAAAAAfgTRAaQbt8fcbumJMrSVYa2JOxXsVXBZk2Aq0OwPlA8dOjRQ9iVXrlz2yCOP2J49exLdruqGK/heq1YtV8Lk+eefd9tPLjExMTZ9+nQbPny4xcbGuvegiUSbNm3qHu/UqZOrt673ogsCyrJXrfLu3buHbEeBf92UOa9M88mTJ7tJWeWee+5x2eS33XabyzDXhQdlpatcy5m0CQAAAAAAwC/KF1wYNwIoWKJsRwWZFETBmdv31luW3uTs0sXrJuAUDh065OpWK8M4a9asXjcHKWDdunXueCtIHm6i0JSQXj977y7fbelNh0p5vG4CUiH6gEiqQ8e8bgG8lLdON6+bAAAAUtjBha+ech1qogMAAAAAAAAAEAZBdADAWdmwYYOrzx7upscBAAAAAADSKmqiAwDOuna76pQn9vjZKFOmjEVY5TEAAAAAAJCKEEQHAJyVTJkyuYk+AQAAAAAA0iPKuQBIk8hMRkrjMwcAAAAAQGQiiA4gTcmcObP7/8CBA143BRHG/5nzfwYBAAAAAEBkoJwLgDQlY8aMlidPHtu6dau7nz17douKivK6WUjnGegKoOszp8+ePoMAAAAAACByEEQHkOYUKVLE/e8PpAMpQQF0/2cPAAAAAABEDoLoANIcZZ4XLVrUChUqZEePHvW6OYgAKuFCBjoAAAAAAJGJIDqANEtBTQKbAAAAAAAASE5MLAoAAAAAAAAAQBgE0QEAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDILoAAAAAAAAAACEQRAdAAAAAAAAAIAwCKIDAAAAAAAAABAGQXQAAAAAAAAAAMIgiA4AAAAAAAAAQBgE0QEAAAAAAAAACIMgOgAAAAAAAAAAYRBEBwAAAAAAAAAgDILoAAAAAAAAAACEQRAdAAAAAAAAAIAwCKIDAAAAAAAAAJBag+ivvfaalSlTxrJmzWp169a1uXPnJrr+8OHDrWLFipYtWzYrWbKkPfzww3bo0KEUay8AAAAAAAAAIHJ4GkT/6KOPrEePHtavXz9bsGCBVa9e3Ro3bmxbt25NcP3x48fbk08+6dZftmyZvfPOO24bvXr1SvG2AwAAAAAAAADSP0+D6C+++KJ17tzZOnbsaFWqVLGRI0da9uzZbfTo0Qmu/+uvv9qll15qbdq0cdnr1157rd1+++2nzF4HAAAAAAAAACBNBdGPHDliv/32mzVq1Oi/xmTI4O7PmjUrwedccskl7jn+oPlff/1l//vf/6xZs2ZhX+fw4cMWGxsbcgMAAAAAAAAAICkymUe2b99ux48ft8KFC4cs1/3ly5cn+BxloOt5l112mfl8Pjt27Jh17do10XIuQ4YMsQEDBpzz9gMAAAAA0pdd8171ugkAACAV8nxi0dPx008/2eDBg+311193NdQ/++wz+/rrr+3pp58O+5yePXvanj17AreNGzemaJsBAAAAAAAAAGmXZ5noBQoUsIwZM9qWLVtClut+kSJFEnxOnz597M4777ROnTq5+9WqVbP9+/dbly5d7KmnnnLlYOKLjo52NwAAAAAAAAAA0kwmepYsWaxWrVo2bdq0wLK4uDh3v379+gk+58CBAycFyhWIF5V3AQAAAAAAAAAgXWSiS48ePax9+/ZWu3Ztu/jii2348OEus7xjx47u8Xbt2lnx4sVdXXO5/vrr7cUXX7QaNWpY3bp1bfXq1S47Xcv9wXQAAAAAAAAAANJFEP22226zbdu2Wd++fW3z5s120UUX2ZQpUwKTjW7YsCEk87x3794WFRXl/v/nn3+sYMGCLoD+zDPPePguAAAAAAAAAADpVZQvwuqgxMbGWu7cud0kozExMV43J03b99Zblt7k7NLF6yYAQIp6d/luS286VMrjdROQCtEHRFIdOuZ1CwAAAJCSsmZKxTXRAQAAAAAAAABI7QiiAwAAAAAAAAAQBkF0AAAAAAAAAADCIIgOAAAAAAAAAEAYBNEBAAAAAAAAAAiDIDoAAAAAAAAAAGH8X3v3ASZVdTYO/Ig0sYDYISgqKjbsBeztwxIVNYpEI6KxoyaWKIoiFmyo2I29xG6wRcWosYtiLGBU7C1WEBE7Ivt/3vP9Z7/dZQcWXHaWnd/veQZ27ty5c2bO3Jlz33nve5oVuwEAAAAAAMqdIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAUMbmmmuudNddd6U5XVN5HgAAND6C6AAAUALjxo1LBx10UFpyySVTq1at0uKLL5569uyZnn766dRYNYZA9UknnZRWX331krahKbrlphvTNlttntZZY9W0x+67plfGjCl1k2hA+r+86f/ypv/Lm/6vO0F0AAAogV122SW99NJL6brrrktvvvlmuueee9Kmm26avvzyy1I3jTIz4oH709CzTk8HHHxIuuX2O9MKK3RNBx2wr/dimdD/5U3/lzf9X970/8wRRAcAgAY2ceLE9OSTT6YzzzwzbbbZZmmppZZK6667bhowYEDaYYcdKtf54x//mBZZZJG0wAILpM033zyNHj16mozsv/71r6lTp06pTZs2abfddktff/115TrPP/982mqrrdLCCy+c2rZtmzbZZJP04osvzrbndeWVV6YVV1wxtW7dOnXt2jVdcskllbe9//77OZN9+PDh+TlHe1dbbbU0cuTIatu44oorKp/PTjvtlM4999zUrl27fNu1116bBg8enF+H2FZcYlnB+PHj833ivsstt1z+YYIZu+G6a9LOv9st9dppl7Rsly5p4KDBuQ/vGv73UjeNBqD/y5v+L2/6v7zp/5kjiA4AAA1svvnmy5cojfLTTz/Vus6uu+6avvjii/TAAw+kF154Ia255pppiy22SBMmTKhc5+2330633XZbuvfee9OIESNyZvvBBx9cefs333yT+vbtm5566qn07LPP5sDytttum5fXtxtvvDGdeOKJ6bTTTkuvv/56GjJkSDrhhBNypn1Vxx9/fDrqqKPSyy+/nJZffvnUp0+fNGXKlHxblLI58MAD0+GHH55vjx8AYnsFvXv3TkceeWRaeeWV06effpovsawgAuzxQ8KYMWPy89xjjz2qvV5M6+fJk9Prr72a1u/eo3JZs2bN0vrr90hjRr9U0rYx++n/8qb/y5v+L2/6f+YJogMAQANr3rx5zqCOAHNkWW+wwQbpuOOOy8HfEEHvUaNGpdtvvz2tvfbaOfg9dOjQvO4dd9xRuZ0ff/wxXX/99TkjfeONN04XXnhhuuWWW9Jnn32Wb4/s9T333DNnhUeG+OWXX56+//779Pjjj9f7cxo0aFA655xz0s4775yWXnrp/P+f//znnClfVQTQt9tuuxxAj6D3Bx98kH8MCNH+bbbZJq8Tt8cPAnG9YJ555sk/PsTrFzXk4xLLCvbee+8clO/SpUsO4n/77bf5daS4ryZ+lX755Ze00EILVVse1yOzn6ZN/5c3/V/e9H950/8zTxAdAABKVBP9k08+ySVHtt566/TYY4/lbPMIrke5kggAx4FMIWs9Lu+991565513KrcRk5J27Nix8nr37t3T1KlT0xtvvJGvf/7552m//fbLQfgo5xJlYWK7H374Yb0+l++++y63a999963W3lNPPbVae0O3bt0q/15iiSXy/5FxH6LdUdamqprXp6fqtuedd978fAvbrk2cBTBp0qRql2JnBgAAUL6al7oBAABQrqLuZJQsiUuUPoka6JHRHRnYEWCOwHpNhfrgdRGlXGJyqPPPPz/XXW/VqlUOtE+ePLlen0cE5gv1zNdbb71qt80999zVrrdo0aLy76hpHiLwXx+qbruw/elt+/TTT8/Z8FUdf8KgNPDEk1K5WLDdgrmPak4iFtejlj5Nm/4vb/q/vOn/8qb/Z55MdAAAaCRWWmmlnNUdGelRkiXKlkRpkqqXqgc2kVEe2ewFUfc86lmusMIKlTXGDzvssFwfPOqIRxB9dpyiu9hii6UOHTqkd999d5r2RmmXuop2x2SoVdW83rJly3z6cX2IiVxjItaql6OPGZDKSYuWLdOKK62cnnv2/yZ4jR8enntuZOq22holbRuzn/4vb/q/vOn/8qb/Z55MdAAAaGCR5RMTh+6zzz65BMn888+f/v3vf6ezzjor7bjjjmnLLbfMGeO9evXKy6I+eATL77vvvrTTTjvlOumFTPbINo966VGKJALmMbFm1AoPUcblhhtuyOvH7UcffXS1GuKzIkrKxKSfVcXjREZ3PH6UjYnyNFEWJZ7TV199lY444og6bfvQQw/Ntd3PPffctP3226d//etfeWLVQsZ66Ny5c2UbfvOb3+TXLn4cmBVxv5r3/fF/5zgtK3/o2y+dcNwxaeWVV0mrrNot/e2G69IPP/yQeu20c6mbRgPQ/+VN/5c3/V/e9P/MEUQHAIAGFvXCo+zJeeedl2uG//zzz6lTp065fnlMMBpB4/vvvz8df/zxqV+/fmncuHE5MB4B5sj6LohM75jAMzLNJ0yYkH7729+mSy65pPL2q666Ku2///45sz22H5NtxqSdv0ZtAfEnn3wyl6Jp06ZNOvvss3OwPmqSr7rqqulPf/pTnbcdE6xedtllOSA/cODA1LNnzzw56UUXXVStlvzw4cPTZpttliZOnJiuueaaPKEos27rbbZNX02YkC656II0fvy4tELXFdMlf70yLeR07rKg/8ub/i9v+r+86f+ZM1dFRUVFKiORgRPZMXGqZkw0xKz79vLLU1Mz3/77l7oJAA3q2rETU1Ozd9e614umfDTFMeBJJ52U7rrrrmmywpua+GFh7NixOVDfEMoxEx0AoJy1rkOauUx0AACg0YjSNDHRamSyRymX6667rlp2PQAANDQTiwIAALnUS5SZqe2yzTbbNFg7Ro0alYPoUQomSrtccMEFuVQMAACUinIuzDLlXADmfMq5UC6MAWcsaqrHpTYxGWnHjh1TOVDOBQCgvLRWzgUAAKiL9u3b5wsAAFCdci4AAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARzYvdAAC/xs2Tbk5NTZ8F+pS6CQAAAEADk4kOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAYw2iX3zxxalz586pdevWab311kujRo2a7voTJ05MhxxySFpiiSVSq1at0vLLL5/uv//+BmsvAAAAAADlo3kpH/zWW29NRxxxRLrssstyAH3YsGGpZ8+e6Y033kiLLrroNOtPnjw5bbXVVvm2O+64I3Xs2DF98MEHqV27diVpPwAAAAAATVtJg+jnnntu2m+//VK/fv3y9Qim33fffenqq69Oxx577DTrx/IJEyakZ555JrVo0SIviyx2AAAAAABoUuVcIqv8hRdeSFtuueX/NaZZs3x95MiRtd7nnnvuSd27d8/lXBZbbLG0yiqrpCFDhqRffvml6OP89NNPadKkSdUuAAAAAADQqIPo48ePz8HvCIZXFdc/++yzWu/z7rvv5jIucb+og37CCSekc845J5166qlFH+f0009Pbdu2rbx06tSp3p8LAAAAAABNU8knFp0ZU6dOzfXQL7/88rTWWmul3r17p+OPPz6XgSlmwIAB6euvv668fPTRRw3aZgAAAAAA5lwlq4m+8MILp7nnnjt9/vnn1ZbH9cUXX7zW+yyxxBK5Fnrcr2DFFVfMmetRHqZly5bT3KdVq1b5AgAAAAAAc0wmegS8I5v8kUceqZZpHtej7nltNthgg/T222/n9QrefPPNHFyvLYAOAAAAAABzbDmXI444Il1xxRXpuuuuS6+//no66KCD0nfffZf69euXb99rr71yOZaCuH3ChAnp8MMPz8Hz++67L08sGhONAgDA7Pbiiy+mV155pfL63XffnXr16pWOO+64fGYkAADQ9JQ0iB41zYcOHZpOPPHEtPrqq6eXX345jRgxonKy0Q8//DB9+umnlevHpKAPPvhgev7551O3bt3SYYcdlgPqxx57bAmfBQAA5eKAAw7IyRyFSe9333331KZNm3T77benv/zlL6VuHgAA0JRqohf0798/X2rz2GOPTbMsSr08++yzDdAyAACoLgLokfwRInC+8cYbp5tuuik9/fTTOaA+bNiwUjcRAABoSpnoAAAwJ6moqKicn+fhhx9O2267beUZk+PHjy9x6wAAgNlBEB0AAOpo7bXXTqeeemq64YYb0uOPP5622267vPy9996rLEkIAAA0LYLoAABQR1GuJSYXjXKExx9/fOrSpUtefscdd6QePXqUunkAAEBTrIkOAABzipjc/pVXXplm+dlnn53mnnvukrQJAACYvWSiAwDATJg4cWK68sor04ABA9KECRPystdeey198cUXpW4aAAAwG8hEBwCAOhozZkzaYostUrt27dL777+f9ttvv9S+ffs0fPjw9OGHH6brr7++1E0EAADqmUx0AACooyOOOCL169cvvfXWW6l169aVy7fddtv0xBNPlLRtAADA7CGIDgAAdfT888+nAw44YJrlHTt2TJ999llJ2gQAADTCIPqjjz5a/y0BAIBGrlWrVmnSpEnTLH/zzTfTIossUpI2AQAAjTCIvvXWW6dll102nXrqqemjjz6q/1YBAEAjtMMOO6STTz45/fzzz/n6XHPNlWuhH3PMMWmXXXYpdfMAAIDGEkT/+OOPU//+/dMdd9yRlllmmdSzZ8902223pcmTJ9d/CwEAoJE455xz0rfffpsWXXTR9MMPP6RNNtkkdenSJc0///zptNNOK3XzAACAxhJEX3jhhdOf//zn9PLLL6fnnnsuLb/88unggw9OHTp0SIcddlgaPXp0/bcUAABKrG3btumhhx5K9957b7rgggtyYsn999+fHn/88TTvvPOWunkAAMBs0PzXbmDNNddMiy++eFpooYXSGWecka6++up0ySWXpO7du6fLLrssrbzyyvXTUgAAaCQ23HDDfAEAAJq+WQ6iRx3Iu+++OwfNIxtn7bXXThdddFHq06dPGjduXBo4cGDadddd02uvvVa/LQYAgAYUGed1FWdlAgAATcssBdEPPfTQdPPNN6eKior0hz/8IZ111llplVVWqbw9TmUdOnRoLu8CAABzsvPOO6/a9UgY+f7771O7du3y9YkTJ6Y2bdrkOumC6AAA0PTMUhA9sssvvPDCtPPOO6dWrVoVrZv+6KOP/tr2AQBASb333nuVf9900025dOFVV12VVlhhhbzsjTfeSPvtt1864IADSthKAACgUU0sOmjQoFyqpWYAfcqUKemJJ57Ifzdv3jxtsskm9dNKAABoBE444YScTFIIoIf4O7LVo5whAADQ9MxSEH2zzTZLEyZMmGb5119/nW8DAICm6NNPP82JIzX98ssv6fPPPy9JmwAAgEYYRI9a6HPNNdc0y7/88stcDx0AAJqiLbbYIpdtefHFFyuXvfDCC+mggw5KW265ZUnbBgAANIKa6FEDPUQAfe+9965WziWyb8aMGZN69OhR/60EAIBG4Oqrr059+/ZNa6+9dmrRokVeFpnpPXv2TFdeeWWpmwcAAJQ6iN62bdvKTPT5558/zTPPPJW3tWzZMq2//vp5UiUAAGiKFllkkXT//fenN998M73++us5uaRr165p+eWXL3XTAACAxhBEv+aaa/L/nTt3TkcddZTSLQAAlKUImi+33HL579rKHAIAAGVeE33QoEEC6AAAlKXrr78+rbrqqvmszLh069Yt3XDDDaVuFgAAUOpM9DXXXDM98sgjacEFF0xrrLHGdDNuqk60BAAATcW5556bTjjhhNS/f/+0wQYb5GVPPfVUOvDAA9P48ePTn//851I3EQAAKFUQfccdd6ycSLRXr1713Q4AAGj0LrzwwnTppZemvfbaq3LZDjvskFZeeeV00kknCaIDAEA5B9GjhEttfwMAQLn49NNPU48ePaZZHsviNgAAoOmZpZroAABQjrp06ZJuu+22aZbfeuutlRONAgAAZZqJHrXQp1cHvaoJEyb8mjYBAECjNHjw4NS7d+/0xBNPVNZEf/rpp/PcQbUF1wEAgDIKog8bNmz2tgQAABq5XXbZJT333HPpvPPOS3fddVdetuKKK6ZRo0alNdZYo9TNAwAAShlE79u37+x4fAAAmKOstdZa6W9/+1upmwEAADS2IPqkSZPSAgssUPn39BTWAwAAAACAsqmJ/umnn6ZFF100tWvXrtb66BUVFXn5L7/8Ut/tBACAkmnWrNkM5weK26dMmdJgbQIAABpZEP1f//pXat++ff770UcfnZ1tAgCARuXOO+8setvIkSPTBRdckKZOndqgbQIAABpZEH2TTTap9W8AAGjqdtxxx2mWvfHGG+nYY49N9957b9pjjz3SySefXJK2AQAAjSSIXtNXX32VrrrqqvT666/n6yuttFLq169fZbY6AAA0RZ988kkaNGhQuu6661LPnj3Tyy+/nFZZZZVSNwsAAJhNms3KnZ544onUuXPnfNpqBNPjEn8vvfTS+TYAAGhqvv7663TMMcekLl26pFdffTU98sgjOQu9qQfQo9b7XXfdNdu2v/fee6devXpNd51NN900/elPf5ruOtdee22euwkAABpFEP2QQw5JvXv3Tu+9914aPnx4vrz77rtp9913z7cBAEBTctZZZ6Vlllkm/eMf/0g333xzeuaZZ9JGG200Wx9z3Lhx6aCDDkpLLrlkatWqVVp88cVz5vvTTz+dGqP1118/HXjggdWWXXbZZTkIHwHumoHzwut3/vnnT3P7jERCz7Bhw+qh1RTcctONaZutNk/rrLFq2mP3XdMrY8aUukk0IP1f3vR/edP/5U3/z+Yg+ttvv52OPPLINPfcc1cui7+POOKIfBsAADQlUfv8xx9/zFnoUcZl5513rvVSn3bZZZf00ksv5cd788030z333JMzsr/88svUGG222Wbpscceq7bs0UcfTZ06dZpmeVzffPPN899t27aVQV5iIx64Pw096/R0wMGHpFtuvzOtsELXdNAB+zba9xr1S/+XN/1f3vR/edP/DRBEX3PNNStroVcVy1ZbbbVZ2SQAADRae+21V9ptt93y/D8R9C12qS8TJ05MTz75ZDrzzDNzcHqppZZK6667bhowYEDaYYcdKtf54x//mBZZZJG0wAIL5KD06NGjK7dx0kknpdVXXz399a9/zYHsNm3a5OcQZWkKnn/++bTVVlulhRdeOLd/k002SS+++OIstTnaGZOtfvbZZ5XLHn/88fwDRNUgepzN+sEHH+T1ayvn8t133+XXe7755ktLLLFEOuecc6o9TvyQEPf/85//nLPc41LVgw8+mFZcccV8/6233jp9+umns/R8yskN112Tdv7dbqnXTrukZbt0SQMHDU6tW7dOdw3/e6mbRgPQ/+VN/5c3/V/e9P9smlh0TJV0/sMOOywdfvjhOes8TtsMzz77bLr44ovTGWecMZNNAACAxm1my438WhEAjkvUIo/xdpRzqWnXXXdN88wzT3rggQdyADyC5VtssUXOWo9gf4jx+m233ZZrt0+aNCntu+++6eCDD0433nhjvv2bb75Jffv2TRdeeGGqqKjIAettt902vfXWW2n++eefqTZvsMEGqUWLFjn7vE+fPum1115LP/zwQ37MqCUfwfOYQylujwO07t2717qdo48+Ogff77777rToooum4447Lgf24weBEKUkI3Fn//33T/vtt1+1+37//fdp6NCh6YYbbkjNmjVLe+65ZzrqqKMqny/T+nny5PT6a6+mffc7oHJZvHbrr98jjRn9Uknbxuyn/8ub/i9v+r+86f/ZGESPQWtkecTguuAvf/nLNOv9/ve/z/XSAQCAWdO8efMcuI8gcdQVjzNBI0s85iDq1q1beuqpp9KoUaPSF198URlgj+BxBN3vuOOOHGAOUYLm+uuvTx07dszXI1i+3Xbb5WB51FgvlFQpuPzyy3NplQhi//a3v52pNs8777w5Wz6yziOIHv9vuOGGuX09evTI1yOIHv9HAL22Hwa+/fbbdNVVV6W//e1v+QeBEOVsfvOb31SuEz8QRCnJCPLHc6jq559/zq/Xsssum6/3798/nXzyyTP1PMrNVxO/Sr/88ktaaKGFqi2P6++9927J2kXD0P/lTf+XN/1f3vT/bAyiR+YIAADQMKImegS8o6xLnPUZGecxwemVV16ZS55EwLnmgU9kfr/zzjuV12NS0kIAPUTweurUqbnsSgSgP//88zRw4MAc2I6AfBxMRTb3hx9+OEttjlIrt99+e/47thnXQ/wAENf79euX/6+ZQV4QbZ88eXJab731qgXNV1hhhTo9fpSsKQTQQ5SDiedVzE8//ZQvVVXM3arWAD8AAOWrzkH0qMMIAAA0nCh7EjXL43LCCSfkGuiDBg3KJVkiQFxzws4wM5N0RimXmDzq/PPPz+P9CB5HoD0C2bMi6pyfdtpp6eOPP85ti1IqhSB6lJuJIPlHH300TQZ8fYlyMlXVPJO2ptNPPz0NHjy42rLjTxiUBp540mxpX2O0YLsFc2Z/zUnE4nrUyqdp0//lTf+XN/1f3vR/A00sWhB1DkeMGJHuueeeahcAAKD+rbTSSjkLPcq7xASeUfalS5cu1S5VD3wio/yTTz6pvB4Z7VHvspDZ/fTTT+f5jqIO+sorr5yD6OPHj5/l9kXZlpYtW6ZLLrkkl5JZa6218vJ11lknjRs3Ll199dWVZV9qE1nkEQh/7rnnKpd99dVXuc57VfEYkTX/a8VErTHRatXL0ccMSOWkRcuWacWVVk7PPTuyclmcrfDccyNTt9XWKGnbmP30f3nT/+VN/5c3/T8bM9Grevfdd9NOO+2UXnnllWrZHfF3qI8BLQAANDZPPPFEDhRH8LqqKVOmpGeeeSZtvPHG9fI4kQUUE4fus88+uQZ61P/+97//ncu57LjjjmnLLbfMGeO9evXKy5ZffvkcLL/vvvvyOH3ttdeuzGSPbPOolx4Ti0bAfLfddqusJb7ccsvlSThj/bg9JvWMyUpnVdw3JkKN2usx0WhkOBWC3lWX18wYL4jJVGMi0mhHlKqJiUWPP/74HPivqnPnzrkvokZ8BP5nNWMq7luzdMuPU1LZ+UPffumE445JK6+8Slpl1W7pbzdcl0sD9dpp51I3jQag/8ub/i9v+r+86f8GCKIffvjheVKgRx55JP8fkxrFQP/II4/MA3QAAGiKolzJp59+moO7VUUGc9xWX8kkEUyOuuDnnXdeLoESE2Z26tQp1xI/7rjjcvLK/fffnwPMUWc8srwjMB5B/MUWW6xyO5GZvvPOO+dM8wkTJuTJQiNLvCAm8YxJSCOzPbY/ZMiQyhIssypehwhwF+qhF0RJl0cffTTfPj1nn312rve+/fbb5x8P4hgjXt+qYrLQAw44IGeuR03z6ZVsYca23mbb9NWECemSiy5I48ePSyt0XTFd8tcr00JO5y4L+r+86f/ypv/Lm/6fOXNVzMKIMzI9/vWvf+WsmLZt2+YgepwSGstikPvSSy+lxioybKLNMRBfYIEFSt2cOdq3l1+empr59t+/1E2AJuPmSTenpqbPAn1SU3Pt2Impqdm7a93rQVM+6msMGBnRMRnnIossUm15lBspZHM3FieddFK666670ssvv1zqpsxRyjETHQCgnLVuPpsy0SPDJrJCCgH1OHU0gugxGdEbb7wxK5sEAIBGK7K5Q2SA77333tVKgMTYeMyYMbnMCwAA0PTMUhB9lVVWSaNHj86lXOI006jDGHUOL7/88rTMMsvUfysBAKCEIos9xEmckUxStW54od53lFppyqLUS1xqs9FGG6UHHnigwdsEAACNNog+cODA9N1331XWI4zaijFwjsl/br311vpuIwAAlNQ111xTOaFl1Ayfd955U2MX5VziUl8OPPDAPClpbX7NZKQAANAkg+g9e/asNlnR2LFj80RFCy64YD7FFQAAmqJBgwalctW+fft8AQCActPs127go48+ypcYUAugAwDQlMWkon/4wx9Shw4dUvPmzdPcc89d7QIAADQ9s5SJPmXKlDR48OB0wQUXpG+//TYvm2+++dKhhx6as3NatGhR3+0EAICSi0lFP/zww3TCCSekJZZYQhIJAACUgVkKokewfPjw4XlC0e7du+dlI0eOzDUXv/zyy3TppZfWdzsBAKDknnrqqfTkk0+m1VdfvdRNAQAAGnMQ/aabbkq33HJL2mabbSqXdevWLXXq1Cn16dNHEB0AgCYpxrsVFRWlbgYAANDYa6K3atUqde7ceZrlSy+9dGrZsmV9tAsAABqdYcOGpWOPPTa9//77pW4KAADQmDPR+/fvn0455ZR0zTXX5IB6+Omnn9Jpp52WbwMAgKaod+/e6fvvv0/LLrtsatOmzTRzAU2YMKFkbQMAAEocRN95552rXX/44YfTb37zm7Taaqvl66NHj06TJ09OW2yxRf23EgAAGkkmOgAAUF7qHERv27Ztteu77LLLNPUhAQCgKevbt2+pmwAAADTWIHqUbgEAgHL3zjvv5LFx/H/++eenRRddND3wwANpySWXTCuvvHKpmwcAADSGiUULxo0bl5566ql8ib8BAKApe/zxx9Oqq66annvuuTR8+PD07bffVpY2HDRoUKmbBwAANJYg+nfffZf22WeftMQSS6SNN944Xzp06JD23XffPNESAAA0Rccee2w69dRT00MPPZRatmxZuXzzzTdPzz77bEnbBgAANKIg+hFHHJGzcO699940ceLEfLn77rvzsiOPPLL+WwkAAI3AK6+8knbaaadplkdJl/Hjx5ekTQAAQCOpiV7V3//+93THHXekTTfdtHLZtttum+aZZ5602267pUsvvbQ+2wgAAI1Cu3bt0qeffpqWXnrpastfeuml1LFjx5K1CwAAaGSZ6FGyZbHFFqs1A0c5FwAAmqrdd989HXPMMemzzz5Lc801V5o6dWp6+umn01FHHZX22muvUjcPAABoLEH07t2754mTfvzxx8plP/zwQxo8eHC+DQAAmqIhQ4akrl27pk6dOuVJRVdaaaU8P1CPHj3SwIEDS908AACgsZRzGTZsWNp6663Tb37zm7TaaqvlZaNHj06tW7dODz74YH23EQAASq6ioiJnoF9wwQXpxBNPzPXRI5C+xhprpOWWW67UzQMAABpTEH3VVVdNb731VrrxxhvT2LFj87I+ffqkPfbYI9dFBwCAphhE79KlS3r11Vdz0Dyy0QEAgKZvpoPoP//8cz6F9R//+Efab7/9Zk+rAACgkWnWrFkOnn/55ZcyzwEAoIzMdE30Fi1aVKuFDgAA5eKMM85IRx99dPrPf/5T6qYAAACNeWLRQw45JJ155plpypQp9d8iAABopPbaa680atSoPC9QlDFs3759tQsAAND0zFJN9Oeffz498sgj6Z///Geujz7vvPNWu3348OH11T4AAGg0hg0bVuomAAAAc0IQvV27dmmXXXap/9YAAEAj1rdv31I3AQAAaMxB9KlTp6azzz47vfnmm2ny5Mlp8803TyeddFI+lRUAAMpJzBMUY+KqFlhggZK1BwAAaAQ10U877bR03HHHpfnmmy917NgxXXDBBbk+OgAAlIPvvvsu9e/fPy266KK5pOGCCy5Y7QIAAJR5EP36669Pl1xySXrwwQfTXXfdle69995044035gx1AABo6v7yl7+kf/3rX+nSSy9NrVq1SldeeWUaPHhw6tChQx4rAwAAZR5E//DDD9O2225beX3LLbdMc801V/rkk09mR9sAAKBRiSSSSCqJ+YGaN2+eNtpoozRw4MA0ZMiQnFwCAACUeRB9ypQpqXXr1tWWtWjRIv3888/13S4AAGh0JkyYkJZZZpnK+udxPWy44YbpiSeeKHHrAACAkk8sWlFRkfbee+986mrVCZUOPPDAXBOyYPjw4fXbSgAAaAQigP7ee++lJZdcMnXt2jXddtttad11180Z6u3atSt18wAAgFIH0fv27TvNsj333LM+2wMAAI1Wv3790ujRo9Mmm2ySjj322LT99tuniy66KJ+Zee6555a6eQAAQKmD6Ndcc83saAMAAMwR/vznP1ebH2js2LHphRdeSF26dEndunUradsAAIBGEEQHAIByNHXq1HT22Wene+65J02ePDltscUWadCgQWmppZbKFwAAoOmaqYlFAQCgHJ122mnpuOOOS/PNN1/q2LFjOv/889MhhxxS6mYBAAANQBAdAABm4Prrr0+XXHJJevDBB9Ndd92VJxK98cYbc4Y6AADQtAmiAwDADHz44Ydp2223rVYPfa655kqffPJJSdsFAACUSRD94osvTp07d06tW7dO6623Xho1alSd7nfLLbfkg5devXrN9jYCAFC+pkyZkseqVbVo0SL9/PPPJWsTAABQJhOL3nrrremII45Il112WQ6gDxs2LPXs2TO98cYbadFFFy16v/fffz8dddRRaaONNmrQ9gIAUH4qKirS3nvvnVq1alW57Mcff0wHHnhgmnfeeSuXDR8+vEQtBAAAmmwm+rnnnpv222+/1K9fv7TSSivlYHqbNm3S1VdfXfQ+v/zyS9pjjz3S4MGD0zLLLNOg7QUAoPz07ds3J3i0bdu28rLnnnumDh06VFsGAAA0PSXNRJ88eXJ64YUX0oABAyqXNWvWLNeYHDlyZNH7nXzyyfkgZt99901PPvlkA7UWAIBydc0115S6CQAAQDkG0cePH5+zyhdbbLFqy+P62LFja73PU089la666qr08ssv1+kxfvrpp3wpmDRp0q9sNQAAAAAA5aLkNdFnxjfffJP+8Ic/pCuuuCItvPDCdbrP6aefnsu+AAAAAADUtOA6/UvdBEroh5cuatxB9AiEzz333Onzzz+vtjyuL7744tOs/8477+QJRbfffvvKZVOnTs3/N2/ePE9Guuyyy1a7T5SKiYlLq2aid+rUaTY8GwAAAAAAmpqSBtFbtmyZ1lprrfTII4+kXr16VQbF43r//tP+AtS1a9f0yiuvVFs2cODAnKF+/vnn1xocb9WqVb4AAAAAAMAcV84lssT79u2b1l577bTuuuumYcOGpe+++y7169cv377XXnuljh075rIsrVu3Tqusskq1+7dr1y7/X3M5AAAAAADM8UH03r17p3HjxqUTTzwxffbZZ2n11VdPI0aMqJxs9MMPP0zNmjUrdTMBAAAAAChDJQ+ihyjdUlv5lvDYY49N977XXnvtbGoVAAAAAADlToo3AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAABQph577LE011xzpYkTJ6Y5WVN5HgAANE6C6AAA0AjsvffeORAcl5YtW6YuXbqkk08+OU2ZMmWG97322mtTu3btyiJQvemmm6Y//elPJW1DU3TLTTembbbaPK2zxqppj913Ta+MGVPqJtGA9H950//lTf+Xrw3WXDbdMeyA9O4/T0s/vHRR2n7TbqVuUqMmiA4AAI3E1ltvnT799NP01ltvpSOPPDKddNJJ6eyzzy51s2jiRjxwfxp61unpgIMPSbfcfmdaYYWu6aAD9k1ffvllqZtGA9D/5U3/lzf9X97mnadVeuXNj9OfTr+11E2ZIwiiAwBAI9GqVau0+OKLp6WWWioddNBBacstt0z33HNP+umnn9JRRx2VOnbsmOadd9603nrr5czwEP/369cvff3115WZ7BF8DzfccENae+210/zzz5+3+/vf/z598cUXs6Xt02tj1Wz5Bx98MK244oppvvnmq/zRoCCy7g877LC83kILLZSOOeaY1Ldv39SrV6/KbP3HH388nX/++ZXP9f3336+8/wsvvJCfb5s2bVKPHj3SG2+8MVuea1Nzw3XXpJ1/t1vqtdMuadkuXdLAQYNT69at013D/17qptEA9H950//lTf+Xt38+/VoafMk/0j2POvugLgTRAQCgkZpnnnnS5MmTU//+/dPIkSPTLbfcksaMGZN23XXXHICOjPUIFg8bNiwtsMACOSAdlwhmh59//jmdcsopafTo0emuu+7KAecIRM8O02tjwffff5+GDh2ag/tPPPFE+vDDDyvbGs4888x04403pmuuuSY9/fTTadKkSbndBRE87969e9pvv/0qn2unTp0qbz/++OPTOeeck/7973+n5s2bp3322We2PNem5OfJk9Prr72a1u/eo3JZs2bN0vrr90hjRr9U0rYx++n/8qb/y5v+h5nTfCbXBwAAZrOKior0yCOP5KztPn365KByBJw7dOiQb4/A84gRI/LyIUOGpLZt2+as7Mg2r6pqEHmZZZZJF1xwQVpnnXXSt99+mzPB60u0bUZtLAT1L7vssrTssstWBt6j7nvBhRdemAYMGJB22mmnfP2iiy5K999/f+Xt8TyjXnxkmtd8ruG0005Lm2yySf772GOPTdttt1368ccfc1Ydtftq4lfpl19+yZn/VcX19957t2TtomHo//Km/8ub/oeZI4gOAACNxD/+8Y8c3I5g89SpU3P5ld/97ne5FMryyy8/TfmUmge+NUV5kyjtEpnoX331Vd5miGD3SiutVG/tfuWVV/KB+IzaGMHvQgA9LLHEEpXlZaIczeeff57WXXfdytvnnnvutNZaa1W2e0a6detWbdshtr/kkkvWun60Ly5VVczdKpfVAQCAAkF0AABoJDbbbLN06aWX5mzryOiOkiS33nprDiZHQDz+r2p62eTfffdd6tmzZ75EiZRFFlkkB8/jepSIqU+R2V6XNrZo0aLabZE9H1n39aXq9mPbYXoB+NNPPz0NHjy42rLjTxiUBp74vzXly8GC7RbMfVZzErm4vvDCC5esXTQM/V/e9H950/8wc9REBwCARiIm5OzSpUvOnI4AelhjjTVylndkVMdtVS+FkiYRdI91qho7dmw+ED7jjDPSRhttlLp27TrbJhWtSxtnJEq1LLbYYun555+vXBbbfPHFF6utV9tznVVROiYy4Ktejj5mQConLVq2TCuutHJ67tmRlcvih4fnnhuZuq22Rknbxuyn/8ub/i9v+h9mjkx0AABoxKJEyh577JH22muvPGlmBKzHjRuXa6ZH+ZKo+925c+ecDR7LVltttVw2JQLxEXCOOuMHHnhg+s9//pMnGa2P0i3zzz9/tYzveMwZtbEuDj300JwdHsH3CPpH26MMTSGrPMRzfe655/IkqZHl3r59+1l+LlG2pWbplh+npLLzh7790gnHHZNWXnmVtMqq3dLfbrgu/fDDD6nXTjuXumk0AP1f3vR/edP/5W3eeVqmZTstUnm9c8eFUrflO6avJn2fPvrsq5K2rTESRAcAgEYuJuc89dRT05FHHpk+/vjjfJr1+uuvn37729/m23v06JED5b17987Z54MGDcq10KOW+nHHHZcnFF1zzTXT0KFD0w477PCr2rLxxhtXux6ngk+ZMmWGbayLY445Jn322Wc5GB/b3X///XP5maolYmLC0r59++aa7nGg/9577/2q50NKW2+zbfpqwoR0yUUXpPHjx6UVuq6YLvnrlWkhp/OXBf1f3vR/edP/5W3NlZZK/7zy8MrrZx21S/7/hnueTfsP+lsJW9Y4zVVRn0UI5wCTJk3Kp4rGqZoLLLBAqZszR/v28stTUzPf/vuXugnQZNw86ebU1PRZoE9qaq4dOzE1NXt3bVfqJtAIGQPOmeK08hVXXDHttttu9ZJFXxflmIkOAOVuwXX6l7oJlNAPL100w3VkogMAAI3CBx98kP75z3+mTTbZJP3000/poosuypnmv//970vdNAAAypiJRQEAgLTNNtvkGuO1XYYMGdIgbWjWrFkuQbPOOuukDTbYINdff/jhh3M2OgAAlIpMdAAAIF155ZW5xnhtfs3knTOjU6dO6emnn26QxwIAgLoSRAcAAFLHjh1L3QQAAGiUlHMBAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoIjmxW4AAKBxuHnSzamp6bNAn1I3AQAAoE5kogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAAjTmIfvHFF6fOnTun1q1bp/XWWy+NGjWq6LpXXHFF2mijjdKCCy6YL1tuueV01wcAAAAAgDk2iH7rrbemI444Ig0aNCi9+OKLabXVVks9e/ZMX3zxRa3rP/bYY6lPnz7p0UcfTSNHjkydOnVK//M//5M+/vjjBm87AAAAAABNW8mD6Oeee27ab7/9Ur9+/dJKK62ULrvsstSmTZt09dVX17r+jTfemA4++OC0+uqrp65du6Yrr7wyTZ06NT3yyCMN3nYAAAAAAJq2kgbRJ0+enF544YVckqWyQc2a5euRZV4X33//ffr5559T+/bta739p59+SpMmTap2AQAAAACAumieSmj8+PHpl19+SYsttli15XF97NixddrGMccckzp06FAtEF/V6aefngYPHlwv7QUAAAAAmpavnr+o1E2gkSt5OZdf44wzzki33HJLuvPOO/OkpLUZMGBA+vrrrysvH330UYO3EwAAAACAOVNJM9EXXnjhNPfcc6fPP/+82vK4vvjii0/3vkOHDs1B9Icffjh169at6HqtWrXKFwAAAAAAmKMy0Vu2bJnWWmutapOCFiYJ7d69e9H7nXXWWemUU05JI0aMSGuvvXYDtRYAAAAAgHJT0kz0cMQRR6S+ffvmYPi6666bhg0blr777rvUr1+/fPtee+2VOnbsmGubhzPPPDOdeOKJ6aabbkqdO3dOn332WV4+33zz5QsAAAAAADSZIHrv3r3TuHHjcmA8AuKrr756zjAvTDb64YcfpmbN/i9h/tJLL02TJ09Ov/vd76ptZ9CgQemkk05q8PYDAAAAANB0lTyIHvr3758vtXnssceqXX///fcbqFUAAAAAAJS7ktZEBwAAAACAxkwQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKaF7sBihHN0+6OTU1fRboU+omAAAAAMAcSyY6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAMA0HnvssTTXXHOliRMnzrbH6Ny5cxo2bNh014k23HXXXdNdZ++99069evWq59YBAMD/EkQHAIBGLoLEEUyOS8uWLVOXLl3SySefnKZMmTLD+1577bWpXbt2s61t3377bWrRokW65ZZbqi3ffffdc3vff//9aQLnJ5xwQv77+eefT/vvv3+dHyu2Fdt8+eWX66n1FNxy041pm602T+ussWraY/dd0ytjxpS6STQg/V/e9H950//lTf/XnSA6AADMAbbeeuv06aefprfeeisdeeSR6aSTTkpnn312qZuV5ptvvrT22mvnzPWq4nqnTp2qLX/vvffSBx98kDbffPN8fZFFFklt2rRp8DZT3YgH7k9Dzzo9HXDwIemW2+9MK6zQNR10wL7pyy+/LHXTaAD6v7zp//Km/8ub/p85gugAADAHaNWqVVp88cXTUkstlQ466KC05ZZbpnvuuSf99NNP6aijjkodO3ZM8847b1pvvfUqA9fxf79+/dLXX39dmckewfdwww035OD3/PPPn7f7+9//Pn3xxRez1LbNNtusWrD89ddfTz/++GNuZ9Xl8Xc8j+7du9daziV+INh4441T69at00orrZQeeuihao+z9NJL5//XWGON/Fw23XTTarcPHTo0LbHEEmmhhRZKhxxySPr5559n6fmUmxuuuybt/LvdUq+ddknLdumSBg4anPvgruF/L3XTaAD6v7zp//Km/8ub/p85gugAADAHmmeeedLkyZNT//7908iRI3M5lTFjxqRdd901Z61HQLpHjx45SL3AAgvkLPa4RMA9RID5lFNOSaNHj841x6NUSpSNmdUg+htvvJG3Hx599NG04YYb5ozzqkH0WB4B9DhAq2nq1Klp5513zuVqnnvuuXTZZZelY445pto6o0aNyv8//PDD+bGGDx9ebdvvvPNO/v+6667LZWziwvT9PHlyev21V9P63XtULmvWrFlaf/0eaczol0raNmY//V/e9H950//lTf/PPEF0AACYg1RUVOQg8oMPPpi6deuWrrnmmnT77benjTbaKC277LI5SB4B7FgeAem2bdvmrO3INo9LlF8J++yzT9pmm23SMsssk9Zff/10wQUXpAceeCDXOJ9ZG2ywQX6sqhnwm2yySVprrbXS+PHjcxmX8Pjjj+eAe23iOY0dOzZdf/31abXVVssZ6UOGDKm2TpR/CZFpHs+lffv2lbctuOCC6aKLLkpdu3ZNv/3tb9N2222XHnnkkZl+LuXmq4lfpV9++SW/plXF9eg7mjb9X970f3nT/+VN/888QXQAAJgD/OMf/8gB8MjijuB379690+9+97t8ALT88svn2wqXCFZHVvb0vPDCC2n77bdPSy65ZC7pEkHv8OGHH85026Ku+TrrrFMZRI/Hj1IrzZs3z9nwsfzdd9/N2y4WRI8SMFFDvUOHDpXLCmVf6mLllVdOc889d+X1KOsyo/I0UQpn0qRJ1S6xDAAAqmpe7RoAANAoRfD50ksvzRnfEWiOAPWtt96aA8cREK8aQA6FjPPafPfdd6lnz575cuONN+YM7whwx/UoETOr7Yv2vPrqq+mHH35Ia665Zl4ewfkosRLlWiLYHjXbZ4cWLVpUux7Z9/GY03P66aenwYMHV1t2/AmD0sAT/7dufDlYsN2C+b1TcxKxuL7wwguXrF00DP1f3vR/edP/5U3/zzyZ6AAAMAeISUO7dOmSM8cjgF6YYDMy0SPjOm6reolyJyGC7rFOVVE2JQ6SzjjjjFwGJkqgzOqkolWD6FGH/aabbsrlZApB/SjLEpnpkY1eKPtSmxVXXDF99NFHlXXVw7PPPlttncJ9az6fWTVgwIA86WrVy9HHDEjlpEXLlmnFlVZOzz07snJZ/Pjw3HMjU7fV1ihp25j99H950//lTf+XN/0/8wTRAQBgDhVlXPbYY4+011575Uk2o/Z4TL4ZGdb33XdfXqdz5865znnUB48al99//30OxEdA+sILL8xlVu655548yeivEWVbWrVqlbdZKA0T1l133Rygv/vuu4uWcglbbrllfj59+/bNk50++eST6fjjj6+2zqKLLponVB0xYkT6/PPPc9D714j2xqSrVS+xrNz8oW+/NPyO29I9d92Z3n3nnXTqySflswl67bRzqZtGA9D/5U3/lzf9X970/8xRzgUAAOZgMYHoqaeemo488sj08ccf51NwY6LQmFyzENw+8MADcw31yD4fNGhQOumkk9K1116bjjvuuDyhaJReGTp0aNphhx1muR1Rqz0et1APvSCC0rE8MtGnF0Rv1qxZuvPOO9O+++6bA+8R/I+2bb311pXrRAZ+LDv55JPTiSeemLPoC3XYmXVbb7Nt+mrChHTJRRek8ePHpRW6rpgu+euVaSGnc5cF/V/e9H950//lTf/PnLkqKioqUhmJyYLatm2bs1Yi04RZ9+3ll6em5t7d509NTZ8F+pS6CZSpmyfdnJqaprg/XTt2Ympq9u7aLjU19qdfzxiQuvpxSqlbAABAQ2pdhzRz5VwAAAAAAKAIQXQAAGC6ttlmmzTffPPVehkyZEipmwcAALOVmugAAMB0XXnllXmiqdq0b9++wdsDAAANSRAdAACYro4dO5a6CQAAUDLKuQAAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAUIYgOAAAAAABFCKIDAAAAAEARgugAAAAAAFCEIDoAAAAAABQhiA4AAAAAAEUIogMAAAAAQBGC6AAAAAAAUIQgOgAAAAAAFCGIDgAAAAAARQiiAwAAAABAEYLoAAAAAABQhCA6AAAAAAAU0bzYDQCN1bVjJ6amZu+u7UrdBAAAAABqIRMdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAoAhBdAAAAAAAKEIQHQAAAAAAihBEBwAAAACAIgTRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAxB9Evvvji1Llz59S6deu03nrrpVGjRk13/dtvvz117do1r7/qqqum+++/v8HaCgAAAABA+Sh5EP3WW29NRxxxRBo0aFB68cUX02qrrZZ69uyZvvjii1rXf+aZZ1KfPn3Svvvum1566aXUq1evfPnPf/7T4G0HAAAAAKBpK3kQ/dxzz0377bdf6tevX1pppZXSZZddltq0aZOuvvrqWtc///zz09Zbb52OPvrotOKKK6ZTTjklrbnmmumiiy5q8LYDAAAAANC0lTSIPnny5PTCCy+kLbfc8v8a1KxZvj5y5Mha7xPLq64fInO92PoAAAAAADCrmqcSGj9+fPrll1/SYostVm15XB87dmyt9/nss89qXT+W1+ann37Kl4Kvv/46/z9p0qR6eAbl7dsffkhNzfeT5k5NzaTU9N7rP3zb9J7TpEklPzGo3n0/6fvU1Nif5gz2pzlDQ+9PhbFfRUVFgz4uAAAw5ytpEL0hnH766Wnw4MHTLO/UqVNJ2kMj96fU5Pwx/bHUTaAODi51A6gT+9Ocwf40ZyjV/vTNN9+ktm3bluSxmTO0bvJHSMVF8lEcPw0YMCC1atWq1M2hgen/8qb/y5v+L2/6v27mqihhOk6Uc4n653fccUeeHLSgb9++aeLEienuu++e5j5LLrlknoj0T3/6v2hnTEp61113pdGjR88wE33q1KlpwoQJaaGFFkpzzTXXbHle1H/mWPzo8dFHH6UFFlig1M2BOZr9CeqHfWnOE0PeCKB36NAhlw8Eav9six+Z4uxdn23lR/+XN/1f3vR/edP/dVPSPIuWLVumtdZaKz3yyCOVQfQIcsf1/v3713qf7t2759urBtEfeuihvLw28QtKzV9R2rVrV6/Pg4YRO7KdGeqH/Qnqh31pziIDHQAAmBUlP1kxssoj83zttddO6667bho2bFj67rvvUr9+/fLte+21V+rYsWM+rSAcfvjhaZNNNknnnHNO2m677dItt9yS/v3vf6fLL7+8xM8EAAAAAICmpuRB9N69e6dx48alE088MU8Ouvrqq6cRI0ZUTh764YcfVjvltkePHummm25KAwcOTMcdd1xabrnlcimXVVZZpYTPAgAAAACApqjkQfQQpVuKlW957LHHplm266675gvlIcrxRN17kxvAr2d/gvphXwKaIp9t5U3/lzf9X970f3nT/3PAxKIAAAAAANCY/V+dFAAAAAAAoBpBdAAAAAAAKEIQHaCJm2uuufIEzI11e9AQTjrppDx5+a8Vc7XEPjBx4sQ632fvvfdOvXr1+tWPDdAYGAfMeZpKnzWV59HUX8e6jHs23XTT9Kc//Wm661x77bWpXbt29dy68jAr49XGqKk8j6b+Gnbu3DkNGzbsV3/uzAnHTILo1Ktx48algw46KC255JJ5QoLFF1889ezZMz399NMNGuSAxmj77bdPW2+9da23Pfnkk/mLZcyYMfX+uJ9++mnaZptt6n27MCftWzvvvHN65JFHfvVj9ejRI+9Tbdu2rfN9zj///HwgCFDqsXZ9MK6Ys/prTgxUN9Vjwjnt/bD++uunAw88sNqyyy67LL9Hao5rIvi10UYbzfK4py5BuDlVvDbxmsWlZcuWqUuXLunkk09OU6ZMmeF9G+KHhMYSqK7LDytzusb8Xvj2229TixYt0i233FJt+e67757b+/7770+zz55wwgn57+effz7tv//+dX6s2FZs8+WXX05zmualbgBNyy677JImT56crrvuurTMMsukzz//PActvvzyy1I3DUpu3333zfvIf//73/Sb3/ym2m3XXHNNWnvttVO3bt1mapuxv8UX8PTEAL0xqUuboaH3rbq+L2Odmd2nZibgDtDYx9qNbVzRmDWG/qLxmNPeD5tttlm68847qy179NFHU6dOnXLgNQKCBXG9b9+++W/jnmlFskeMSX/66ad0//33p0MOOSQHLAcMGFDqptHAGut7Yb755svHTLEvR+C8IK7X3Offe++99MEHH6TNN988X19kkUVS2aiAevLVV19VxFvqsccem+46++67b8XCCy9cMf/881dsttlmFS+//HK+7Zprrsn3r3qJZeGDDz6o2GGHHSrmnXfefL9dd9214rPPPqvcbmxj0003rZhvvvny7WuuuWbF888/n28bP358xe67717RoUOHinnmmadilVVWqbjppptm++sBNf38888Viy22WMUpp5xSbfk333yT37uXXnppxZNPPlmx4YYbVrRu3briN7/5TcWhhx5a8e2331auu9RSS1WcfPLJFX/4wx/ye71v374VP/30U8UhhxxSsfjii1e0atWqYskll6wYMmRI5X1iX7rzzjsrr3/00Ud5n1hwwQUr2rRpU7HWWmtVPPvss5W3X3LJJRXLLLNMRYsWLSqWX375iuuvv75ae2tub8yYMXlfjja3b9++Yr/99svPqSDauOOOO1aceuqpFUsssURF586d6/FVhbrtW4MGDapYbbXVZvi+fPrpp/N6sS/FvhHv9XjPv/TSS/n2Rx99NF+P77MQ31Nt27atGDFiREXXrl3z91TPnj0rPvnkk2keq+CXX36pOPPMMyuWXXbZipYtW1Z06tQpt6PgL3/5S8Vyyy2Xv7OWXnrpioEDB1ZMnjx5Nr6CQFMZa8ft8T2+9dZb5+/l+Ay5/fbbq63z4Ycf5rF0fHbFWCDG2O+99161da666qqKlVZaKX9GxfgixhnFxgEz2l58bq6zzjp5zBHr9OjRo+L999+vaOp+7bFRKHx3XXbZZXlcGN8L8VpPnDixcp1Ro0ZVbLnllhULLbRQxQILLFCx8cYbV7zwwgvVHqdmn03PjNa94oor8vddfE+usMIKFRdffHHlbdHvcf+///3v+dgs2tutW7eKZ555pto2Lr/88srn06tXr4pzzjknvzdmdEwYf8fjx33ivl26dKm4++67K+YEc+L74cEHH8zrfvrpp5XLYrwVfR7HJAXvvvtuXi/29drGPXEsE8cuMUaKz5OhQ4dWbLLJJhWHH354vj3+rtnndR1jzQlqvh5hq622qlh//fUrfvzxx4ojjzwyxyriM3LdddetfB0LY86ql3gPhDg+i3FqjHOjT/r06VPx+eefV26/5nh1ema07vTaWNd+irF6HNfGenG8GGPdvfbaq/J1ideo5nONz5NC2x5++OH8fOM9371794qxY8dWzIka+3thwIAB+XO94LXXXst9FrGFaHvB1Vdfnb8Dfvjhh3w9Pg/OO++8ytvffPPNio022iivs+KKK1b885//rPa5U/O5xGdA1dfn7LPPzp8V8V45+OCDG9VxkHIu1OsvV3GJ0//iV7Xa7LrrrumLL75IDzzwQHrhhRfSmmuumbbYYos0YcKE1Lt373TkkUemlVdeOZ8mGpdYNnXq1LTjjjvmdR5//PH00EMPpXfffTffVrDHHnvk7MM4jSS2e+yxx+Zf88KPP/6Y1lprrXTfffel//znP/k0kz/84Q9p1KhRDfbaQGjevHnaa6+98qlY//vd8b9uv/329Msvv6Tu3bvnX6YjSyXKutx6663pqaeeSv3796+2naFDh6bVVlstvfTSS/kUqgsuuCDdc8896bbbbktvvPFGuvHGG/PpVcVO09pkk03Sxx9/nO8zevTo9Je//CXvZyGyTQ4//PC8L8b+csABB6R+/frlrJPafPfdd/k01AUXXDDvf/FcHn744WnaHFk20bbYf//xj3/Uw6sJdd+3+vTpU+v9ar4vJ02alEvDrLrqqunFF19Mp5xySjrmmGNm+Pjff/993i9vuOGG9MQTT6QPP/wwHXXUUUXXj0yTM844I++/r732WrrpppvSYostVnn7/PPPn59L3BanRF9xxRXpvPPOm+nXBSi/sXaIz5YYS8R3fIyRI6Ps9ddfz7f9/PPP+Xs7Pmei3FWUkYhtxvgjMmTDpZdemjPjYsz8yiuv5PFCnHJemxltL05Rj/qmMfaIsc3IkSPzduM07qbu1x4bFbz99tt5jHfvvfemESNG5PHfwQcfXHn7N998kzOAY8z47LPPpuWWWy5tu+22eXl9izHmiSeemE477bT8nhoyZEh+v0VmdVXHH398/h6MU/WXX375/D1cKFcQ75EoERLjzbh9q622ytsrKHZMWDB48OC022675fdTPM94j1d9vRqrOfH9sMEGG+Rj6sJxQIxLfvjhh3wGYGTPRzZqiNtbt26dj2Vqc/TRR+fj+Lvvvjv985//zBmtMc4qGD58eD6Wj7IWhT6f1THWnGKeeebJn5FxzBSfi1FCI97T8R6Iz8+33norlxCMEjcLLLBA5etSeO7x2Rvj1Picj/dUlMeoemZAfZpeG+vaT2eeeWb+/IgM7PgMiDF31bJRMd6N989+++1X+Vwj+7nqZ8o555yT/v3vf+dx/z777JOaisb0XoizT+LYqLAPxr694YYb5ozz2G8LYnn0V+z3NUVcIcpoxtm7zz33XC4BVfN4qhCLi7hBPFZ8BlTd9jvvvJP/j++WOCZqVGUxSx3Fp2m54447cgZKZL5Elkn8kjV69Oh8W2TYxq/h8QtbVZGJ99e//jX/XTNTMMSvVnPPPXfOcil49dVX8y9W8Ut7iF/qr7322jq3c7vttsu/8kFDe/3116tlaoT4lXbPPffMmSf7779/tfVjv2nWrFm1X3kj+6aq+FV/8803r5g6dWqtj1n1V9/Y12J/+fLLL2tdN/bbyCSvKjJctt1221q3F5lEsc9XzZa/7777cpsLZ4vEL8rxq3hkzEMp9q1QWyZ6zfdlZKxH5lZhfwuR8TajTPS4/vbbb1feJzK0Ytu1ZZ1MmjQpZ2XEdusqsjEiwwRgemPtEJ9HBx54YLX7rLfeehUHHXRQ/vuGG27IWWZVxwzxORjZfZF1GiIL7vjjjy/ahqrjgBltL8YbM8q+bcrq49gojoP++9//Vt7+wAMP5HFW1ezgquJspxjr3XvvvfWeiR5tq3lGb5wFFpmhVTPRr7zyymmO2+J7OvTu3Tsfi1W1xx57VGaiFzsmLLQtzs4qiPFnLIvXZE4wJ74fNthgg8rjkxjfFI4J/ud//idno4bIMo+s+drGPXFWYJzRctttt1XeHp8L8RlRyESvLZO1rmOsOUHV1yM+Kx966KE8Ftx7771zf3788cfV1t9iiy3ye6NqlveMxFn48VoVzgaur0z0qAhQlzbOqJ/i7xjPFkyZMiWfPV01K7vq2Qk12xaZ6FWPNWNZ1fH6nKKxvxe+++67vL8WPucjDnDWWWflMwniDIN33303L4++Gzx4cK37b3z3N2/evNpzic+pqp87he+KwvFV1dcnthXvj4JoQ3xvNBYy0alXkfXyySef5IyV+NUsfq2KX9Djl6P4ZSyyYBdaaKHKX+LjEr9gxy9NxUSWQ/wKWfWXyJVWWilPqlDIqjniiCPSH//4x7Tlllvm7L6q24ssxPhlLjIL27dvnx/zwQcfzL+OQkPr2rVr/iX56quvrswmicytyOiIfST2lar7R2R3xa+5hUyPELXKqopfmiOTZ4UVVkiHHXZYzvAoJtZbY4018r5Qm9inIuukqrhe2NdqWz+y4uedd95q60eb41fsgtj/1EGnVPtWMTXfl/GejdrpVbMq1l133Rk+dps2bdKyyy5beX2JJZbImWTF9pnIQIvMsmLiLJTYj6LucHwODBw40HcWMMOxdkHNbNC4Xvgej7FGfD5G5nhhrBFjgjhzM8bP8dkV25/eZ1RVM9pe/B3jlBjPxJk+kW1YNcu0qauPY6OYhLJjx47V+rPqOCvqakf2ZmQcRy3qyFSM7db390acfRjtiu/Vqu099dRTpzmWqzoPSXwnhsL3YrS75ndrXb5ra9t2jD/j+Rb7zm1s5sT3Q0z2WMhAjf/jeoizS6oujwzW2kTbI8t2vfXWq1wWnwtx3FIXMzPGaszijMfozxhjxsTMcXbF7373uxyriLM1qvZ5ZO1PLz4S4kyF+EyN90N8/kZ/hPre7+NspLq0cXr99PXXX+f3ZdX9fO65587VAupqep8pc5rG/F6IflxnnXUq9+14/NjnI/s/jrMee+yxXBUitl1sny/E7zp06FC5rNhZKrWJs5Di/dFY93kTi1Lv4sMgTsuLS5zeF8HtQYMG5dPMYgeoehpIwa+dZThmcP/973+fS7bE6W/xeHEazE477ZTOPvvsPGCP018iYBKDrZj1uXDKKjS0OPg49NBD08UXX5xPaYsBR3zZxQA3yqdEILym+FIsqBqwDjH4jgF2vPfjlKg4xTV+ULrjjjtqPV2sFGq2GRpy35rd78tC+bCCKFNQtazMzOyDcRpnnJoep6tH0CkOgOP7LE5hBZjeWLsup2/HWCMCF3FafU0xMVizZjOXYzWj7YX4PI6xTZSeiB8J44fBKKO1/vrrp3Iwu4+NonRHlNaI452llloqtWrVKgcs6vtYJ/o6RImxqgHRUDXgUfN7sVC6p1A6cHZ859bXthvCnPZ+iEBZlNuJUpDRtkIJiRhf/fWvf80Bvo8++qhygsH6NjNjrMYsXscolRXJGxFcjKBkfB7GvhNB0Jr7UARQiymU04xLfPbGZ20ENeP67Njv69LG2d1Ps/MzpaE19vdCtC/a8+qrr+byTRFrKOzzjz76aH7dI9he83ugvjT2z3iZ6Mx2kTUeO3fsfJ999ln+kIi6ilUvCy+8cF43PkjiF7iqVlxxxfzFHJeCqMc2ceLEvO2C+NXuz3/+c87CjRpMMWAPUXMraqrvueeeOWM2ZkJ/8803G+z5Q00R5I6D1KiDfP311+eabvHlEPtIvLdr7h9xmVEWd2SZxK/YcWATX3p///vfa60PGb/iRzZ6sdqRsb/FPlNVXK+6r9VcPzJnYh+vun48v7pmmMDs3rfqKt6zkXFTtVZp1PqvT5EZFoH0qMdem2eeeSYf9EbtxzjrJNb/4IMP6rUNQNMcaxdEHeSq4np8X4cYa0R91UUXXXSasUb8aBdZbDGvSrHPqJpmtL2COAsu5oOIz7hVVlklf06Xq5k5NgoREIns5ar9WXWcFeOu+JEi6l5HBl8ETcePH1/v7Y65