leaderboard-pr-bot's picture
Adding Evaluation Results
e78137c verified
|
raw
history blame
11 kB
metadata
language:
  - ja
  - en
license: other
library_name: transformers
tags:
  - llama
  - llama-2
  - steerlm
datasets:
  - OpenAssistant/oasst2
  - nvidia/HelpSteer
base_model: karakuri-ai/karakuri-lm-70b-v0.1
pipeline_tag: conversational
model-index:
  - name: karakuri-ai/karakuri-lm-70b-chat-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MT-Bench
          type: unknown
        metrics:
          - type: unknown
            value: 6.609375
            name: score
          - type: unknown
            value: 6.43125
            name: score
        source:
          url: https://huggingface.co/spaces/lmsys/mt-bench
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 61.52
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=karakuri-ai/karakuri-lm-70b-chat-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 83.13
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=karakuri-ai/karakuri-lm-70b-chat-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 59.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=karakuri-ai/karakuri-lm-70b-chat-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 51.39
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=karakuri-ai/karakuri-lm-70b-chat-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=karakuri-ai/karakuri-lm-70b-chat-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 40.41
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=karakuri-ai/karakuri-lm-70b-chat-v0.1
          name: Open LLM Leaderboard

KARAKURI LM

KARAKURI LM

KARAKURI LM is a pretrained language model that builds upon Llama 2. Our model enhances Llama 2's capabilities by incorporating additional Japanese vocabulary and further pretraining on a mixture of Japanese and multilingual corpora.

KARAKURI LM Chat is a fine-tuned version of KARAKURI LM, which was trained on a mixture of publicly available and closed datasets using the SteerLM technique. During fine-tuning, our model employed a continual learning approach. Unlike the common practice of relying solely on structured conversational datasets, we also incorporated unstructured corpora, similar to what was used during its pretraining phase.

Despite the conversational datasets containing only 2.5% Japanese tokens, our model has shown remarkable performance. It achieves the highest performance among Japanese open models on the MT-Bench-jp at the time of release. Furthermore, it achieves performance comparable to Llama 2 70B Chat on the original English MT-Bench.

You can find more details in our blog post (en, ja). If you are curious about our model, give our demo a try.

Model Details

  • Developed by: KARAKURI Inc.
  • Model type: Causal decoder-only transformer language model
  • Languages: English and Japanese
  • Finetuned from: karakuri-ai/karakuri-lm-70b-v0.1
  • Contact: For questions and comments about the model, please email karakuri-rd@karakuri.ai

Performance

At the time of release, KARAKURI LM 70B Chat v0.1 achieves the highest performance among Japanese open models on the MT-Bench-jp:

Model Size Alignment MT-Bench-jp
GPT-4 - RLHF 8.78
GPT-3.5-Turbo - RLHF 8.24
Claude 2.1 - RLHF 8.18
Gemini Pro - RLHF 7.17
KARAKURI LM 70B Chat v0.1 70B SteerLM 6.43
Qarasu-14B-Chat-Plus-Unleashed 14B SFT 6.26
Llama 2 70B Chat 70B RLHF 5.23
ELYZA-Japanese-Llama-2-13B 13B SFT 5.05
Japanese-StableLM-Instruct-Beta-70B 70B SFT 5.03
Swallow-70B-Instruct 70B SFT 4.39

It also achieves performance comparable to Llama 2 70B Chat on the original English MT-Bench:

Model Average MT-Bench MT-Bench-jp
KARAKURI LM 70B Chat v0.1 6.52 6.61 6.43
Llama 2 70B Chat 6.04 6.86 5.23

Use in 🤗 Transformers

You can run the model using the pipeline() function from 🤗 Transformers:

from transformers import pipeline, Conversation

chatbot = pipeline("conversational", model="karakuri-ai/karakuri-lm-70b-chat-v0.1", device_map="auto", torch_dtype="auto")

conversation = Conversation("週末に日帰りで東京に遊びに行こうと思っています。日帰りなので、短時間で回れるおすすめの観光プランを教えてください。")
conversation = chatbot(conversation, max_new_tokens=512)
conversation.messages[-1]["content"]

We use the following prompt template of multi-turn conversation in the Llama format, which includes an encoded string of multiple attribute values.

messages = [
    {"role": "system", "content": "System prompt"},
    {"role": "user", "content": "User prompt"},
    {"role": "assistant", "content": "Model response"},
    {"role": "user", "content": "User prompt"},
]
chatbot.tokenizer.apply_chat_template(messages, tokenize=False)
# <s>[INST] <<SYS>>
# System prompt
# <</SYS>>
#
# User prompt [ATTR] helpfulness: 4 correctness: 4 coherence: 4 complexity: 4 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST] Model response </s><s>[INST] User prompt [ATTR] helpfulness: 4 correctness: 4 coherence: 4 complexity: 4 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST]

The prompt template contains nine attributes. The first five are derived from HelpSteer, while the remaining four are derived from OASST2. The values are represented by integers ranging from 0 to 4, with 0 being the lowest and 4 being the highest.

  • helpfulness (default: 4)
  • correctness (default: 4)
  • coherence (default: 4)
  • complexity (default: 4)
  • verbosity (default: 4)
  • quality (default: 4)
  • toxicity (default: 0)
  • humor (default: 0)
  • creativity (default: 0)

You can change the attribute values by replacing the default values specified in the chat template:

chatbot.tokenizer.chat_template = chatbot.tokenizer.chat_template.replace("complexity: 4", "complexity: 0")

Training

Training Datasets

  • OASST2
  • Our internal conversational datasets

Training Infrastructure

  • Hardware: KARAKURI LM 70B was trained on 32 nodes of an Amazon EC2 trn1.32xlarge instance.
  • Software: We use code based on neuronx-nemo-megatron.

Acknowledgements

We gratefully acknowledge the support from AWS Japan through the AWS LLM Development Support Program.

License

Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

Subject to the license above, and except for commercial purposes, you are free to share and adapt KARAKURI LM, provided that you must, in a recognizable and appropriate manner, (i) state that you are using KARAKURI LM developed by KARAKURI Inc., when you publish or make available to third parties KARAKURI LM, its derivative works or modification, or any output or results of KARAKURI LM or its derivative works or modification, and (ii) indicate your contributions, if you modified any material of KARAKURI LM.

If you plan to use KARAKURI LM for commercial purposes, please contact us beforehand. You are not authorized to use KARAKURI LM for commercial purposes unless we expressly grant you such rights.

If you have any questions regarding the interpretation of above terms, please also feel free to contact us.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 62.36
AI2 Reasoning Challenge (25-Shot) 61.52
HellaSwag (10-Shot) 83.13
MMLU (5-Shot) 59.35
TruthfulQA (0-shot) 51.39
Winogrande (5-shot) 78.37
GSM8k (5-shot) 40.41