|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kanishka/counterfactual_babylm_measure_nps_as_singular_new |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: smolm-autoreg-bpe-counterfactual_babylm_measure_nps_as_singular_new-1e-4 |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: kanishka/counterfactual_babylm_measure_nps_as_singular_new |
|
type: kanishka/counterfactual_babylm_measure_nps_as_singular_new |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.40681131693060796 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# smolm-autoreg-bpe-counterfactual_babylm_measure_nps_as_singular_new-1e-4 |
|
|
|
This model was trained from scratch on the kanishka/counterfactual_babylm_measure_nps_as_singular_new dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.4240 |
|
- Accuracy: 0.4068 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 32000 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 4.0517 | 1.0 | 18602 | 4.2617 | 0.3086 | |
|
| 3.5614 | 2.0 | 37204 | 3.7325 | 0.3617 | |
|
| 3.3871 | 3.0 | 55806 | 3.5926 | 0.3794 | |
|
| 3.2873 | 4.0 | 74408 | 3.4903 | 0.3889 | |
|
| 3.2166 | 5.0 | 93010 | 3.4705 | 0.3930 | |
|
| 3.1683 | 6.0 | 111612 | 3.4386 | 0.3965 | |
|
| 3.122 | 7.0 | 130214 | 3.4230 | 0.3987 | |
|
| 3.0883 | 8.0 | 148816 | 3.4103 | 0.4020 | |
|
| 3.059 | 9.0 | 167418 | 3.4161 | 0.4022 | |
|
| 3.0294 | 10.0 | 186020 | 3.4004 | 0.4039 | |
|
| 3.0081 | 11.0 | 204622 | 3.4048 | 0.4041 | |
|
| 2.9849 | 12.0 | 223224 | 3.4068 | 0.4046 | |
|
| 2.9618 | 13.0 | 241826 | 3.4127 | 0.4048 | |
|
| 2.9398 | 14.0 | 260428 | 3.4079 | 0.4054 | |
|
| 2.9226 | 15.0 | 279030 | 3.3963 | 0.4065 | |
|
| 2.9009 | 16.0 | 297632 | 3.4036 | 0.4068 | |
|
| 2.8845 | 17.0 | 316234 | 3.4090 | 0.4067 | |
|
| 2.8685 | 18.0 | 334836 | 3.4054 | 0.4071 | |
|
| 2.8513 | 19.0 | 353438 | 3.4187 | 0.4069 | |
|
| 2.8368 | 20.0 | 372040 | 3.4240 | 0.4068 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.2 |
|
|