OyLgE1mINdu79NJL13k70e6a3601r9d2TNhUNfb3Q2SfRn9ccskllXONhchWHTduXD4DMJISip1NEAkNERSL2sgFX3311TTH4029z+M1ir6MxKjo48LnYjznyLKt2edxNmKx12Xs2LH5h5I4A3+jjTbKZ2POrkzdurRxRuK7ID4/qu7nsc2qdfHL4T0wp7wXIoge3+vxPR310AtB/Y033jhnpsePaXHGbLH4RCF+V/Wss5rjksJ958T+FkSn3sTOG79A/+1vf8sTIURmbEzqdtZZZ+UgdmTGxq/gMblQBLpjwoMYSEegICaICDFoj/tFkC++7COQEfeLDPLIzIsP2piEICaQi1/CIsAQv47FJAyxM0egIQYO8QFdOFiIAERku8RjxaklkekbpxNBqcSvyRHwjoPJ+HIpZI7FhBvxPo33c+wD8eUVE/DUnKSzpnPPPTfdfPPN+Us0BqSx38WXbW1ZKzGxU9wW+2HsK3EgFAH3yH4tTPwTp5TGr+Px+LHtmOij2AQ+sV9GRk1kvcREpPHrdGQCx+S9VSdKhFLuW3UVZzRFpkNMehffF1H6KyZJCvU1CV7sL7Gvx4S+EeiPDK4YWF511VWV31lxgBzZ53FbTBwcE/4CzGisXRDLIrAVY4LIcI2xc2EsEd/bEZCL9aPkVWwjxtARdPvvf/9beYZnnP0Snz8xFojx94UXXlhrm2a0vbgen8kxzohxehwDxDYL4/SmrD6OjUJhnBVJC/Eax2sbPxoXAivxvRGT+cX3VgQqo09+7ZmHheOxqpcI9MZZUqeffnp+b8T7K354jsSlGC/WVYwT77///nyfeC9ENnOcTVn1e7a2Y8I53Zz6foj7xlkj8RkQgbNCQC2CYFWX18werTo2izMF4xjjX//6Vz5eiPFZzbNeos9jQsrIeJ8dPwI1RpEEGP0TsY043or3RHxexz4WZ9gXXpfIBo8fNuN1iQk8I/gar3+89nEsF+WBonztrxX7c9V9Pt5jdWljXff7uE8c20bpoZhYOH5Mqbnfx3s23vvxXBtT9nE5vRfih7P48S22WfWM3vih7Isvvsh9WKyUS4jPsng+VT+n4nOsqvjhPT5b4gy1iM1FyZ85RqmLstN0xCQoxx57bMWaa66ZJzxo06ZNnmgoJn/5/vvvKydUi0kQY8KiFi1aVHTq1ClPJFOYNDS2scsuu1S0a9cuTzQQkycUJrTYYYcd8mQGMTFKTC5QmLQwJi/afffd87ZiEoTYdv/+/SsnmoiJS2Lyhvnmm69i0UUXze3Za6+9qk1iAQ3tmWeeye/xqhN2hpgsd6uttsrv13i/d+vWreK0006b7qQ7Mbnn6quvntePCYliApIXX3yx6ORB77//ft7PYt3YT9dee+2K5557rvL2Sy65pGKZZZbJ++jyyy9fcf3111d7vJrbGzNmTJ5MKCZJat++fZ6YtDCRSc0JVKBU+1ZtE4vW9r58+umn834X3ycxmWdMrBPbGzt2bNGJRWtO8hP7R9UhVs3Hikm+Tj311Lw/x34Wk/MMGTKk8vajjz46T3AanwMxkU7s83WZSAho2uoy1o7PnpjQLcYSMVlZ586dK2699dZq24kJCGMsvPDCC+d14js/vru//vrrynUuu+yyvO34jFpiiSXy+L3YOGB624vxekyIHtuIz9X43DvxxBPz52BTVx/HRoXvrhibxTox1vrd735XMWHChMrHiTFfjOXituWWW67i9ttvn2a8OLMTi9Z2iYkvw4033pjHndGfMUnmxhtvXDF8+PCik8XF92XNib9j7NqxY8c8uWS8P+I7cfHFF6/22tV2TFjb84jXtnB7Yzanvh8Kjxv3OeOMM6otP+mkk/Ly008/vdrymuOeOC6Iid7jOccEkzFRYc1JJEeOHJnHX/EZUhhD1WWMNSeY3rHQ5MmT82difFYXPm932mmnfHxVEJNFx7gwnnf0RYjxadwnXq+Y2Peee+6ptu/NysSiNS8x0WVd2liXfoqJKSNGE8ef8blxzDHH5JhOxHEK3njjjYr1118/fy7EfePzpLbnEc+xcPucprG/Fwpi/4z7PPvss9WWb7rppnl57K9V1fyMib7ccMMN8/dExBNGjBgxzefOFVdckT/jYmLkeLxir098ThRubwzmin9KHcgHAGiMor5gv379coZEqeYUAKiryOqLs1cim5U5X5wVcNddd+Ws0KYsJsKMMyojY5HiyuX9QNMXWeZxRlKcRVEfWfTQUEwsCgDw/0WJlZg7o2PHjvkUxCi9EgN8AXQAqB9RKi0m1ozawFHK5brrrss1t4GmqVDOK8qDRHmmiy66KJcsiVKKMCdREx0A4P+LSb1iIurIjonJqnfdddd0+eWXl7pZAPCrDRkyJNeoru2yzTbbNFg7otZvBNFj3qvLLrss11j/4x//2GCPT+N6PzB7RV8W6+d4DzSEqIEf827FhLRRQz/qrz/88MNlMT9GY9IY3gtzOuVcAAAAoImbMGFCvtQmzriKs7AoH94P5SEma/3hhx9qva19+/b5QnnwXvj1BNEBAAAAAKAI5VwAAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QGoZq655kp33XVXqZsBAABlZ0Zj8cceeyyvM3HixHz92muvTe3atZvuNk866aS0+uqrp1KpSxsBGjtBdIBGZNy4cemggw5KSy65ZGrVqlVafPHFU8+ePdPTTz/dYG349NNP0zbbbNNgjwcAAOXgs88+S4ceemhaZpll8li/U6dOafvtt0+PPPJInbfRo0ePPF5v27ZtvbXr/fffz4H5RRddNH3zzTfVbovgewThAcpd81I3AID/s8suu6TJkyen6667Lg+uP//88zyo/vLLLxusDRG4BwAAUr0GqjfYYIOckX322WenVVddNf3888/pwQcfTIccckgaO3ZsnbbTsmXL2TZejwD60KFD0+DBg2fL9gHmZDLRARqJOCXzySefTGeeeWbabLPN0lJLLZXWXXfdNGDAgLTDDjvkdSJD5NJLL82Z4vPMM08OtN9xxx3VtvPRRx+l3XbbLQ/Q27dvn3bcccc8aK/q6quvTiuvvHLOgFliiSVS//79i55COqPtxSml0c555503rxMHBx988MFsfKUAAGDOcvDBB+dx9qhRo3LizPLLL5/H40cccUR69tlnq607fvz4tNNOO6U2bdqk5ZZbLt1zzz1Fy7nU5owzzkiLLbZYmn/++dO+++6bfvzxxzq1MbLkzz333PTFF18UXeerr75Ke+21V1pwwQVz++K45K233pqmfEucWRu3x/OoLSHo7rvvTmuuuWZq3bp1PqaJwP2UKVPybRUVFTn7vXB2bocOHdJhhx1Wp+cAMLsIogM0EvPNN1++RAD7p59+KrreCSeckAfeo0ePTnvssUfafffd0+uvv55vi2yWKP8SA+YIyEcZmNjm1ltvnTPcQwThI9tl//33T6+88koelHfp0qXWx5rR9mKg26tXr7TJJpukMWPGpJEjR+btxsAeAABIacKECWnEiBF5DB6JJzXVrBceAeVIYonx9bbbbpvH/LGNurjttttyAHrIkCHp3//+d06YueSSS+p03z59+uTjgpNPPrnoOnvvvXfebhxDxNg/At7RxjhuCM8991wO3EeSzssvv5yTg0499dRq24jjigjEH3744em1115Lf/3rX3Pg/bTTTsu3//3vf0/nnXdeXh4B+jg+isx9gJKqAKDRuOOOOyoWXHDBitatW1f06NGjYsCAARWjR4+uvD0+tg888MBq91lvvfUqDjrooPz3DTfcULHCCitUTJ06tfL2n376qWKeeeapePDBB/P1Dh06VBx//PFF2xCPceedd9Zpe19++WVe/7HHHqvHVwEAAJqO5557Lo+Zhw8fPsN1Y72BAwdWXv/222/zsgceeCBff/TRR/P1r776Kl+/5pprKtq2bVu5fvfu3SsOPvjgaY4XVltttaKP+d577+VtvvTSSxUjRoyoaNGiRcXbb7+db4v7DRo0KP/95ptv5vWefvrpyvuOHz8+Hxvcdttt+XqfPn0qtt1222rb7927d7U2brHFFhVDhgyptk4cdyyxxBL573POOadi+eWXr5g8efIMXy+AhiITHaARiQzzTz75JGd2RLZ3nK4ZpzlGZkZB9+7dq90nrhcy0SM7/e23386Z44XM9ijBEqdwvvPOO/nUzNj+FltsUaf2zGh78Xdko0S2ekyKdP755+eJjgAAgP/1v7HxuuvWrVvl35G5vsACC0y3xEpVcVyw3nrrVVtW8/hhemJcv+GGG+azX2vbdvPmzattf6GFFkorrLBC5fFIXR4/jjEi271wfBGX/fbbLx9HfP/992nXXXdNP/zwQy7zEsvvvPPOylIvAKViYlGARibqAm611Vb5EoPXP/7xj2nQoEE5WD0j3377bVprrbXSjTfeOM1tiyyySGrWbOZ+O53R9sI111yTaxTGKaq33nprGjhwYHrooYfS+uuvP1OPBQAATVHUNY9yh3WdPLRFixbVrsd9p06dmhpK1FSPwPfRRx89W7YfxxhRsmbnnXeu9VioU6dO6Y033kgPP/xwPq6IevIxGevjjz8+zWsD0FBkogM0ciuttFL67rvvKq/XnHgorq+44or578haj7qBiy66aK5nWPXStm3bnFHeuXPn9Mgjj9TpsWe0vYI11lgjT4D6zDPPpFVWWSXddNNN9fb8AQBgThZnb0aG98UXX1xtXF8wvUlCZ1YcF0Rd8qpqHj/MyLrrrpsD3Mcee+w0246M8Krbj0lDI+Adxyx1ffw4xoj71Dy+iEsh6WeeeebJZ7pecMEF+ezcqL8e8zkBlIogOkAjEQPQzTffPP3tb3/Lkwi999576fbbb09nnXVW2nHHHSvXi2VXX311evPNN3OG+qhRo/LEPSEmHVp44YXz+jFhT2wjBp2RKf7f//43rxMTDZ1zzjl5QBoB8hdffDFdeOGFtbZpRtuL6xE8j0HtBx98kP75z3/mbRaC+gAAQMoB9F9++SUHqGPizBgzR+mTGJPPTLmVGYnJOuNYIc4WLRwvvPrqqzO9nZjk81//+lcOdlfNqI/jgiix8tRTT+WyLHvuuWfq2LFj5fFK4QzVoUOH5ud40UUX5etVnXjiien666/P2ejRtngdbrnllnxGa4hSlldddVX6z3/+k9599918fBRB9aWWWupXvz4As0oQHaCRiFqAUT8wZqLfeOONc0Z3lHOJQWoMPgtisBmDzKiVGIPPm2++uTLzo02bNumJJ55ISy65ZM4eiWD2vvvum2uYRy3F0Ldv3zRs2LB0ySWXpJVXXjn99re/zQPc2sxoe3F7nJYatdyXX375tP/++6dDDjkkHXDAAQ30qgEAQOMX9b0jeWWzzTZLRx55ZB7rR/nGOEP00ksvrbfH6d27dz6G+Mtf/pLLMkaiy0EHHTTT24mx/T777JPH/VVFcD62G8cQEfyPeu/3339/ZZmVKOl4xRVX5LmSVltttZxkUwiOF0RW/j/+8Y982zrrrJPvE8dAhSB5u3bt8jY22GCDfMwTZV3uvffeXH8doFTmitlFS/boAMyUqIcYE+v06tWr1E0BAAAAKAsy0QEAAAAAoAhBdAAAAAAAKKJ5sRsAaHxU4AIAAABoWDLRAQAAAACgCEF0AAAAAAAoQhAdAAAAAACKEEQHAAAAAIAiBNEBAAAAAKAIQXQAAAAAAChCEB0AAAAAAIoQRAcAAAAAgCIE0QEAAAAAINXu/wH2pzQc3qXR8QAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1500x1200 with 5 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:__main__:Saving model and results\n",
      "INFO:__main__:Saved trained model as 'bayesian_network_model.pkl'\n",
      "INFO:__main__:Saved inference results as 'inference_results.json'\n",
      "INFO:__main__:Saved processed data as 'processed_iris_data.csv'\n",
      "INFO:__main__:Saved model summary as 'model_summary.json'\n",
      "INFO:__main__:Bayesian Network implementation completed successfully!\n",
      "INFO:__main__:Final model accuracy: 0.8444\n",
      "INFO:__main__:All artifacts saved for future reference\n"
     ]
    }
   ],
   "source": [
    "# Installation commands for Google Colab and local Mac\n",
    "# !pip install pgmpy pandas numpy matplotlib seaborn scikit-learn\n",
    "\n",
    "import logging\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "from pgmpy.models import DiscreteBayesianNetwork\n",
    "from pgmpy.factors.discrete import TabularCPD\n",
    "from pgmpy.inference import VariableElimination\n",
    "from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator\n",
    "from sklearn.datasets import load_iris\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import KBinsDiscretizer\n",
    "import json\n",
    "import pickle\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "\n",
    "# Configure logging\n",
    "logging.basicConfig(\n",
    "    level=logging.INFO,\n",
    "    format='%(asctime)s - %(levelname)s - %(message)s',\n",
    "    handlers=[\n",
    "        logging.FileHandler('bayesian_network_training.log'),\n",
    "        logging.StreamHandler()\n",
    "    ]\n",
    ")\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "def load_and_prepare_data():\n",
    "    logger.info(\"Loading and preparing Iris dataset for Bayesian Network\")\n",
    "    \n",
    "    # Load Iris dataset\n",
    "    iris = load_iris()\n",
    "    df = pd.DataFrame(iris.data, columns=iris.feature_names)\n",
    "    df['species'] = iris.target\n",
    "    \n",
    "    logger.info(f\"Original dataset shape: {df.shape}\")\n",
    "    logger.info(f\"Features: {list(df.columns)}\")\n",
    "    \n",
    "    # Discretize continuous features into categories\n",
    "    discretizer = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='quantile')\n",
    "    \n",
    "    # Create meaningful feature names\n",
    "    feature_mapping = {\n",
    "        'sepal length (cm)': 'Sepal_Length',\n",
    "        'sepal width (cm)': 'Sepal_Width', \n",
    "        'petal length (cm)': 'Petal_Length',\n",
    "        'petal width (cm)': 'Petal_Width'\n",
    "    }\n",
    "    \n",
    "    df_processed = df.copy()\n",
    "    for old_name, new_name in feature_mapping.items():\n",
    "        discretized_feature = discretizer.fit_transform(df[[old_name]]).flatten()\n",
    "        df_processed[new_name] = discretized_feature.astype(int)\n",
    "        logger.info(f\"Discretized {old_name} -> {new_name}: {len(np.unique(discretized_feature))} bins\")\n",
    "    \n",
    "    # Create final dataset with meaningful names\n",
    "    final_df = df_processed[['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'species']].copy()\n",
    "    final_df.rename(columns={'species': 'Species'}, inplace=True)\n",
    "    \n",
    "    logger.info(f\"Final processed dataset shape: {final_df.shape}\")\n",
    "    logger.info(f\"Species distribution: {final_df['Species'].value_counts().to_dict()}\")\n",
    "    \n",
    "    return final_df\n",
    "\n",
    "def create_network_structure():\n",
    "    logger.info(\"Creating Bayesian Network structure\")\n",
    "    \n",
    "    # Define network structure based on botanical knowledge\n",
    "    # Species influences all physical characteristics\n",
    "    model = DiscreteBayesianNetwork([\n",
    "        ('Species', 'Sepal_Length'),\n",
    "        ('Species', 'Sepal_Width'),\n",
    "        ('Species', 'Petal_Length'),\n",
    "        ('Species', 'Petal_Width'),\n",
    "        ('Petal_Length', 'Petal_Width')  # Petal dimensions are correlated\n",
    "    ])\n",
    "    \n",
    "    logger.info(f\"Network nodes: {model.nodes()}\")\n",
    "    logger.info(f\"Network edges: {model.edges()}\")\n",
    "    logger.info(\"Network structure created successfully (DAG validation will occur after parameter learning)\")\n",
    "    \n",
    "    return model\n",
    "\n",
    "def learn_parameters(model, data):\n",
    "    logger.info(\"Learning network parameters using Maximum Likelihood Estimation\")\n",
    "    \n",
    "    # Fit the model to data\n",
    "    model.fit(data, estimator=MaximumLikelihoodEstimator)\n",
    "    \n",
    "    # Now we can check if the model is valid\n",
    "    try:\n",
    "        model.check_model()\n",
    "        logger.info(\"Model validation passed - all CPDs are properly defined\")\n",
    "    except Exception as e:\n",
    "        logger.warning(f\"Model validation warning: {e}\")\n",
    "    \n",
    "    logger.info(\"Learned Conditional Probability Distributions:\")\n",
    "    for cpd in model.get_cpds():\n",
    "        logger.info(f\"CPD for {cpd.variable}:\")\n",
    "        logger.info(f\"  Variables: {cpd.variables}\")\n",
    "        \n",
    "        # Use the correct attribute name for cardinalities\n",
    "        try:\n",
    "            if hasattr(cpd, 'cardinality'):\n",
    "                logger.info(f\"  Cardinality: {cpd.cardinality}\")\n",
    "            elif hasattr(cpd, 'get_cardinality'):\n",
    "                logger.info(f\"  Cardinality: {cpd.get_cardinality()}\")\n",
    "            else:\n",
    "                logger.info(f\"  Shape info: {cpd.values.shape}\")\n",
    "        except Exception as e:\n",
    "            logger.info(f\"  Shape info: {cpd.values.shape}\")\n",
    "        \n",
    "        logger.info(f\"  Values shape: {cpd.values.shape}\")\n",
    "        \n",
    "        # Log a sample of the probability values\n",
    "        if cpd.values.size <= 20:  # Only for small CPDs\n",
    "            logger.info(f\"  Sample values: {cpd.values.flatten()[:5]}\")\n",
    "    \n",
    "    return model\n",
    "\n",
    "def perform_inference(model, evidence_scenarios):\n",
    "    logger.info(\"Performing probabilistic inference\")\n",
    "    \n",
    "    # Create inference object\n",
    "    inference = VariableElimination(model)\n",
    "    results = {}\n",
    "    \n",
    "    for scenario_name, evidence in evidence_scenarios.items():\n",
    "        logger.info(f\"Inference scenario: {scenario_name}\")\n",
    "        logger.info(f\"Evidence: {evidence}\")\n",
    "        \n",
    "        try:\n",
    "            # Query probability of each species given evidence\n",
    "            result = inference.query(variables=['Species'], evidence=evidence)\n",
    "            \n",
    "            logger.info(f\"Results for {scenario_name}:\")\n",
    "            for i, prob in enumerate(result.values):\n",
    "                species_name = ['Setosa', 'Versicolor', 'Virginica'][i]\n",
    "                logger.info(f\"  P(Species={species_name}|Evidence) = {prob:.4f}\")\n",
    "            \n",
    "            results[scenario_name] = {\n",
    "                'evidence': evidence,\n",
    "                'probabilities': result.values.tolist(),\n",
    "                'species_names': ['Setosa', 'Versicolor', 'Virginica']\n",
    "            }\n",
    "        except Exception as e:\n",
    "            logger.error(f\"Error in inference for {scenario_name}: {e}\")\n",
    "            results[scenario_name] = {\n",
    "                'evidence': evidence,\n",
    "                'error': str(e)\n",
    "            }\n",
    "    \n",
    "    return results\n",
    "\n",
    "def visualize_network_and_results(model, inference_results, data):\n",
    "    logger.info(\"Creating visualizations\")\n",
    "    \n",
    "    # Set up the plotting style\n",
    "    plt.style.use('default')\n",
    "    fig, axes = plt.subplots(2, 2, figsize=(15, 12))\n",
    "    \n",
    "    # Plot 1: Data distribution\n",
    "    species_counts = data['Species'].value_counts().sort_index()\n",
    "    axes[0, 0].bar(species_counts.index, species_counts.values, alpha=0.7, edgecolor='black')\n",
    "    axes[0, 0].set_title('Species Distribution in Dataset')\n",
    "    axes[0, 0].set_xlabel('Species (0=Setosa, 1=Versicolor, 2=Virginica)')\n",
    "    axes[0, 0].set_ylabel('Count')\n",
    "    axes[0, 0].set_xticks([0, 1, 2])\n",
    "    \n",
    "    # Plot 2: Feature correlation heatmap\n",
    "    correlation_matrix = data.corr()\n",
    "    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[0, 1], fmt='.3f')\n",
    "    axes[0, 1].set_title('Feature Correlation Matrix')\n",
    "    \n",
    "    # Plot 3: Inference results comparison\n",
    "    valid_results = {k: v for k, v in inference_results.items() if 'probabilities' in v}\n",
    "    if valid_results:\n",
    "        scenarios = list(valid_results.keys())[:3]  # Plot first 3 valid scenarios\n",
    "        species_names = ['Setosa', 'Versicolor', 'Virginica']\n",
    "        x = np.arange(len(species_names))\n",
    "        width = 0.25\n",
    "        \n",
    "        colors = ['skyblue', 'lightcoral', 'lightgreen']\n",
    "        for i, scenario in enumerate(scenarios):\n",
    "            probs = valid_results[scenario]['probabilities']\n",
    "            axes[1, 0].bar(x + i*width, probs, width, label=scenario, alpha=0.8, color=colors[i])\n",
    "        \n",
    "        axes[1, 0].set_xlabel('Species')\n",
    "        axes[1, 0].set_ylabel('Probability')\n",
    "        axes[1, 0].set_title('Inference Results Comparison')\n",
    "        axes[1, 0].set_xticks(x + width)\n",
    "        axes[1, 0].set_xticklabels(species_names)\n",
    "        axes[1, 0].legend()\n",
    "        axes[1, 0].set_ylim(0, 1)\n",
    "    else:\n",
    "        axes[1, 0].text(0.5, 0.5, 'No valid inference results', \n",
    "                       ha='center', va='center', transform=axes[1, 0].transAxes)\n",
    "        axes[1, 0].set_title('Inference Results (No Valid Results)')\n",
    "    \n",
    "    # Plot 4: Model structure visualization (simplified)\n",
    "    # Create adjacency matrix for network structure\n",
    "    nodes = list(model.nodes())\n",
    "    adj_matrix = np.zeros((len(nodes), len(nodes)))\n",
    "    node_to_idx = {node: i for i, node in enumerate(nodes)}\n",
    "    \n",
    "    for edge in model.edges():\n",
    "        i, j = node_to_idx[edge[0]], node_to_idx[edge[1]]\n",
    "        adj_matrix[i][j] = 1\n",
    "    \n",
    "    sns.heatmap(adj_matrix, annot=True, xticklabels=nodes, yticklabels=nodes, \n",
    "                cmap='Blues', ax=axes[1, 1], cbar=False, fmt='g')\n",
    "    axes[1, 1].set_title('Network Structure (Adjacency Matrix)')\n",
    "    axes[1, 1].set_xlabel('Child Nodes')\n",
    "    axes[1, 1].set_ylabel('Parent Nodes')\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig('bayesian_network_analysis.png', dpi=300, bbox_inches='tight')\n",
    "    logger.info(\"Saved visualization as 'bayesian_network_analysis.png'\")\n",
    "    plt.show()\n",
    "\n",
    "def evaluate_model_performance(model, data):\n",
    "    logger.info(\"Evaluating model performance\")\n",
    "    \n",
    "    # Split data for evaluation\n",
    "    train_data, test_data = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Species'])\n",
    "    logger.info(f\"Training data shape: {train_data.shape}\")\n",
    "    logger.info(f\"Test data shape: {test_data.shape}\")\n",
    "    \n",
    "    # Train model on training data\n",
    "    train_model = DiscreteBayesianNetwork(model.edges())\n",
    "    train_model.fit(train_data, estimator=MaximumLikelihoodEstimator)\n",
    "    \n",
    "    # Perform inference on test data\n",
    "    inference = VariableElimination(train_model)\n",
    "    correct_predictions = 0\n",
    "    total_predictions = 0\n",
    "    \n",
    "    prediction_details = []\n",
    "    \n",
    "    for idx, row in test_data.iterrows():\n",
    "        try:\n",
    "            # Use all features except Species as evidence\n",
    "            evidence = {col: int(row[col]) for col in data.columns if col != 'Species'}\n",
    "            \n",
    "            # Query for Species\n",
    "            result = inference.query(variables=['Species'], evidence=evidence)\n",
    "            predicted_species = np.argmax(result.values)\n",
    "            actual_species = int(row['Species'])\n",
    "            \n",
    "            prediction_details.append({\n",
    "                'actual': actual_species,\n",
    "                'predicted': predicted_species,\n",
    "                'confidence': float(np.max(result.values)),\n",
    "                'evidence': evidence\n",
    "            })\n",
    "            \n",
    "            if predicted_species == actual_species:\n",
    "                correct_predictions += 1\n",
    "            total_predictions += 1\n",
    "        except Exception as e:\n",
    "            logger.warning(f\"Could not make prediction for row {idx}: {e}\")\n",
    "    \n",
    "    if total_predictions > 0:\n",
    "        accuracy = correct_predictions / total_predictions\n",
    "        logger.info(f\"Model accuracy on test data: {accuracy:.4f} ({correct_predictions}/{total_predictions})\")\n",
    "        \n",
    "        # Log some prediction examples\n",
    "        logger.info(\"Sample predictions:\")\n",
    "        for i, pred in enumerate(prediction_details[:5]):\n",
    "            result = \"\" if pred['actual'] == pred['predicted'] else \"\"\n",
    "            logger.info(f\"  {result} Actual: {pred['actual']}, Predicted: {pred['predicted']}, Confidence: {pred['confidence']:.3f}\")\n",
    "    else:\n",
    "        accuracy = 0.0\n",
    "        logger.warning(\"No successful predictions made\")\n",
    "    \n",
    "    return accuracy, train_model\n",
    "\n",
    "def save_model_and_results(model, inference_results, accuracy, data):\n",
    "    logger.info(\"Saving model and results\")\n",
    "    \n",
    "    # Save the trained model\n",
    "    with open('bayesian_network_model.pkl', 'wb') as f:\n",
    "        pickle.dump(model, f)\n",
    "    logger.info(\"Saved trained model as 'bayesian_network_model.pkl'\")\n",
    "    \n",
    "    # Save inference results\n",
    "    with open('inference_results.json', 'w') as f:\n",
    "        json.dump(inference_results, f, indent=2)\n",
    "    logger.info(\"Saved inference results as 'inference_results.json'\")\n",
    "    \n",
    "    # Save processed data\n",
    "    data.to_csv('processed_iris_data.csv', index=False)\n",
    "    logger.info(\"Saved processed data as 'processed_iris_data.csv'\")\n",
    "    \n",
    "    # Save model summary\n",
    "    summary = {\n",
    "        'model_type': 'Discrete Bayesian Network',\n",
    "        'dataset': 'Iris (discretized)',\n",
    "        'nodes': list(model.nodes()),\n",
    "        'edges': list(model.edges()),\n",
    "        'accuracy': accuracy,\n",
    "        'data_shape': list(data.shape),\n",
    "        'num_parameters': sum(cpd.values.size for cpd in model.get_cpds()),\n",
    "        'inference_scenarios': len(inference_results)\n",
    "    }\n",
    "    \n",
    "    with open('model_summary.json', 'w') as f:\n",
    "        json.dump(summary, f, indent=2)\n",
    "    logger.info(\"Saved model summary as 'model_summary.json'\")\n",
    "\n",
    "def main():\n",
    "    logger.info(\"Starting Bayesian Network implementation\")\n",
    "    \n",
    "    # Load and prepare data\n",
    "    data = load_and_prepare_data()\n",
    "    \n",
    "    # Create network structure\n",
    "    model = create_network_structure()\n",
    "    \n",
    "    # Learn parameters\n",
    "    trained_model = learn_parameters(model, data)\n",
    "    \n",
    "    # Define inference scenarios\n",
    "    evidence_scenarios = {\n",
    "        'large_petals': {'Petal_Length': 2, 'Petal_Width': 2},  # Large petals\n",
    "        'small_petals': {'Petal_Length': 0, 'Petal_Width': 0},  # Small petals\n",
    "        'medium_sepals': {'Sepal_Length': 1, 'Sepal_Width': 1}, # Medium sepals\n",
    "        'mixed_features': {'Sepal_Length': 2, 'Petal_Length': 0} # Mixed evidence\n",
    "    }\n",
    "    \n",
    "    # Perform inference\n",
    "    inference_results = perform_inference(trained_model, evidence_scenarios)\n",
    "    \n",
    "    # Evaluate model\n",
    "    accuracy, _ = evaluate_model_performance(trained_model, data)\n",
    "    \n",
    "    # Create visualizations\n",
    "    visualize_network_and_results(trained_model, inference_results, data)\n",
    "    \n",
    "    # Save everything\n",
    "    save_model_and_results(trained_model, inference_results, accuracy, data)\n",
    "    \n",
    "    logger.info(\"Bayesian Network implementation completed successfully!\")\n",
    "    logger.info(f\"Final model accuracy: {accuracy:.4f}\")\n",
    "    logger.info(\"All artifacts saved for future reference\")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9b1c9a62-2365-4b37-8cdd-f58fa091f63d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Bayesian Networks Implementation - Fully Commented Version\n",
    "# This implementation demonstrates probabilistic graphical models for classification\n",
    "# using the Iris dataset with discrete features\n",
    "\n",
    "# Installation commands for dependency management\n",
    "# Google Colab: !pip install pgmpy pandas numpy matplotlib seaborn scikit-learn\n",
    "# Local Mac: pip install pgmpy pandas numpy matplotlib seaborn scikit-learn\n",
    "\n",
    "import logging\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "from pgmpy.models import DiscreteBayesianNetwork  # Updated from deprecated BayesianNetwork\n",
    "from pgmpy.factors.discrete import TabularCPD\n",
    "from pgmpy.inference import VariableElimination  # For probabilistic queries\n",
    "from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator\n",
    "from sklearn.datasets import load_iris\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import KBinsDiscretizer  # Convert continuous to discrete\n",
    "import json\n",
    "import pickle\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')  # Suppress non-critical warnings\n",
    "\n",
    "# Configure comprehensive logging system\n",
    "# This captures all major steps for debugging and analysis\n",
    "logging.basicConfig(\n",
    "    level=logging.INFO,\n",
    "    format='%(asctime)s - %(levelname)s - %(message)s',\n",
    "    handlers=[\n",
    "        logging.FileHandler('bayesian_network_training.log'),  # Save to file\n",
    "        logging.StreamHandler()  # Display in console\n",
    "    ]\n",
    ")\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "def load_and_prepare_data():\n",
    "    \"\"\"\n",
    "    Load Iris dataset and convert continuous features to discrete bins.\n",
    "    \n",
    "    Bayesian Networks require discrete variables, so we discretize continuous\n",
    "    features into 3 bins using quantile-based binning for balanced distribution.\n",
    "    \n",
    "    Returns:\n",
    "        pd.DataFrame: Processed dataset with discrete features\n",
    "    \"\"\"\n",
    "    logger.info(\"Loading and preparing Iris dataset for Bayesian Network\")\n",
    "    \n",
    "    # Load the classic Iris dataset (150 samples, 4 features, 3 species)\n",
    "    iris = load_iris()\n",
    "    df = pd.DataFrame(iris.data, columns=iris.feature_names)\n",
    "    df['species'] = iris.target\n",
    "    \n",
    "    logger.info(f\"Original dataset shape: {df.shape}\")\n",
    "    logger.info(f\"Features: {list(df.columns)}\")\n",
    "    \n",
    "    # Discretize continuous features into 3 bins (small, medium, large)\n",
    "    # Strategy='quantile' ensures each bin has approximately equal samples\n",
    "    discretizer = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='quantile')\n",
    "    \n",
    "    # Create meaningful, shorter feature names for network clarity\n",
    "    feature_mapping = {\n",
    "        'sepal length (cm)': 'Sepal_Length',\n",
    "        'sepal width (cm)': 'Sepal_Width', \n",
    "        'petal length (cm)': 'Petal_Length',\n",
    "        'petal width (cm)': 'Petal_Width'\n",
    "    }\n",
    "    \n",
    "    df_processed = df.copy()\n",
    "    \n",
    "    # Transform each continuous feature to discrete bins (0, 1, 2)\n",
    "    for old_name, new_name in feature_mapping.items():\n",
    "        # Fit discretizer and transform data\n",
    "        discretized_feature = discretizer.fit_transform(df[[old_name]]).flatten()\n",
    "        # Convert to integers for cleaner representation\n",
    "        df_processed[new_name] = discretized_feature.astype(int)\n",
    "        logger.info(f\"Discretized {old_name} -> {new_name}: {len(np.unique(discretized_feature))} bins\")\n",
    "    \n",
    "    # Create final dataset with only the processed features we need\n",
    "    final_df = df_processed[['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'species']].copy()\n",
    "    final_df.rename(columns={'species': 'Species'}, inplace=True)\n",
    "    \n",
    "    logger.info(f\"Final processed dataset shape: {final_df.shape}\")\n",
    "    logger.info(f\"Species distribution: {final_df['Species'].value_counts().to_dict()}\")\n",
    "    \n",
    "    return final_df\n",
    "\n",
    "def create_network_structure():\n",
    "    \"\"\"\n",
    "    Define the Bayesian Network structure based on botanical domain knowledge.\n",
    "    \n",
    "    Network Design Rationale:\n",
    "    - Species is the root cause (influences all physical characteristics)\n",
    "    - All morphological features depend on species\n",
    "    - Petal dimensions are correlated (petal length influences petal width)\n",
    "    \n",
    "    This creates a DAG (Directed Acyclic Graph) representing causal relationships.\n",
    "    \n",
    "    Returns:\n",
    "        DiscreteBayesianNetwork: Network structure without learned parameters\n",
    "    \"\"\"\n",
    "    logger.info(\"Creating Bayesian Network structure\")\n",
    "    \n",
    "    # Define edges representing causal relationships\n",
    "    # Format: (parent, child) - parent causes/influences child\n",
    "    model = DiscreteBayesianNetwork([\n",
    "        ('Species', 'Sepal_Length'),      # Species determines sepal length\n",
    "        ('Species', 'Sepal_Width'),       # Species determines sepal width\n",
    "        ('Species', 'Petal_Length'),      # Species determines petal length\n",
    "        ('Species', 'Petal_Width'),       # Species determines petal width\n",
    "        ('Petal_Length', 'Petal_Width')   # Petal dimensions are correlated\n",
    "    ])\n",
    "    \n",
    "    # Log network structure for verification\n",
    "    logger.info(f\"Network nodes: {model.nodes()}\")\n",
    "    logger.info(f\"Network edges: {model.edges()}\")\n",
    "    logger.info(\"Network structure created successfully (DAG validation will occur after parameter learning)\")\n",
    "    \n",
    "    return model\n",
    "\n",
    "def learn_parameters(model, data):\n",
    "    \"\"\"\n",
    "    Learn Conditional Probability Distributions (CPDs) from data using MLE.\n",
    "    \n",
    "    Maximum Likelihood Estimation finds parameter values that maximize\n",
    "    the likelihood of observing the training data.\n",
    "    \n",
    "    Args:\n",
    "        model: Network structure\n",
    "        data: Training data\n",
    "    \n",
    "    Returns:\n",
    "        DiscreteBayesianNetwork: Trained model with learned CPDs\n",
    "    \"\"\"\n",
    "    logger.info(\"Learning network parameters using Maximum Likelihood Estimation\")\n",
    "    \n",
    "    # Fit model parameters to data using Maximum Likelihood Estimation\n",
    "    # This automatically creates CPDs for each node based on observed frequencies\n",
    "    model.fit(data, estimator=MaximumLikelihoodEstimator)\n",
    "    \n",
    "    # Validate that the model is properly constructed\n",
    "    try:\n",
    "        model.check_model()  # Verifies all CPDs are valid and consistent\n",
    "        logger.info(\"Model validation passed - all CPDs are properly defined\")\n",
    "    except Exception as e:\n",
    "        logger.warning(f\"Model validation warning: {e}\")\n",
    "    \n",
    "    # Log details about learned probability distributions\n",
    "    logger.info(\"Learned Conditional Probability Distributions:\")\n",
    "    for cpd in model.get_cpds():\n",
    "        logger.info(f\"CPD for {cpd.variable}:\")\n",
    "        logger.info(f\"  Variables: {cpd.variables}\")  # Shows variable and its parents\n",
    "        \n",
    "        # Safely access cardinality information (number of states per variable)\n",
    "        try:\n",
    "            if hasattr(cpd, 'cardinality'):\n",
    "                logger.info(f\"  Cardinality: {cpd.cardinality}\")\n",
    "            elif hasattr(cpd, 'get_cardinality'):\n",
    "                logger.info(f\"  Cardinality: {cpd.get_cardinality()}\")\n",
    "            else:\n",
    "                logger.info(f\"  Shape info: {cpd.values.shape}\")\n",
    "        except Exception as e:\n",
    "            logger.info(f\"  Shape info: {cpd.values.shape}\")\n",
    "        \n",
    "        logger.info(f\"  Values shape: {cpd.values.shape}\")\n",
    "        \n",
    "        # Show sample probability values for smaller CPDs\n",
    "        if cpd.values.size <= 20:  # Only for manageable sizes\n",
    "            logger.info(f\"  Sample values: {cpd.values.flatten()[:5]}\")\n",
    "    \n",
    "    return model\n",
    "\n",
    "def perform_inference(model, evidence_scenarios):\n",
    "    \"\"\"\n",
    "    Perform probabilistic inference for different evidence scenarios.\n",
    "    \n",
    "    Uses Variable Elimination algorithm for exact inference to compute\n",
    "    P(Species | Evidence) for various combinations of observed features.\n",
    "    \n",
    "    Args:\n",
    "        model: Trained Bayesian Network\n",
    "        evidence_scenarios: Dict of scenario_name -> evidence_dict\n",
    "    \n",
    "    Returns:\n",
    "        dict: Results for each inference scenario\n",
    "    \"\"\"\n",
    "    logger.info(\"Performing probabilistic inference\")\n",
    "    \n",
    "    # Create inference engine using Variable Elimination (exact inference)\n",
    "    inference = VariableElimination(model)\n",
    "    results = {}\n",
    "    \n",
    "    # Process each evidence scenario\n",
    "    for scenario_name, evidence in evidence_scenarios.items():\n",
    "        logger.info(f\"Inference scenario: {scenario_name}\")\n",
    "        logger.info(f\"Evidence: {evidence}\")\n",
    "        \n",
    "        try:\n",
    "            # Query: Given evidence, what's the probability distribution over Species?\n",
    "            result = inference.query(variables=['Species'], evidence=evidence)\n",
    "            \n",
    "            # Log human-readable results\n",
    "            logger.info(f\"Results for {scenario_name}:\")\n",
    "            species_names = ['Setosa', 'Versicolor', 'Virginica']\n",
    "            for i, prob in enumerate(result.values):\n",
    "                logger.info(f\"  P(Species={species_names[i]}|Evidence) = {prob:.4f}\")\n",
    "            \n",
    "            # Store results for later analysis and visualization\n",
    "            results[scenario_name] = {\n",
    "                'evidence': evidence,\n",
    "                'probabilities': result.values.tolist(),\n",
    "                'species_names': species_names\n",
    "            }\n",
    "        except Exception as e:\n",
    "            # Handle cases where evidence is impossible/inconsistent\n",
    "            logger.error(f\"Error in inference for {scenario_name}: {e}\")\n",
    "            results[scenario_name] = {\n",
    "                'evidence': evidence,\n",
    "                'error': str(e)\n",
    "            }\n",
    "    \n",
    "    return results\n",
    "\n",
    "def visualize_network_and_results(model, inference_results, data):\n",
    "    \"\"\"\n",
    "    Create comprehensive visualizations of the network and inference results.\n",
    "    \n",
    "    Generates 4 subplots:\n",
    "    1. Species distribution in dataset\n",
    "    2. Feature correlation heatmap\n",
    "    3. Inference results comparison\n",
    "    4. Network structure adjacency matrix\n",
    "    \n",
    "    Args:\n",
    "        model: Trained network\n",
    "        inference_results: Results from inference scenarios\n",
    "        data: Original dataset\n",
    "    \"\"\"\n",
    "    logger.info(\"Creating visualizations\")\n",
    "    \n",
    "    # Set up matplotlib style and create subplot grid\n",
    "    plt.style.use('default')\n",
    "    fig, axes = plt.subplots(2, 2, figsize=(15, 12))\n",
    "    \n",
    "    # Plot 1: Species distribution (shows balanced dataset)\n",
    "    species_counts = data['Species'].value_counts().sort_index()\n",
    "    axes[0, 0].bar(species_counts.index, species_counts.values, alpha=0.7, edgecolor='black')\n",
    "    axes[0, 0].set_title('Species Distribution in Dataset')\n",
    "    axes[0, 0].set_xlabel('Species (0=Setosa, 1=Versicolor, 2=Virginica)')\n",
    "    axes[0, 0].set_ylabel('Count')\n",
    "    axes[0, 0].set_xticks([0, 1, 2])\n",
    "    \n",
    "    # Plot 2: Feature correlation matrix (shows relationships between features)\n",
    "    correlation_matrix = data.corr()\n",
    "    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[0, 1], fmt='.3f')\n",
    "    axes[0, 1].set_title('Feature Correlation Matrix')\n",
    "    \n",
    "    # Plot 3: Inference results comparison (shows model predictions)\n",
    "    valid_results = {k: v for k, v in inference_results.items() if 'probabilities' in v}\n",
    "    if valid_results:\n",
    "        scenarios = list(valid_results.keys())[:3]  # Show first 3 valid scenarios\n",
    "        species_names = ['Setosa', 'Versicolor', 'Virginica']\n",
    "        x = np.arange(len(species_names))  # Species positions\n",
    "        width = 0.25  # Bar width for grouped bars\n",
    "        \n",
    "        # Use distinct colors for each scenario\n",
    "        colors = ['skyblue', 'lightcoral', 'lightgreen']\n",
    "        for i, scenario in enumerate(scenarios):\n",
    "            probs = valid_results[scenario]['probabilities']\n",
    "            # Offset bars for each scenario to create grouped bar chart\n",
    "            axes[1, 0].bar(x + i*width, probs, width, label=scenario, alpha=0.8, color=colors[i])\n",
    "        \n",
    "        axes[1, 0].set_xlabel('Species')\n",
    "        axes[1, 0].set_ylabel('Probability')\n",
    "        axes[1, 0].set_title('Inference Results Comparison')\n",
    "        axes[1, 0].set_xticks(x + width)  # Center ticks between grouped bars\n",
    "        axes[1, 0].set_xticklabels(species_names)\n",
    "        axes[1, 0].legend()\n",
    "        axes[1, 0].set_ylim(0, 1)  # Probability range [0, 1]\n",
    "    else:\n",
    "        # Handle case where no valid inference results exist\n",
    "        axes[1, 0].text(0.5, 0.5, 'No valid inference results', \n",
    "                       ha='center', va='center', transform=axes[1, 0].transAxes)\n",
    "        axes[1, 0].set_title('Inference Results (No Valid Results)')\n",
    "    \n",
    "    # Plot 4: Network structure as adjacency matrix\n",
    "    nodes = list(model.nodes())\n",
    "    adj_matrix = np.zeros((len(nodes), len(nodes)))  # Initialize empty matrix\n",
    "    node_to_idx = {node: i for i, node in enumerate(nodes)}  # Map node names to indices\n",
    "    \n",
    "    # Fill adjacency matrix: 1 if edge exists, 0 otherwise\n",
    "    for edge in model.edges():\n",
    "        parent_idx, child_idx = node_to_idx[edge[0]], node_to_idx[edge[1]]\n",
    "        adj_matrix[parent_idx][child_idx] = 1\n",
    "    \n",
    "    # Create heatmap of network structure\n",
    "    sns.heatmap(adj_matrix, annot=True, xticklabels=nodes, yticklabels=nodes, \n",
    "                cmap='Blues', ax=axes[1, 1], cbar=False, fmt='g')\n",
    "    axes[1, 1].set_title('Network Structure (Adjacency Matrix)')\n",
    "    axes[1, 1].set_xlabel('Child Nodes')\n",
    "    axes[1, 1].set_ylabel('Parent Nodes')\n",
    "    \n",
    "    # Save and display the complete visualization\n",
    "    plt.tight_layout()\n",
    "    plt.savefig('bayesian_network_analysis.png', dpi=300, bbox_inches='tight')\n",
    "    logger.info(\"Saved visualization as 'bayesian_network_analysis.png'\")\n",
    "    plt.show()\n",
    "\n",
    "def evaluate_model_performance(model, data):\n",
    "    \"\"\"\n",
    "    Evaluate model performance using train/test split with stratification.\n",
    "    \n",
    "    Performance Evaluation Strategy:\n",
    "    - Stratified split maintains class balance in train/test sets\n",
    "    - Use all features except Species as evidence for prediction\n",
    "    - Predict Species and compare with ground truth\n",
    "    - Calculate accuracy and log sample predictions with confidence\n",
    "    \n",
    "    Args:\n",
    "        model: Trained Bayesian Network\n",
    "        data: Complete dataset\n",
    "    \n",
    "    Returns:\n",
    "        tuple: (accuracy_score, trained_model_on_train_split)\n",
    "    \"\"\"\n",
    "    logger.info(\"Evaluating model performance\")\n",
    "    \n",
    "    # Create stratified train/test split (maintains class distribution)\n",
    "    # test_size=0.3 means 30% for testing, 70% for training\n",
    "    # stratify ensures equal representation of each species in both sets\n",
    "    train_data, test_data = train_test_split(data, test_size=0.3, random_state=42, stratify=data['Species'])\n",
    "    logger.info(f\"Training data shape: {train_data.shape}\")\n",
    "    logger.info(f\"Test data shape: {test_data.shape}\")\n",
    "    \n",
    "    # Train a new model on training data only (proper evaluation)\n",
    "    train_model = DiscreteBayesianNetwork(model.edges())  # Same structure\n",
    "    train_model.fit(train_data, estimator=MaximumLikelihoodEstimator)\n",
    "    \n",
    "    # Create inference engine for the trained model\n",
    "    inference = VariableElimination(train_model)\n",
    "    correct_predictions = 0\n",
    "    total_predictions = 0\n",
    "    \n",
    "    prediction_details = []  # Store details for analysis\n",
    "    \n",
    "    # Evaluate on each test sample\n",
    "    for idx, row in test_data.iterrows():\n",
    "        try:\n",
    "            # Create evidence dictionary (all features except target Species)\n",
    "            evidence = {col: int(row[col]) for col in data.columns if col != 'Species'}\n",
    "            \n",
    "            # Perform inference: P(Species | evidence)\n",
    "            result = inference.query(variables=['Species'], evidence=evidence)\n",
    "            \n",
    "            # Make prediction (species with highest probability)\n",
    "            predicted_species = np.argmax(result.values)\n",
    "            actual_species = int(row['Species'])\n",
    "            \n",
    "            # Store prediction details for analysis\n",
    "            prediction_details.append({\n",
    "                'actual': actual_species,\n",
    "                'predicted': predicted_species,\n",
    "                'confidence': float(np.max(result.values)),  # Highest probability\n",
    "                'evidence': evidence\n",
    "            })\n",
    "            \n",
    "            # Count correct predictions\n",
    "            if predicted_species == actual_species:\n",
    "                correct_predictions += 1\n",
    "            total_predictions += 1\n",
    "            \n",
    "        except Exception as e:\n",
    "            # Log failed predictions (e.g., due to unseen evidence combinations)\n",
    "            logger.warning(f\"Could not make prediction for row {idx}: {e}\")\n",
    "    \n",
    "    # Calculate and report accuracy\n",
    "    if total_predictions > 0:\n",
    "        accuracy = correct_predictions / total_predictions\n",
    "        logger.info(f\"Model accuracy on test data: {accuracy:.4f} ({correct_predictions}/{total_predictions})\")\n",
    "        \n",
    "        # Show sample predictions with confidence scores\n",
    "        logger.info(\"Sample predictions:\")\n",
    "        for i, pred in enumerate(prediction_details[:5]):  # Show first 5 predictions\n",
    "            result_symbol = \"\" if pred['actual'] == pred['predicted'] else \"\"\n",
    "            logger.info(f\"  {result_symbol} Actual: {pred['actual']}, Predicted: {pred['predicted']}, Confidence: {pred['confidence']:.3f}\")\n",
    "    else:\n",
    "        accuracy = 0.0\n",
    "        logger.warning(\"No successful predictions made\")\n",
    "    \n",
    "    return accuracy, train_model\n",
    "\n",
    "def save_model_and_results(model, inference_results, accuracy, data):\n",
    "    \"\"\"\n",
    "    Save all important artifacts for reproducibility and future use.\n",
    "    \n",
    "    Saves:\n",
    "    - Trained model (pickle format for Python)\n",
    "    - Inference results (JSON for cross-platform compatibility)\n",
    "    - Processed data (CSV for analysis in other tools)\n",
    "    - Model summary (JSON with metadata)\n",
    "    \n",
    "    Args:\n",
    "        model: Trained Bayesian Network\n",
    "        inference_results: Dictionary of inference scenarios and results\n",
    "        accuracy: Model accuracy score\n",
    "        data: Processed dataset\n",
    "    \"\"\"\n",
    "    logger.info(\"Saving model and results\")\n",
    "    \n",
    "    # Save trained model using pickle (preserves Python objects)\n",
    "    with open('bayesian_network_model.pkl', 'wb') as f:\n",
    "        pickle.dump(model, f)\n",
    "    logger.info(\"Saved trained model as 'bayesian_network_model.pkl'\")\n",
    "    \n",
    "    # Save inference results as JSON (human-readable, cross-platform)\n",
    "    with open('inference_results.json', 'w') as f:\n",
    "        json.dump(inference_results, f, indent=2)\n",
    "    logger.info(\"Saved inference results as 'inference_results.json'\")\n",
    "    \n",
    "    # Save processed data as CSV (can be opened in Excel, loaded by other tools)\n",
    "    data.to_csv('processed_iris_data.csv', index=False)\n",
    "    logger.info(\"Saved processed data as 'processed_iris_data.csv'\")\n",
    "    \n",
    "    # Create comprehensive model summary\n",
    "    summary = {\n",
    "        'model_type': 'Discrete Bayesian Network',\n",
    "        'dataset': 'Iris (discretized)',\n",
    "        'nodes': list(model.nodes()),\n",
    "        'edges': list(model.edges()),\n",
    "        'accuracy': accuracy,\n",
    "        'data_shape': list(data.shape),\n",
    "        'num_parameters': sum(cpd.values.size for cpd in model.get_cpds()),  # Total parameters\n",
    "        'inference_scenarios': len(inference_results)\n",
    "    }\n",
    "    \n",
    "    # Save model summary as JSON\n",
    "    with open('model_summary.json', 'w') as f:\n",
    "        json.dump(summary, f, indent=2)\n",
    "    logger.info(\"Saved model summary as 'model_summary.json'\")\n",
    "\n",
    "def main():\n",
    "    \"\"\"\n",
    "    Main execution function that orchestrates the complete Bayesian Network workflow.\n",
    "    \n",
    "    Workflow:\n",
    "    1. Data loading and preprocessing\n",
    "    2. Network structure definition\n",
    "    3. Parameter learning from data\n",
    "    4. Probabilistic inference with test scenarios\n",
    "    5. Model evaluation and performance measurement\n",
    "    6. Visualization and results analysis\n",
    "    7. Artifact saving for reproducibility\n",
    "    \"\"\"\n",
    "    logger.info(\"Starting Bayesian Network implementation\")\n",
    "    \n",
    "    # Step 1: Load and preprocess data\n",
    "    data = load_and_prepare_data()\n",
    "    \n",
    "    # Step 2: Define network structure based on domain knowledge\n",
    "    model = create_network_structure()\n",
    "    \n",
    "    # Step 3: Learn parameters (CPDs) from data using MLE\n",
    "    trained_model = learn_parameters(model, data)\n",
    "    \n",
    "    # Step 4: Define test scenarios for inference\n",
    "    # These scenarios test different combinations of evidence\n",
    "    evidence_scenarios = {\n",
    "        'large_petals': {'Petal_Length': 2, 'Petal_Width': 2},    # Expect Virginica\n",
    "        'small_petals': {'Petal_Length': 0, 'Petal_Width': 0},   # Expect Setosa  \n",
    "        'medium_sepals': {'Sepal_Length': 1, 'Sepal_Width': 1},  # Mixed prediction\n",
    "        'mixed_features': {'Sepal_Length': 2, 'Petal_Length': 0} # Potentially conflicting\n",
    "    }\n",
    "    \n",
    "    # Step 5: Perform probabilistic inference\n",
    "    inference_results = perform_inference(trained_model, evidence_scenarios)\n",
    "    \n",
    "    # Step 6: Evaluate model performance using proper train/test methodology\n",
    "    accuracy, _ = evaluate_model_performance(trained_model, data)\n",
    "    \n",
    "    # Step 7: Create comprehensive visualizations\n",
    "    visualize_network_and_results(trained_model, inference_results, data)\n",
    "    \n",
    "    # Step 8: Save all artifacts for future reference and reproducibility\n",
    "    save_model_and_results(trained_model, inference_results, accuracy, data)\n",
    "    \n",
    "    # Final summary\n",
    "    logger.info(\"Bayesian Network implementation completed successfully!\")\n",
    "    logger.info(f\"Final model accuracy: {accuracy:.4f}\")\n",
    "    logger.info(\"All artifacts saved for future reference\")\n",
    "\n",
    "# Entry point - execute main function when script is run directly\n",
    "if __name__ == \"__main__\":\n",
    "    main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ea1fef14-6651-43be-800c-2e89f529aefc",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}